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Abstract 

Sleep supports stabilization of explicit, declarative memory and benefits implicit, procedural 

memory. In addition, sleep may change the quality of memory representations. Explicit and 

implicit learning systems, usually linked to the hippocampus and striatum, can compete during 

learning, but whether they continue to interact during offline periods remains unclear. Here, we 

investigate for feedback-driven classification learning, whether sleep integrates explicit and 

implicit aspects of memory. The negative relationship between implicit and explicit memory 

components was resolved over sleep, but not wakefulness. Additionally, sleep benefitted 

performance on a task that allows the cooperative use of explicit and implicit memory, and 

participants who slept showed superior performance in generalizing their knowledge to unseen 

exemplars. A reinforcement learning model relates this to better transfer of the learned 

exemplar value representation after sleep. This suggests that sleep integrates information 

learned by different routes and helps us respond optimally to everyday life contingencies. 

Keywords. sleep, memory consolidation, explicit memory, implicit memory, reinforcement 

learning, fMRI  
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Introduction 

To distinguish between actions with high and low reward, we must learn from different sources 

of information and combine them flexibly to guide adaptive behavior in novel situations. For 

instance, during childhood, we develop food preferences through explicit instruction from 

caregivers. At the same time, we learn about the underlying factors that determine food value 

by integrating knowledge from our own experiences. This dual learning process enables us 

not only to assess the value of familiar foods, but also to generalize our preferences to new 

and unfamiliar ones. Similarly, in classification learning tasks conducted in laboratory settings, 

two distinct types of representations are formed. Detailed explicit episodic memory of individual 

items allows generalization to unseen items based on similarity of these new items with 

previously stored exemplars (exemplar-based strategy; Zeithamova & Bowman, 2020). Implicit 

statistical learning leads to a non-declarative (i.e., non-verbalizable) model of common 

relations between item features and associated responses, shaping behavior without 

awareness and developing gradually over a large number of learning trials (strategies based 

on implicit incremental learning, including information-integration; F. G. Ashby & Waldron, 

1999; Poldrack & Foerde, 2008). While explicit memory is generally assumed to rely on 

structures in the medial temporal lobe, including the hippocampus, in interaction with prefrontal 

and posterior cortical regions (Gilboa & Moscovitch, 2021; Squire & Zola, 1996), information-

integration tasks rely on the striatum (F. G. Ashby & Ennis, 2006; Minda et al., 2024). Both 

memory systems can interact during task training, while the importance of systems for a 

specific task can shift over time (Poldrack et al., 2001; Poldrack & Rodriguez, 2004; Wimmer 

& Shohamy, 2012). The nature of this interaction may be mediated by other brain regions 

including the prefrontal cortex (Freedberg et al., 2020; Shohamy, 2011). However, it remains 

unclear, which factors shape the interplay and integration of knowledge across these different 

memory systems. Here, we investigate whether sleep integrates representations formed in 

explicit and implicit memory systems. 

Sleep has been linked to memory consolidation and synaptic plasticity (Brodt et al., 

2023; Diekelmann & Born, 2010). It supports stabilization of explicit, declarative memory (Gais 

et al., 2006; Gui et al., 2017; Hanert et al., 2017; Schönauer, Pawlizki, et al., 2014) and benefits 

implicit, procedural memory (Geyer et al., 2013; Nettersheim et al., 2015; Schmid et al., 2020; 

Schönauer, Geisler, et al., 2014; Walker et al., 2002). Sleep is therefore considered crucial for 

the offline evolution of newly encoded memory traces (Stickgold, 2013). Information is not only 

selectively strengthened (Leong et al., 2019; Wilhelm et al., 2011; but also see Davidson et al., 

2021), sleep-dependent memory processing has also been suggested to alter the quality of 

the memory trace (Klinzing et al., 2019). Sleep is thought to help item integration and multi-

item generalization, leading to a functionally different representation of memories (Himmer et 

al., 2017; Maddox et al., 2009; Stickgold & Walker, 2013; Witkowski et al., 2021). 
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However, although evidence for sleep-dependent memory stabilization and 

enhancement in both the explicit and implicit domain is ample (Diekelmann & Born, 2010), the 

qualitative representational changes induced by sleep are still less well understood (Brodt et 

al., 2023; Cordi & Rasch, 2021; Stickgold, 2013). Data from artificial grammar 

learning (Batterink & Paller, 2017; Gaskell et al., 2014; Gómez et al., 2006; Hupbach et al., 

2009; Nieuwenhuis et al., 2013), statistical learning (Durrant et al., 2011, 2013) and transitive 

inference (Alger & Payne, 2016; Ellenbogen et al., 2007; Lau et al., 2010; Santamaria et al., 

2024; Werchan & Gómez, 2013) suggest that sleep in fact helps to extract implicit, hidden 

relations between studied items, leading to offline rule extrapolation. Furthermore, it has been 

suggested that sleep may induce gist abstraction in declarative learning tasks (Lutz et al., 

2017, 2018; Schapiro et al., 2017; Wernette & Fenn, 2023) and explicit insight into problem 

solving tasks (Lacaux et al., 2021; Löwe et al., 2024; Wagner et al., 2004). 

These qualitative changes have been observed separately in implicit and explicit 

memory. However, many everyday learning tasks engage both implicit and explicit learning 

simultaneously, and it has been shown that these can compete during task training (Poldrack 

et al., 2001; Schendan et al., 2003; Shohamy & Turk-Browne, 2013). Memory consolidation 

including overnight sleep seems to moderate the relationship between explicit and implicit 

learning systems (Albouy et al., 2008; Albouy, Sterpenich, et al., 2013; Durrant et al., 2013). It 

remains unclear whether implicit and explicit aspects of a classification learning task are 

integrated over a night of sleep compared to wakefulness, or if they persist as separate 

representations. Recent evidence from spatial navigation learning indicates that sleep may 

favor the formation of a unified spatial memory by integrating hippocampal and striatal spatial 

representations (Noack et al., 2021). This suggests that sleep could resolve the competition 

between explicit and implicit memory systems in classification learning. 

In this study, we directly compared the contribution of sleep to the evolution of both 

explicit and implicit memory acquired during classification learning. We investigated a form of 

implicit contingency learning in a typical feedback-driven information-integration classification 

task in which participants learned a complex decision rule. Two different memory traces were 

established during learning: explicit knowledge about individual exemplars and implicit memory 

relying on integration of information regarding the underlying regularities. After periods of sleep 

or wakefulness, we tested explicit exemplar knowledge and implicit information-integration 

proficiency separately. Additionally, we tested cooperation between implicit and explicit 

memory using a task that could be solved using both implicit and explicit memory. 
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Results 

Participants were trained on a classification learning task in which they had to distinguish 

between winning and losing exemplars. Participants performed 625 consecutive learning trials. 

On each given trial, two stimuli were presented on a black screen and participants had to 

choose the exemplar with the higher rank, i.e., the exemplar winning the respective 

comparison (see Fig. 1). The rank of the stimuli was defined by a hidden rule reflecting a linear 

combination of values assigned to the different stimulus properties (shape, symbol, fill color, 

frame color) and frame color as irrelevant distractor. Importantly, during learning, the same 25 

exemplars were always the higher-ranking ones (winner exemplars) and the remaining 25 

exemplars were always the lower-ranking ones (loser exemplars). Thus, participants could 

solve the task either by explicitly remembering if single exemplars were winners or 

losers (exemplar-based decision), or by implicitly learning the underlying hidden regularities 

that determined the exemplar’s rank (decision based on information-integration learning). 

Participants were tested on different aspects of memory (implicit memory, explicit memory, 

and cooperation between these two systems) in a separate retrieval session. In the night-sleep 

and day-wake groups, participants were tested after a 12-h interval, during which they had 

either a full night of sleep or a normal day of wakefulness while participants in the circadian 

control groups (morning and evening control groups) were tested immediately after learning in 

the morning or evening, respectively. 

Participants Learned to Distinguish Winning from Losing Exemplars 

All participants successfully acquired knowledge about winning and losing exemplars during 

classification task training (Fig. 2A; Supplementary Tables S2A; S3A). As a result, they 

performed with high accuracy during the second half of task training (overall performance: 

92.02 % ± 0.44 %; 𝑡(182) = 95.41, 𝑝 < .001, 𝑑 = 7.05 [two-tailed one-sample 𝑡-test against 

chance performance]; night-sleep group: 91.54 % ± 0.67 %; day-wake group: 92.27 % ±

0.80 %; morning control group: 91.98 % ± 1.38 %; evening control group: 92.53 % ± 0.93 %). 

Importantly, performance during the second half of training did neither differ between 

participants that were tested immediately after learning (morning ≠ evening circadian control 

groups: 𝑡(55) = −0.33, 𝑝 = .740, 𝑑 = −0.09), nor between participants that received the 

delayed tests (night-sleep ≠ day-wake groups: 𝑡(124) = −0.70, 𝑝 = .487, 𝑑 = −0.12), nor 

between participants that learned the classification task during the same time of day (night-

sleep ≠ evening circadian control group: 𝑡(90) = −0.84, 𝑝 = .403, 𝑑 = −0.19; day-wake ≠ 

morning circadian control group: 𝑡(89) = 0.19, 𝑝 = .847, 𝑑 = 0.04). Because participants could 

apply different learning strategies during training, we fitted a reinforcement learning (RL) model 

on behavioral choices during the learning task to predict their behavior during the later memory 

tests assessing the use of explicit and implicit memory representations (Fig. 2B; 
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Supplementary Tables S4A; S5A; see ‘Methods’). To probe validity of the applied modelling 

 

Fig. 1. Study design and procedure. (A) Study design: 𝑛 = 86 participants in the main study followed a 12-h 
day-wake (task training in the morning, testing in the evening) vs. 12-h night-sleep (task training at night, testing 
in the following day) design. An additional 𝑛 = 40 that were tested in the MRI scanner followed the same 

schedule. To rule out circadian influences, 𝑛 = 57 participants in the circadian control groups were either trained 
and tested in the morning (morning circadian control group) or evening (evening circadian control group). 
(B) Exemplar value dimensions: During the learning task, participants were presented exemplars that were 
assigned different values according to a hidden exemplar hierarchy unknown to the participants. Exemplar 
values were determined by adding the values (1-5) assigned to the properties (e.g., triangle, ellipse, rectangle, 
square, circle for the dimension ‘shape’) of the individual relevant dimensions (i.e., shape, symbol, fill color). 
The frame color served as a distractor. (C) Learning task: During task training, participants had to decide which 
of the two presented exemplars ranked higher according to the hidden value hierarchy, and to indicate the result 
via keypress with the left or right index finger. Correct decisions were reinforced with a happy face. Incorrect 
decisions were penalized with a sad face and a delay of 3 sec. Importantly, exemplars during training either 
always won (winner exemplars) or lost the comparisons (loser exemplars). Thus, participants could solve the 
task either by explicitly remembering for single exemplars if they were winners or losers (exemplar-based 
decision), or by implicitly learning the underlying hidden regularities that determined the exemplar’s 
rank (decision based on information-integration learning). (D) Memory tests: Implicit memory for the hidden 
regularities was tested by pairing two new exemplars that had not been presented during training. Explicit 
exemplar memory was tested in a recognition task by presenting the 50 exemplars that had appeared during 
training and 50 novel exemplars. Cooperation between memory systems was assessed by asking participants 
to judge for individual, previously presented exemplars whether these exemplars would rather win or lose in 
comparison to other exemplars. (E) Exemplar value distributions: Winning exemplars during training ranked 
between 10 and 12, losing exemplars between 6 and 8. New exemplars presented during the implicit memory 
test spanned the whole possible exemplar sum point value range between 3 and 15. 
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approach, we performed a recovery analysis where we predicted participants’ choices during 

learning from the trained model parameters. Overall, the model was able to predict participants’ 

behavior with high accuracy (overall performance: 85.44 % ± 0.45 %; 𝑡(182) = 78.44, 𝑝 <

.001, 𝑑 = 5.80 [two-tailed one-sample 𝑡-test against chance performance]; night-sleep group: 

84.84 % ± 0.70 %; day-wake group: 85.77 % ± 0.83 %; morning control group: 85.23 % ±

1.46 %; evening control group: 86.23 % ± 0.83 %; Fig. 2C). Importantly, these prediction 

accuracies again did not differ either between participants who were tested immediately after 

learning (morning ≠ evening circadian control groups: 𝑡(55) = −0.60, 𝑝 = .549, 𝑑 = −0.16), or 

between participants who received the delayed tests (night-sleep ≠ day-wake groups: 𝑡(124) =

 

Fig. 2. Task learning performance and reinforcement learning (RL) modeling. (A) Learning performance: 
Participants successfully acquired knowledge about winning and losing exemplars during classification task 
learning, indicated by overall above chance accuracy in the second half of learning. Performance did not differ 
between groups. (B) Modeling analysis logic: Participants’ behavior during task training and memory tests was 
modeled using a RL algorithm. The model was fitted to participants’ behavioral choices during task training and 
provided the learnt exemplar value representation (𝑄-values) for each participant individually. Based on this 
model, participants’ responses during the memory tests were predicted using different policies for the explicit, 
the implicit, and the cooperative memory task to assess whether participants were able to successfully apply 
the learnt exemplar and corresponding value representations to solve the respective memory tasks. (C) Model 
accuracy in the learning task was consistently high, confirming the validity of our modeling approach. No 
differences between groups were observed. (A, C) Data are 𝑀 ± 𝑆𝐸𝑀. Red dotted lines indicate chance 

performance, a value of 1 indicates 100 % accuracy. ***: 𝑝 < .001; ns: 𝑝 > .1. 
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−0.86, 𝑝 = .393, 𝑑 = −0.15), or between participants who learned the classification task during 

the same time of day (night-sleep ≠ evening circadian control group: 𝑡(90) = −1.18, 𝑝 = .240, 

𝑑 = −0.27; day-wake vs. morning circadian control group: 𝑡(89) = 0.34, 𝑝 = .733, 𝑑 = 0.08). 

Together, this demonstrates that the participants became proficient in the classification and 

that our RL model is suitable to predict behavioral choices during categorization. 

Different Brain Networks Support the Acquired Explicit and Implicit Representations 

The main objective of this study was to test if sleep resolves the competition between explicit 

exemplar memory and implicit information-integration proficiency. For this, participants were 

tested separately on their explicit and their implicit memory in the retrieval session, as well as 

on a memory test allowing for a cooperative use of both memory systems (see Fig. 1D). We 

first confirmed that participants were able to acquire both explicit exemplar and implicit 

information-integration rule representations during classification task training. Explicit 

exemplar memory was tested in a recognition task contrasting the exemplars that had 

appeared during learning with new ones. Implicit memory for the hidden regularities was tested 

by pairing two new exemplars (Fig. 1D). Participants had to decide which exemplar ranked 

higher. Cooperative use of explicit and implicit memory representations was assessed by 

presenting exemplars studied during the learning task and asking participants whether an 

exemplar would rather win or lose in an exemplar comparison. In this task, best performance 

can be achieved by relying on a combination of explicit and implicit memory representations. 

Overall, participants performed well in all three tasks (overall explicit performance [𝑑’]: 0.86 ±

0.03; 𝑡(182) = 25.35, 𝑝 < .001, 𝑑 = 1.87 [two-tailed one-sample 𝑡-test against chance 

performance]; Supplementary Tables S2B, S3B; overall implicit performance [accuracy]: 

65.28 % ± 0.54 %; 𝑡(182) = 28.43, 𝑝 < .001, 𝑑 = 2.10 [two-tailed one-sample 𝑡-test against 

chance performance]; Supplementary Tables S2C, S3C; overall cooperation 

performance [accuracy]: 80.30 % ± 0.65 %; 𝑡(182) = 46.94, 𝑝 < .001, 𝑑 = 3.47 [two-tailed one-

sample 𝑡-test against chance performance]; Supplementary Tables S2D, S3D). Functional 

brain activity during these memory tests provided further evidence for the engagement of 

separate explicit and implicit memory systems. Correct compared to incorrect decisions in the 

explicit memory test activated regions associated with explicit recognition memory in the 

parietal, temporal, and frontal cortices (see Fig. 3A; Supplementary Table S6A; Benoit & 

Schacter, 2015; Brodt et al., 2016, 2018; Stevenson et al., 2020) while correct compared to 

incorrect decisions in the implicit memory test engaged brain regions implicated in information-

integration learning and the representation of the learnt category structure, including the 

striatum and frontal cortex (see Fig. 3B; Supplementary Table S6B; F. G. Ashby & Ennis, 2006; 

S. R. Ashby & Zeithamova, 2022; Bowman & Zeithamova, 2018; Minda et al., 2024; Poldrack 

et al., 2001). In the cooperative memory test, a combined usage of networks associated with 
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explicit and implicit processing was observed, with correct compared to incorrect decisions 

leading to higher activity in the hippocampus, the striatum, frontal cortex and further areas 

implied in recognition memory (see Fig. 3C; Supplementary Table S6C). Together, this 

suggests the involvement of two different brain networks for representing explicit information 

about exemplar identity and for representing implicit statistical information about the exemplar 

value hierarchy, respectively. 

The individual value representations obtained from the RL model allowed us to 

accurately predict participants’ behavioral choices in the implicit memory test requiring them 

to decide which of two unfamiliar exemplars would win the comparison. The model thus 

generalized well to this task (see ‘Methods’; Supplementary Table S7; overall implicit model 

accuracy: 65.35 % ± 0.54 %; 𝑡(182) = 28.64, 𝑝 < .001, 𝑑 = 2.10 [two-tailed one-sample 𝑡-test 

against chance performance]). A parametric modulation analysis modeling the exemplar value 

difference during the implicit memory test based on participant-specific exemplar value 

representations (𝑄-values) showed that activation in brain regions associated with 

representing object value, including medial prefrontal cortex (mPFC; Benoit et al., 2019; 

Castegnetti et al., 2021), occipital and parietal cortex was modulated by participants’ 

representation of the choice exemplar values they had acquired during learning (i.e., higher 

brain activation was related to larger exemplar 𝑄-value differences; see Fig. 3D; 

Supplementary Table S7). Participants were thus able to infer and neurally represent exemplar 

values acquired during training. 

 

Fig. 3. Responding brain networks during memory tests. (A) Explicit memory test, correct > incorrect 
responses: superior parietal lobule, angular gyrus (Supplementary Table S6A). (B) Implicit memory, correct > 
incorrect responses: putamen, postcentral gyrus (Supplementary Table S6B). (C) Cooperation memory, correct 
> incorrect responses: putamen, hippocampus, midcingulate cortex including precuneus (Supplementary 
Table S6C). (D) Implicit memory, exemplar value modulation (𝑄-value): occipital cortex, cuneus, angular gyrus, 
superior frontal cortex (Supplementary Table S7). (A to D) Whole-brain MNI space group-level analyses. All 
clusters exhibited significant peak-level effects at 𝑝uncorr < .001 and exceeded 5 voxels. No masking. Images 
are displayed in anatomical orientation. 
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Sleep Resolves Competition Between Explicit and Implicit Memory Systems 

We next analyzed whether there was a tradeoff between explicit and implicit memory 

performance (Supplementary Table S1C). When participants were tested immediately after 

learning (circadian control groups), the relationship between explicit and implicit aspects of 

their memory was competitive, as indicated by a significant negative relationship between 

explicit and implicit memory scores (morning control group: 𝑏 = −0.09 ± 0.03, 𝑡(175) = −3.25, 

𝑝 = .001; evening control group: 𝑏 = −0.09 ± 0.03, 𝑡(175) = −2.91, 𝑝 = .004 [two-tailed tests]; 

Fig. 4A). However, this initially competitive relationship was selectively resolved after a 12 h-

consolidation interval including sleep (night-sleep group: 𝑏 = 0.01 ± 0.02, 𝑡(175) = 0.74, 𝑝 =

.460 [two-tailed test]; Fig. 4B). Importantly, we did not observe this effect after a time interval 

of the same length of wakefulness (day-wake group: 𝑏 = −0.08 ± 0.02, 𝑡(175) = −3.55, 𝑝 <

.001 [two-tailed test]). Consequently, regression slopes differed significantly between night-

sleep and day-wake groups, but not between circadian control groups (night-sleep > day-wake: 

𝑏 = 0.09 ± 0.03, 𝑡(175) = 3.09, 𝑝 = .001 [one-tailed test]; morning control ≠ evening control: 

𝑏 = 0.00 ± 0.04, 𝑡(175) = −0.10, 𝑝 = .923 [two-tailed test]) with the difference between night-

sleep and day-wake groups being larger than the difference between circadian control 

groups (night-sleep - day-wake > control morning - control evening: 𝑏 = 0.09 ± 0.05, 𝑡(175) =

1.88, 𝑝 = .031 [one-tailed test]). This demonstrates that an initially competitive relationship 

between explicit and implicit memory systems is selectively resolved by sleep. Note, that we 

did not only observe this sleep-dependent resolution of competition in the large study sample 

that combines data from behavioral and fMRI study protocols (as reported above), but also in 

the individual study samples, independently (Supplementary Tables S1A-C). 

 

Fig. 4. Relationship between explicit and implicit memory performance. Relationship between 
performance in explicit and implicit memory tests at (A) immediate tests (morning and evening circadian control 
groups) and (B) after a consolidation interval of 12 h (night-sleep and day-wake groups). Immediately after 
learning, the relationship between explicit and implicit aspects of their memory was competitive, i.e., negatively 
correlated but was selectively resolved after a 12 h-consolidation interval including sleep and not wakefulness. 
(A, B) Regression line ± 95 %-confidence interval. Memory scores are displayed as residual scores after 

regressing out learning performance in the second half of task training. **: 𝑝 < .01. 
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Sleep Promotes Transfer of the Exemplar Value Representation Acquired During Task 

Training 

To better understand the mechanisms underlying this resolved competition between memory 

systems after sleep, we again made use of the RL model fitted on participants’ learning task 

performance, to model choices in the memory tests (Fig. 5; see ‘Methods’). This allowed us to 

investigate the influence of sleep on participants’ memory representations by applying different 

decision policies to the learned exemplar value representation depending on the memory test 

used. In the explicit recognition memory test, we applied a policy for which the probability to 

rate an exemplar as ‘old’ increased with the number of exemplar features matching a specific 

exemplar from the learning exemplars. This policy was overall able to accurately predict 

participants’ performance on this task (overall explicit model accuracy: 69.82 % ± 0.64 %; 

𝑡(182) = 109.95, 𝑝 < .001, 𝑑 = 8.13 [two-tailed one-sample 𝑡-test against chance 

performance]) and yielded no differences between the night-sleep and day-wake group in 

accurately predicting participants’ choices in the explicit memory test (night-sleep [70.98 % ±

1.17 %] > day-wake [69.86 % ± 1.00 %]: 𝑡(124) = 0.73, 𝑝 = .232, 𝑑 = 0.13 [one-tailed 𝑡-test]; 

Fig. 5A). Likewise, we did not observe circadian effects on the prediction of participants’ 

choices in the explicit memory test (control morning [69.71 % ± 1.86 %] ≠ control 

evening [67.31 % ± 1.29 %]: 𝑡(55) = 1.07, 𝑝 = .290, 𝑑 = 0.28 [two-tailed 𝑡-test]; Fig. 5A; 

Supplementary Tables S4B, S5B). Accordingly, sleep did not seem to influence transfer of 

explicit memory representations from task training to testing in this memory task. However, 

when generalizing the models’ exemplar values to unseen exemplars in the implicit memory 

test by recombining the single features an exemplar is composed of, participants in the night-

sleep group demonstrated better transfer of the acquired value representation from learning to 

testing compared to the day-wake group. This was reflected in a better prediction of 

participants’ choices in the implicit memory test in the night-sleep compared to the day-wake 

group while no circadian effects were observed (night-sleep [66.87 % ± 0.77 %] > day-

wake [63.98 % ± 0.97 %]: 𝑡(124) = 2.33, 𝑝 = .011, 𝑑 = 0.42 [one-tailed 𝑡-test]; control 

morning [64.00 % ± 1.69 %] ≠ control evening [66.31 % ± 1.22 %]: 𝑡(55) = −1.12, 𝑝 = .269, 

𝑑 = −0.30 [two-tailed 𝑡-test]; Fig. 5B; Supplementary Tables S4C, S5C). Furthermore, 

predicting participants’ choices in the cooperative memory task using a value-based policy 

(overall cooperation model accuracy: 80.31 % ± 0.64 %; 𝑡(182) = 47.06, 𝑝 < .001, 𝑑 =

3.48 [two-tailed one-sample 𝑡-test against chance performance]) also demonstrated better 

transfer of the acquired value representation from learning to testing compared to the day-

wake group. Here, the policy applied to the model was more likely to indicate that an exemplar 

would rather win than lose in an exemplar comparison if the exemplars’ value ranked relatively 

high within all possible exemplars. Accordingly, prediction of participants’ choices in the 

cooperative memory test in the night-sleep group was more accurate than in the day-wake 
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group while no circadian effects were observed (night-sleep [80.60 % ± 0.94 %] > day-

wake [78.06 % ± 1.07 %]: 𝑡(124) = 1.78, 𝑝 = .039, 𝑑 = 0.32 [one-tailed 𝑡-test]; control 

morning [81.29 % ± 2.02 %] ≠ control evening [83.59 % ± 1.62 %]: 𝑡(55) = −0.89, 𝑝 = .377, 

𝑑 = −0.24 [two-tailed 𝑡-test]; Fig. 5C; Supplementary Tables S4D, S5D). In summary, this 

indicates that sleep allows for better transfer of learned exemplar value representation to post-

sleep memory tests. 

Sleep Benefits Generalization of the Exemplar Value Rule to Unseen Exemplars 

Resolved competition between explicit and implicit memory systems as well as better transfer 

of exemplar value representations from task training to testing after sleep might influence 

overall performance at test. Consequently, we assessed general group differences between 

explicit, implicit, and cooperative memory scores (Fig. 6). A night of sleep significantly 

improved implicit information-integration learning compared to a day of wakefulness, circadian 

effects were not observed (night-sleep group [0.02 ± 0.01] > day-wake group [−0.01 ± 0.01]: 

𝑡(124) = 2.51, 𝑝 = .007, 𝑑 = 0.45 [one-tailed 𝑡-test]; morning control group [−0.01 ± 0.02] ≠ 

evening control group [0.01 ± 0.01]: 𝑡(55) = −1.20, 𝑝 = .234, 𝑑 = −0.32; Fig. 6B; 

Supplementary Tables S2C, S3C). Similarly, when explicit and implicit knowledge could be 

used cooperatively, we again found a positive effect of sleep over wakefulness while we did 

not find significant differences in performance between the morning and evening groups in this 

task (night-sleep group [0.01 ± 0.01] > day-wake group [−0.02 ± 0.01]: 𝑡(124) = 2.79, 𝑝 =

.003, 𝑑 = 0.50 [one-tailed 𝑡-test]; morning control group [0.01 ± 0.01] ≠ evening control 

group [0.03 ± 0.01]: 𝑡(55) = −0.97, 𝑝 = .336, 𝑑 = −0.26; Fig. 6C; Supplementary Tables S2D, 

S3D). Explicit recognition of old exemplars was neither affected by sleep nor circadian 

 

Fig. 5. Reinforcement learning (RL) model prediction of memory tests. Group comparisons predicting 
participants’ behavior in the explicit, implicit, and cooperation memory tests employing different policies of the 
RL model. (A) Explicit model accuracy: No differences between groups in accurately predicting participants’ 
choices in the explicit memory test were observed. (B) Implicit model accuracy: Participants in the night-sleep 
group demonstrated better transfer of the acquired value representation from learning to testing compared to 
the day-wake group. This was reflected in better prediction of participants’ choices in the implicit memory test 
in the night-sleep compared to the day-wake group, while no circadian effects were observed. (C) Cooperation 
model accuracy: Similarly, using a value-based policy, prediction of participants’ choices in the cooperative 
memory test in the night-sleep group was more accurate than in the day-wake group while no circadian effects 
were observed. (A to C) Data are 𝑀 ± 𝑆𝐸𝑀. Red dotted lines indicate chance performance, a value of 1 indicates 

100 % accuracy. *: 𝑝 < .05; ns: 𝑝 > .1. 
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influences  (night-sleep group [−0.03 ± 0.05] > day-wake group [−0.11 ± 0.05]: 𝑡(124) = 1.14, 

𝑝 = .128, 𝑑 = 0.20 [one-tailed 𝑡-test]; morning control group [0.26 ± 0.09] ≠ evening control 

group [0.04 ± 0.07]: 𝑡(55) = 1.90, 𝑝 = .063, 𝑑 = 0.50; Fig. 6A; Supplementary Tables S2B, 

S3B). This underlines our findings that sleep increased implicit knowledge about the exemplar 

hierarchy rule as well as performance in the cooperation task where this knowledge can be 

used jointly with explicit memory representations. 

Sleep Does not Promote Explicit Insight Into the Exemplar Value Rule 

Participants in the night-sleep group compared to the day-wake group were more accurate in 

discriminating unseen exemplars based on their assigned value in the implicit memory test. 

We therefore tested whether participants in the sleep group also obtained better explicit insight 

into the task rule assigning values to exemplars. Participants were asked to indicate which 

factors determined exemplar value during the experimental task in written reports. These were 

rated based on whether the reported rules implied a hierarchy of exemplars or exemplar 

features, and based on whether the reported rules implied that a combination of exemplar 

features across exemplar dimensions defined exemplar value (nominal ratings yes/no). 

Although participants showed improved implicit memory performance after a night of sleep 

compared to a day of wakefulness, this did not transfer to enhanced explicit insight into the 

exemplar value rule, neither for rules involving a hierarchy (night-sleep group [percentage of 

reported hierarchy rules]: 54 %, day-wake group [percentage of reported hierarchy rules]: 

54 %; Χ2(1) = 0.00, 𝑝 = 1.000; Supplementary Tables S11D, S11E) nor for rules involving a 

combination of features (night-sleep group [percentage of reported combination rules]: 59 %, 

day-wake group [percentage of reported combination rules]: 46 %; Χ2(1) = 1.56, 𝑝 = .212; 

 

Fig. 6. Behavioral performance in memory tests. Group comparisons of behavioral performance in the 
explicit, implicit, and cooperation memory tests. (A) Explicit performance: Explicit recognition of old items was 
neither affected by sleep nor circadian influences. (B) Implicit performance: A night of sleep significantly 
improved implicit information-integration learning compared to a day of wakefulness while no circadian effects 
were observed. (C) Cooperation performance: Similarly, when explicit and implicit knowledge could be used 
cooperatively, we again found a positive effect of sleep over wakefulness while no circadian effects were 
observed. (A to C) Data are 𝑀 ± 𝑆𝐸𝑀. To aid comprehension, uncorrected memory scores are displayed 
although statistical tests were performed on residual scores after regressing out learning performance in the 
second half of task training. Red dotted lines indicate chance performance. (B, C) A value of 1 indicates 100 % 
accuracy. **: 𝑝 < .01; .: 𝑝 < .1; ns: 𝑝 > .1. 
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Supplementary Tables S11D, S11F). Although sleep allowed for better implicit generalization 

of the feature rule, this improvement did thus not transfer into the explicit, verbalizable domain. 

Modulation of Memory-Related Brain Activity by Sleep 

Analyzing differences in brain activity during memory tests between the night-sleep and day-

wake groups did not yield any significant results at a conventional significance 

threshold (𝑝uncorr < .001, cluster extent threshold = 5). Since we observed strong and reliable 

effects in behavioral outcomes for night-sleep compared to day-wake group comparisons, we 

report exploratory results that were performed at a more liberal significance threshold in the 

Supplementary Information (𝑝uncorr < .005). During the implicit memory task, sleep after task 

training resulted in stronger activity in the bilateral temporal lobe, including hippocampus, 

during correct versus incorrect decisions, extending brain systems use beyond striatal 

activity (see Fig. 3B) in participants who slept (Supplementary Fig. S10B). In the same 

memory test, sleep also increased exemplar value representations in the medial frontal 

cortex (Supplementary Fig. S10D). In the cooperation memory task, sleep led to small 

increases in the activation of the putamen as well as medial frontal cortex, accompanying 

behavioral benefits (Supplementary Fig. S10C). Visualizations of all clusters and tables 

reporting all sleep > wake contrasts can be found in the Supplementary Information, including 

results on the explicit memory test where no behavioral benefit of sleep was 

observed (Supplementary Fig. S10; Supplementary Tables S8A-C, S9). 

Discussion 

Interactions between memory systems are considerably more flexible than previously 

assumed. Here, we find that the relationship between explicit and implicit memory in a 

classification learning task is moderated by sleep. Sleep is known to support memory 

consolidation in multiple memory systems (Berres & Erdfelder, 2021; Gui et al., 2017; Schmid 

et al., 2020). Our data show that during sleep, memory is not only strengthened within these 

systems, but that information is integrated across explicit and implicit memory systems. An 

initially competitive relationship between implicit and explicit memory is resolved after a night 

of sleep, but not after a day of wakefulness. This integration results in a better transfer of the 

learned exemplar value representation to post-sleep memory tests assessing implicit memory 

for the categorization rule. Moreover, participants who slept showed superior performance both 

on the implicit memory test, requiring use of implicit rule knowledge to assess novel exemplars 

not seen during classification task training, as well as on the cooperative memory test, where 

they could rely on both the explicit and implicit memory representations acquired during 

training. Sleep thus selectively resolves competition between implicit and explicit memory 

systems to improve application of acquired knowledge and aid generalization to novel 

situations. 
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Classification tasks, such as the one used in the present experiments, can be learned 

using explicit or implicit decision strategies and, accordingly, have been shown to activate the 

medial temporal lobe or the striatum, depending on boundary conditions such as training mode, 

training duration, or the activation of the stress system (Dickerson et al., 2011; Gluck et al., 

2002; Poldrack et al., 2001; Poldrack & Rodriguez, 2004; Schwabe & Wolf, 2012; Wimmer et 

al., 2014). Moreover, activity in multiple memory systems can shift over time, possibly reflecting 

strategy use (Packard & Knowlton, 2002). The striatum and medial temporal lobe can also be 

recruited in parallel in other memory tasks, such as motor sequence learning, associative 

memory, (reward) generalization, and navigation (Albouy et al., 2008; Albouy, Sterpenich, et 

al., 2013; Albouy et al., 2015; Brown et al., 2012; Mattfeld & Stark, 2011, 2015; Moses et al., 

2010; Van De Ven et al., 2020; Wimmer & Shohamy, 2012). Here, explicit and implicit learning 

systems can interact both competitively and cooperatively. Sleep has been proposed as an 

important factor modulating the nature of this interaction (Albouy, King, et al., 2013; Freedberg 

et al., 2020). Our task was designed to examine the development of explicit and implicit 

memory components and their interaction. We show that, after sleep, the initially competitive 

interaction between explicit and implicit memory is resolved. A mutual inhibition, reflected in a 

negative relationship between these two aspects of memory after training, was replaced by a 

more cooperative relationship after sleep. Importantly, sleep also benefitted performance in a 

memory test allowing a cooperative use of both explicit and implicit memory systems. Sleep 

thus is a decisive factor facilitating the cooperative use of different memory representations. 

While conclusions on sleep-dependent memory consolidation are usually drawn from 

direct measures of immediate and delayed memory performance, few attempts have been 

made to characterize the underlying cognitive representations using computational modeling 

approaches (Berres et al., 2024). We used a reinforcement learning approach to model 

participant-specific cognitive representations of the multi-dimensional feature space in an 

information-integration classification learning task, which could be solved by different 

mnemonic strategies. This allowed us to assess differences in strategy use between 

participants who slept after task training and participants who stayed awake. We find that after 

a night of sleep, participants made more efficient use of the exemplar value representation 

they had acquired during training. This suggests that sleep not only allows for better access to 

simple memory representations acquired before sleep, as typically indicated by better retention 

of learning material in declarative memory tasks (Schönauer, Pawlizki, et al., 2014), but may 

also enhance access to more complex representations of multidimensional task 

spaces (Chatburn et al., 2014). This greater cognitive availability of the task space may explain 

why participants who slept after training demonstrated superior generalization of the hidden 

exemplar value rule to novel, unseen exemplars, as reflected in their superior performance on 

the implicit memory test. 
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Our finding that sleep aids generalization of the acquired exemplar value rule to new 

exemplars extends research on qualitative changes in memory over sleep, including improved 

gist abstraction and extraction of hidden regularities (Durrant et al., 2011; Ellenbogen et al., 

2007; Lutz et al., 2017, 2018; Schapiro et al., 2017; Werchan & Gómez, 2013). Note, however, 

that other studies failed to replicate this facilitating effect of sleep on the abstraction and 

generalization of task regularities (Cordi & Rasch, 2021; Mirković & Gaskell, 2016; Talamini et 

al., 2022; Tandoc et al., 2021). Our findings suggest that sleep may particularly favor implicit 

forms of generalization. Benefits of sleep on the extraction of hidden regularities in a wide 

range of learning tasks, including artificial grammar learning, information-integration learning, 

and category learning, were only evident in implicit performance improvement, but not explicit 

rule knowledge (Lerner & Gluck, 2019; note that this may be different for learning tasks 

employing temporal rules). Consequently, participants’ performance on our implicit memory 

test benefitted from a night of sleep although they did not gain more explicit insight into the 

exemplar value rule. 

Contrary to robust reports on sleep-dependent benefits in episodic memory 

performance (Berres & Erdfelder, 2021), we did not find a beneficial effect of sleep on explicit 

exemplar recognition. The task goal in our study was to identify a hidden underlying exemplar 

hierarchy, regardless of whether participants employed an explicit exemplar-based or implicit 

information-integration strategy. Previous research has suggested that sleep-dependent 

memory consolidation mainly targets features with future relevance (Leong et al., 2019; 

Wilhelm et al., 2011; but also see Davidson et al., 2021). Consolidating individual exemplar 

representation may not have been of highest priority in the present experiments. Instead, sleep 

accomplished an implicit understanding of the exemplar hierarchy based on the explicitly 

learned exemplars and implicit information-integration rule representations before sleep. In line 

with task demands, this boosted implicit memory performance and led to an integration of 

explicit and implicit memory representations. 

During sleep, the hippocampus coordinates reactivation of previous learning 

experiences together with other cortical and subcortical areas (Girardeau et al., 2017; Ji & 

Wilson, 2007; Lansink et al., 2009; Ólafsdóttir et al., 2016; Pennartz et al., 2004; Peyrache et 

al., 2009; Rothschild et al., 2017; Sterpenich et al., 2021). A joint reactivation of memory 

representations in multiple memory systems may mechanistically underlie our finding that 

sleep resolved competition between implicit and explicit learning systems. Lansink et al. (2009) 

investigated replay of neuronal activity during sleep in both the hippocampus and striatum. 

They show that firing patterns in which hippocampal cells code for the spatial component of 

the memory and striatal cells code for the associated reward component of the learning 

experience are preferentially reinstated in a coordinated replay across these brain structures. 
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This cross-regional replay may have a functional relevance for consolidating a multi-facetted 

memory engram, with both spatial and reward components bound together during sleep-

dependent consolidation. Our brain imaging analyses lacked the power to investigate neural 

evidence for such an integrated, multi-facetted memory representation. Behavioral evidence 

on the promotion of an integrated memory trace following reactivation is provided by a study 

using targeted-memory reactivation (TMR) during sleep indicating that reactivation promotes 

explicit knowledge of an implicit motor sequence rule (Cousins et al., 2014). Furthermore, in a 

category learning paradigm, cuing of categories during sleep reduced details of the studied 

exemplars (Witkowski et al., 2021), indicating a reactivation-dependent rule abstraction. Our 

study extends these findings by demonstrating a sleep-dependent conversion of an initially 

competitive interaction between explicit and implicit memory systems following sleep, 

assessed via behavioral performance. During initial task training, separate memory 

representations are formed in explicit and implicit memory systems. Over sleep, joint 

reactivation may lead to an integration of information across these systems. As a 

consequence, competing representations of the same task can be bound into one coherent 

representation, so that different aspects of a memory together contribute to optimal behavioral 

output. This is reflected in a more cooperative relationship between explicit and implicit 

memory performance, as well as better performance on a cooperative memory test after sleep. 

Our findings demonstrate that sleep plays a critical role in resolving competition 

between explicit and implicit memory systems, fostering a more cooperative relationship that 

enhances memory performance and generalization. By facilitating the integration of separate 

memory representations, sleep enables the formation of a more coherent and accessible 

memory trace, improving implicit rule abstraction in an information-integration category 

learning task and the application of learned information to novel situations. These results align 

with prior research on qualitative changes to memory over sleep-dependent consolidation and 

extend these findings by highlighting that sleep affects the flexible interplay between multiple 

memory systems in addition to strengthening individual memory traces. While our behavioral 

data suggest that sleep promotes cross-system integration, future neuroimaging studies are 

needed to directly assess the neural mechanisms underlying this process. Overall, our study 

provides compelling evidence that sleep not only stabilizes memory but also transforms the 

underlying cognitive architecture, promoting the adaptive use of stored knowledge. 
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Methods 

Participants 

The main study followed a 12-h day-wake vs. 12-h night-sleep design (see Fig. 1A). 

87 participants (52 female, 35 male) learned a feedback-driven classification task either in the 

morning 1 hour after their habitual wake-up time (𝑛 = 44, day-wake group), or in the evening 

after being awake for 13 hours (𝑛 = 43, night-sleep group). Performance was tested after a 

12-h consolidation period, during which they had either a full night of sleep or a normal day of 

wakefulness. All participants were healthy adults between 18 and 30 years with no history of 

neurological or psychiatric disorders. They were color-sighted as assessed by the Ishihara 

test. They were regular sleepers with a habitual sleep duration of more than 6 hours and wake 

up times between 7 am and 9 am. They did not report any chronic or acute sleep related 

problems, did no shift work, and had not changed time zones in the 6 weeks leading up to the 

experiment. Participants were told to refrain from drinking alcohol, coffee, and tea on the day 

of the experiment, as well as the night before, and did not take any medication that affect the 

central nervous system. All participants were non-smokers. Participants were randomly 

assigned to either the sleep or wake condition, with sex balanced across conditions. 

Participants kept sleep logs during the two nights preceding the experimental session and on 

the day of the experiment itself to verify regular sleeping patterns. Additionally, activity during 

the consolidation period was monitored using actimetry to confirm that participants in the wake 

groups did not sleep during the day and to verify reports on sleep length in the sleep group. 

Sleep journals and actimetry data were found to be compatible and no participant was 

excluded for this reason. One participant from the night-sleep group who showed insufficient 

learning performance during the second half of training (< 70 % exemplars correctly learned) 

was excluded, resulting in a sample size of 𝑛 = 42 for the night-sleep group. Participants in 

the night-sleep group slept on average 7 h 9 min ± 8 min during the night after learning the 

classification task. At the end of each visit to the laboratory, a subset (𝑛 = 40) of participants 

performed a 10-min psychomotor vigilance task (PVT; Dinges & Powell, 1985). Fatigue did not 

differ between conditions (mean number of lapses – learning: sleep 1.76 ± 0.49, wake 0.95 ±

0.30; 𝑡(38) = 1.38, 𝑝 = .177; retrieval: sleep 0.90 ± 0.26, wake 0.84 ± 0.32; 𝑡(38) = 0.15, 𝑝 =

.878; median reaction times – learning: sleep 295.26 ± 5.41 𝑚𝑠, wake 298.66 ± 5.43 𝑚𝑠; 

𝑡(38) = −0.44, 𝑝 = .661; retrieval: sleep 289.62 ± 5.73 𝑚𝑠, wake 295.61 ± 5.53 𝑚𝑠; 𝑡(38) =

−0.75, 𝑝 = .459). 

In a second experiment designed to control for circadian influences, 

58 participants (42 female, 16 male) learned the task again either in the morning (𝑛 = 29) or 

in the evening (𝑛 = 29) but were retested immediately after training to control for circadian 

effects on performance (Fig. 1A). One participant from the morning group who showed 
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insufficient learning performance during the second half of training (< 70 % exemplars 

correctly learned) was excluded, resulting in a sample size of 𝑛 = 28 for the morning control 

group. A third experiment with 40 participants (31 female, 9 male) followed the same day-

wake/night-sleep design (𝑛 = 19 and 𝑛 = 21, respectively) as the main study, but performance 

was tested in the magnetic resonance imaging (MRI) scanner (fMRI study, Fig. 1A). 

Participants in the night-sleep group slept on average 6 h 46 min ± 16 min during the night 

after learning the classification task. Sleep duration did not differ significantly between 

participants that were tested in the MRI scanner and participants that only performed the 

experimental task without MRI scanning (𝑡(60) = 1.52, 𝑝 = .133). 

Task 

During classification task training, two stimuli were presented on a black screen, and 

participants had to decide which of these exemplars has a higher rank, i.e., wins the 

comparison (Fig. 1C). The rank of the stimuli was defined by a hidden rule reflecting a linear 

combination of values assigned to stimulus properties, which is typical for information-

integration tasks (F. G. Ashby & Maddox, 2005, 2011). Stimuli differed on four 

dimensions (shape, symbol, fill color, frame color). 

Each dimension had five possible properties (e.g., triangle, ellipse, rectangle, square, 

circle for the dimension ‘shape’). For each participant, we assigned a new arbitrary hierarchy 

to the five properties of the dimensions shape, symbol, and fill color (exemplary hierarchy 

shown in Fig. 1B). According to the hierarchy, scores between 1 and 5 were assigned to the 

properties. Frame color served as a distractor. A score between 3 and 15 was calculated for 

each object by adding these values across dimensions (Fig. 1E). Because of this small range 

of scores for the 625 possible different stimuli, this task was difficult to learn. Together with the 

irrelevant distractor dimension, it was impossible for the subjects to deduce the full underlying 

value system explicitly. When asked whether they could name general rules that determined 

exemplar values at the end of the experiment, participants were unable to explicitly report the 

complete information-integration rule. 

During training, participants’ task was to decide which of the two presented exemplars 

ranked higher according to this score, and to indicate the result via keypress with the left or 

right index finger, respectively (Fig. 1C). They performed 625 of these decision trials. In each 

trial, the two exemplars were shown for a minimum of 2 sec. If participants did not react within 

5 sec, the stimuli vanished, and a black screen was shown until a decision was made. The 

short presentation time and the large number of trials made it virtually impossible to keep all 

eight different features of one display in working memory. We intended this procedure to 

prevent participants from actively trying to discover the hidden rule underlying the classification 

task by intensely studying, comparing, and excluding different alternatives based on the stimuli 
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present on screen. After each reaction, a symbolized happy or sad face was presented as 

feedback for 2 sec, depending on whether the answer was correct or not. If the exemplars had 

already disappeared when the decision was made, they reappeared together with the smiley. 

The sad face was additionally accompanied by an aversive sound and followed by an empty 

screen and a penalty delay of 3 sec, emphasizing the error. 

During the 625 training trials, 50 exemplars were shown in varying combinations in such 

a way that 25 exemplars were always the higher-ranking ones (winner exemplars; exemplar 

sum point value between 10 and 12) and 25 exemplars were always the lower-ranking 

ones (loser exemplars; exemplar sum point value between 6 and 8; Fig. 1E). Thus, participants 

could solve the task either by explicitly remembering for single exemplars if they were winners 

or losers (exemplar-based decision), or by implicitly learning the underlying hidden regularities 

that determined the exemplar’s rank (decision based on information-integration learning). 

Instructions made participants aware of both possible solutions. They were also informed that 

they would be asked to recognize the stimuli later. 

In the retrieval session, three different aspects of memory were tested (see Fig. 1D). 

Implicit memory for the hidden regularities was tested by pairing two new exemplars (exemplar 

sum point values between 3 and 15; Fig. 1E). Participants had to decide which exemplar 

ranked higher. These decisions could only be based on implicit memory for the underlying 

hidden rule acquired during information-integration learning. Explicit exemplar memory was 

tested in a recognition task by presenting those 50 exemplars that had appeared during 

learning and 50 new ones. Participants indicated whether an exemplar was old or new. To 

successfully solve this task, participants had to use their explicit memory of the exemplars 

presented during training. Additionally, we used a cooperative memory task that could be 

solved with the help of both explicit and implicit memory. Participants were asked for individual, 

previously presented exemplars to judge whether these exemplars would rather win or lose in 

comparison to other exemplars. In this task, best performance can be achieved by relying on 

both explicit and implicit memory representations. Finally, in a forced-choice task, we created 

a competition between explicit exemplar memory and memory for the implicit information 

integration rule. The 25 winner exemplars and 25 loser exemplars from training were paired 

with higher-ranking (sum point values of 11 to 15) and lower-ranking new items (sum point 

values of 3 to 7), respectively, such that winner exemplars would now lose, and loser items 

would now win the comparison. This task was designed to assess relative changes in the use 

of explicit and implicit memory representations. We found that participants tended to rely on 

exemplar-based memory in this forced-choice task, as indicated by relatively more exemplar-

based (explicit) compared to rule-based (implicit) decisions, yet no differences emerged 

between conditions. Results on this task are reported in the Supplementary 
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Information (Supplementary Tables S2E, S3E). During all retrieval tests, no feedback for 

correctness of decisions was given. Finally, participants’ explicit insight into the underlying task 

rule was assessed by asking participants to indicate what determined exemplar value in the 

experimental task using written reports. 

The task design was chosen based on a large literature of studies on classification 

learning (F. G. Ashby & Maddox, 2005). It has been shown that various strategies are used to 

solve classification tasks (Gluck et al., 2002). We specifically enforced multiple systems use 

by providing strong cues for different learning strategies during task training. For one, we 

prompted implicit information-integration learning by basing the hidden rule on a conjunction 

of features, which is in its complexity impossible to verbalize and has to be inferred from 

integrating information across many stimuli and feature dimensions. This kind of implicit 

learning has been shown to depend critically on the striatum (F. G. Ashby & Ennis, 2006; Minda 

et al., 2024). Feedback-driven training is thought to further reinforce these implicit aspects of 

memory and striatal involvement (Poldrack et al., 1999, 2001; Shohamy, 2004). The use of 

explicit exemplar-based strategies was ensured by instructing subjects about the possibility to 

classify each exemplar as belonging to the winning or to the losing category. During 

classification learning, every exemplar can be stored in memory, along with its winning or losing 

category label. This kind of explicit encoding strategy depends critically on the 

hippocampus (Pickering, 1997; Poldrack et al., 2001). 

In the fMRI experiment, the retrieval tests and retrieval test timings were equivalent to 

behavioral experiment. Every 60 seconds, all tests were interrupted by short blocks of an odd-

even number judgement task which has been shown to suppress hippocampal activity (Stark 

& Squire, 2001). Block duration for the odd-even judgement task was jittered between 18 and 

23 sec, with an average duration of 20.5 sec. Participants had 1.5 sec per trial to select their 

response, and each trial was followed by a 0.5 sec intertrial interval. 

Behavioral Data Analysis 

Behavioral analyses were performed on the collapsed behavioral data from the main (no MRI 

scanning) and the fMRI study. Analyses conducted separately for the main and the fMRI study 

can be found in the Supplementary Information. Descriptive statistics are provided as mean 

values (± standard error). Statistical comparisons between night-sleep and day-wake groups 

with a priori hypotheses were one-tailed; all other comparisons were two-tailed tests at a 

significance level of 𝛼 = 0.05. 

Memory test scores. Initial learning performance was measured as the percentage of correct 

decisions during the second half of categorization task training. Implicit information-integration 

memory was measured as the percentage of correct decisions in the implicit memory test. 
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Explicit recognition was analyzed in terms of memory sensitivity 𝑑’ which is calculated as 

𝑍(ℎ𝑖𝑡𝑠) − 𝑍(𝑓𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚𝑠) in the recognition task. Memory systems cooperation was 

assessed by the percentage of correct decisions whether items would rather win or lose in the 

cooperation memory test. Chance performance was at 50 % for the implicit memory test and 

the cooperative memory task. Memory systems competition was measured as percentage of 

rule-based decisions. Chance performance cannot be meaningfully determined in this forced-

choice test. 

Relationship between explicit and implicit memory test scores. We analyzed the 

relationship between explicit and implicit aspects of memory using multiple regression 

analysis. We corrected for initial learning performance when testing relationships between 

memory scores at test by regressing out performance in the second half of initial learning 

before entering memory scores into the final regression analysis to account for differences in 

initial learning level. The explicit memory score and experimental group (night-sleep, day-

wake, morning control, and evening control) served as predictors while the implicit memory 

score served as dependent variable. We examined regression slopes for the individual groups 

and compared slopes between experimental groups. As such, we investigated differences in 

the relationship between explicit and implicit memory for participants who slept after learning 

and participants who stayed awake (main and fMRI study). We then compared this to 

differences in the relationship between explicit and implicit memory for participants that were 

directly tested on their explicit and implicit memory after learning either in the morning or in the 

evening (circadian control groups). 

Group differences in memory test scores. We compared differences in memory 

performance (initial learning performance, implicit memory, explicit recognition, and 

cooperative memory) between experimental groups using Student’s 𝑡-tests. Performance in 

the second half of initial learning was regressed out before entering memory scores into the 𝑡-

tests to account for differences in initial learning level. Note that in the figure (Fig. 6) 

accompanying this analysis, uncorrected memory scores are displayed to aid comprehension 

although statistical tests were performed on residual scores after learning performance in the 

second half of learning has been regressed out. Cohen’s 𝑑 is reported as effect size. 

Explicit insight into exemplar value rule. Participants’ written reports on what determined 

exemplar value during the experimental task were rated for indications of hierarchy and 

combination rules (nominal ratings yes/no). A self-reported rule was rated as a hierarchy rule 

if a report either explicitly or implicitly referred to a hierarchy between exemplars or exemplar 

features. A self-reported rule was rated as a combination rule if a report mentioned the 

combination of exemplar dimensions defining exemplar value. Rules were scored by two 

independent raters. Rater agreement for the hierarchy rule was at 88 % and for the 
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combination rule at 96 %. If the two raters did not agree on the same result, no indication of a 

reported hierarchy or combination rule was scored in the final rating. Validity of the applied 

rating approach is suggested by improved performance in the implicit memory test in 

participants reporting a hierarchy or combination rule (see Supplementary Tables S11B, S11C). 

Differences between the number of reported rules between groups were assessed using Χ2-

tests. 

Reinforcement Learning (RL) Model 

Participants’ behavior during task training and memory tests was modeled using a 

reinforcement learning (RL) algorithm to assess participant-specific exemplar value 

representations. The goal of this analysis was to test to which extent they applied resulting 

exemplar (explicit) and value (implicit) representations during later memory tests by predicting 

participants’ behavior based on the learned model representations. 

Environment formulation. We formulate the classification task as a contextual multi-armed 

bandit task with action space 𝐴. Specifically, we define each action (exemplar) 𝑎 ∈ 𝐴 as a 

vector consisting of three relevant feature dimensions (shape, symbol, fill color) and one 

irrelevant feature dimension (frame color). Each dimension may take one of five alternative 

values and their identity is randomized across participants, i.e., 𝑎 ∈ ℤ5 and 1 ≤ 𝑎 ≤ 5 for all 

𝑎 ∈ 𝐴. Thus, the entire action space has a cardinality of 54 = 625. 

Learning task and model fitting. We employ a reinforcement learning algorithm that is based 

on the assumptions made in the Rescorla-Wagner-model (Rescorla & Wagner, 1972; Sutton 

& Barto, 2018). We assume that during the learning task, the action-values (𝑄-values) for the 

individual exemplars start with 𝑄0(𝑎) = 0 for all 𝑎 ∈ 𝐴, and are then updated after the action 

execution for the 𝑡th trial according to: 

𝑄𝑡(𝑎) = (1 − 𝛼)𝑄𝑡−1(𝑎) + 𝛼𝑟𝑡,𝛽(𝑎), for both 𝑎 ∈ 𝐴𝑡, 

where 𝛼 is the learning rate and 𝐴𝑡 is the action subspace of the 𝑡th trial, consisting of 

the presented left (𝑎L) and right (𝑎R) exemplars, i.e., 𝐴𝑡 = {𝑎L, 𝑎R}. Note that we define positive 

and negative reward values 𝑟𝑡,𝛽 for the winner and loser exemplars, respectively, according to 

𝑟𝑡,𝛽(𝑎) = {
 𝛽   if 𝑎 is winner
 −𝛽    if 𝑎 is loser

 , 

where 𝛽 is the reward strength. We then apply a Boltzmann policy with respect to the 

action-value function for the 𝑡th trial to select actions for each learning trial, i.e., given the action 

subspace 𝐴𝑡 = {𝑎L, 𝑎R}, we have 

𝜋𝑡(𝑎𝐿) =
exp 𝑄𝑡(𝑎L)

exp 𝑄𝑡(𝑎L)+exp 𝑄𝑡(𝑎R)
, 
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where 𝜋𝑡(𝑎L) describes the probability of selecting the left choice-option 𝑎L over the 

right 𝑎R. We use the data from the learning task to fit the algorithm parameters 𝛼 and 𝛽 for 

each individual participant. We then use these parameters to estimate the action-values in 

each trial of the subsequent test tasks. Specifically, we apply Markov chain Monte 

Carlo (MCMC; Gilks, 1995), a class of sampling-based parameter estimation methods. Let 𝐷 

be the participant behavior observed during the learning task, we aim to find the posterior 

distribution of model parameters 𝛼 and 𝛽 given 𝐷, i.e., 

𝚸(𝛼, 𝛽|𝐷) ∝ 𝚸(𝐷|𝛼, 𝛽)𝚸(𝛼)Ρ(𝛽), 

where we define the priors for 𝛼 and 𝛽 as 𝛼 ∼ Beta(2,5) and 𝛽 ∼ Ga(7.5,1), respectively. 

To sample from the posterior 𝚸(𝛼, 𝛽|𝐷), we sample 4 Markov chains with 5,000 samples in 

parallel (after 2,000 discarded burn-in samples) drawn from each chain. Afterwards, we select 

the group of parameters with highest posterior probability (i.e., the posterior mean) for further 

analysis. As a result, we obtain an exemplar value representation of the exemplars studied 

during task training, represented by participants’ individual 𝑄-values. 

Generalization of action-values. To predict choices in the test tasks, we generalize the 

learned action-values of familiar, previously seen exemplars to new, unseen exemplars. To 

this end, we assume that 

𝑄(𝑎) ≈ 𝜃𝑇𝑎 + 𝜃0, 

for all 𝑎 ∈ 𝐴, where 𝜃 ∈ ℝ4 describes the coefficient vector of the four feature 

dimensions of each exemplar and 𝜃0 ∈ ℝ denotes the intercept. For each participant, we 

estimate the parameters 𝜃 and 𝜃0 by solving the following least-squares problem: 

minimize ‖[𝐴LER 𝟏] [ 𝜃
𝜃0

] − 𝑄LER‖
2

2
, 

where 𝐴LER ∈ ℤ50×4 describes the action subspace of the familiar exemplars that were 

previously seen during learning (LER) and 𝑄LER describes the final action-value function over 

𝐴LER after learning. 

Test tasks. For each of the three test tasks, we then model the decision policies according to 

the instructions for the individual tasks. 

Explicit memory task. For the explicit memory task, we employ a feature-based decision 

policy to model the probability of a participant to indicate that they have seen the exemplar 

before (true): 

𝜋(true) = 𝚸(𝑎 ∈ 𝐴LER) =
1

4
max

𝑎′∈𝐴LER

∑ 𝐼𝑎𝑖
′(𝑎𝑖)4

𝑖=1 , 
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where 𝐼𝑎𝑖
′ (𝑎𝑖) is an indicator function that equals to 1 if 𝑎𝑖

′ = 𝑎𝑖 and 0 otherwise. This 

policy works such that the probability to label an exemplar as old (instead of new) in the 

recognition memory test is higher the more similar a presented exemplar is to an exemplar that 

was actually presented during task training. 

Implicit memory task. For the implicit memory task all 𝑎 ∉ 𝐴LER. Thus, we employ a 

Boltzmann policy on the generalized action-values: 

𝜋𝑡(𝑎𝐿) =
exp 𝑄𝑡(𝑎L)

exp 𝑄𝑡(𝑎L)+exp 𝑄𝑡(𝑎R)
=

exp(𝜃𝑇𝑎L+𝜃0)

exp(𝜃𝑇𝑎L+𝜃0)+exp(𝜃𝑇𝑎R+𝜃0)
. 

Therefore, this policy makes use of the exemplar value representation acquired during 

task training (𝑄-values) and generalizes them to decisions between exemplars that were never 

presented before. 

Cooperation memory task. For the cooperation memory task where all 𝑎 ∈ 𝐴LER, we employ 

the following policy to estimate the probability that the participant would identify a given 

exemplar 𝑎 as a winner (win): 

𝜋(win) =
1

624
∑ 𝐼(𝑄(𝑎) > 𝑄(𝑎′))𝑎′∈𝐴−𝑎

, 

where 𝐴−𝑎 is the action space with the current test exemplar 𝑎 removed, and the 

indicator function 𝐼(𝑄(𝑎) > 𝑄(𝑎′)) is equal to 1 if 𝑄(𝑎) > 𝑄(𝑎′) and 0 otherwise, with the 

generalized action-values 𝑄(𝑎) = 𝜃𝑇𝑎 + 𝜃0 for 𝑎 and all 𝑎′ ∈ 𝐴−𝑎. This policy is more likely to 

label a presented exemplar as winner (compared to loser) the higher the exemplar ranks 

among all possible exemplars and therefore makes use of both exemplar value 

representations acquired during task training and generalized exemplar value representations 

of exemplars not presented during training. 

Functional MRI Acquisition and Analysis 

Whole-brain functional T2*- weighted MRI data were acquired at the Max Planck Institute of 

Psychiatry, Munich, with a 3-T MR750 scanner (GE) using a 12-channel head coil and a single-

shot echo planar imaging (EPI) sequence (repetition time: 2,500 ms; echo time: 30 ms; flip 

angle: 90°; voxel size: 1.88 x 1.88 x 3.5 mm3, acquisition matrix size: 96 x 96 x 42, 

reconstructed to 128 x 128 x 42 voxel; interleaved slice acquisition). A whole brain structural 

scan was acquired using a T1-weighted 3D fast spoiled gradient echo sequence (repetition 

time: 7.1 ms; echo time: 2.2 ms; flip angle: 12°; phase acceleration: 2; voxel size: 0.8 x 0.8 x 

1.3 mm3; matrix size: 320 x 320 x 128 voxel). DICOM to NIFTI conversion was performed using 

dcm2niix (Li et al., 2016). The first four scans were discarded to allow for magnetic saturation 

effects. 
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Results included in this manuscript come from preprocessing performed using 

fMRIPrep 23.2.0 (Esteban et al., 2019; Markiewicz et al., 2024; RRID:SCR_016216), which is 

based on Nipype 1.8.6 (Gorgolewski et al., 2011; Esteban et al., 2022; RRID:SCR_002502). 

Anatomical data preprocessing. The T1w image was corrected for intensity non-

uniformity (INU) with N4BiasFieldCorrection (Tustison et al., 2010), distributed with ANTs 

2.5.0 (Avants et al., 2008; RRID:SCR_004757), and used as T1w-reference throughout the 

workflow. The T1w-reference was then skull-stripped with a Nipype implementation of the 

antsBrainExtraction.sh workflow (from ANTs), using OASIS30ANTs as target template. 

Brain tissue segmentation of cerebrospinal fluid (CSF), white-matter (WM) and gray-

matter (GM) was performed on the brain-extracted T1w using fast (FSL, RRID:SCR_002823; 

Zhang et al., 2001). Brain surfaces were reconstructed using recon-all (FreeSurfer 7.3.2, 

RRID:SCR_001847; Dale et al., 1999), and the brain mask estimated previously was refined 

with a custom variation of the method to reconcile ANTs-derived and FreeSurfer-derived 

segmentations of the cortical gray-matter of Mindboggle (RRID:SCR_002438; Klein et al., 

2017). Volume-based spatial normalization to one standard space (MNI152NLin2009cAsym) 

was performed through nonlinear registration with antsRegistration (ANTs 2.5.0), using 

brain-extracted versions of both T1w reference and the T1w template. The following template 

was selected for spatial normalization and accessed with TemplateFlow (23.1.0; Ciric et al., 

2022): ICBM 152 Nonlinear Asymmetrical template version 2009c (Fonov et al., 2009; 

RRID:SCR_008796; TemplateFlow ID: MNI152NLin2009cAsym). 

Functional data preprocessing. For each of the 4 BOLD runs found per subject (across all 

tasks and sessions), the following preprocessing was performed. First, a reference volume 

was generated, using a custom methodology of fMRIPrep, for use in head motion correction. 

Head-motion parameters with respect to the BOLD reference (transformation matrices, and six 

corresponding rotation and translation parameters) are estimated before any spatiotemporal 

filtering using mcflirt (FSL; Jenkinson et al., 2002). The BOLD reference was then co-

registered to the T1w reference using bbregister (FreeSurfer) which implements boundary-

based registration (Greve & Fischl, 2009). Co-registration was configured with six degrees of 

freedom. Several confounding time-series were calculated based on the preprocessed BOLD: 

framewise displacement (FD), DVARS and three region-wise global signals. FD was computed 

using two formulations following Power (absolute sum of relative motions; Power et al., 2014) 

and Jenkinson (relative root mean square displacement between affines; Jenkinson et al., 

2002). FD and DVARS are calculated for each functional run, both using their implementations 

in Nipype (following the definitions by Power et al., 2014). The three global signals are 

extracted within the CSF, the WM, and the whole-brain masks. Six head-motion 

estimates (3 translations, 3 rotations) calculated in the correction step were placed within the 
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corresponding confounds file. Frames that exceeded a threshold of 0.5 mm FD or 1.5 

standardized DVARS were annotated as motion outliers. All resamplings were performed with 

a single interpolation step by composing all the pertinent transformations (i.e., head-motion 

transform matrices and co-registrations to anatomical and output spaces). 

Gridded (volumetric) resamplings were performed using nitransforms, configured with 

cubic B-spline interpolation. 

Many internal operations of fMRIPrep use Nilearn 0.10.2 (Abraham et al., 2014; 

RRID:SCR_001362), mostly within the functional processing workflow. For more details of the 

pipeline, see the section corresponding to workflows in fMRIPrep’s documentation. 

Copyright waiver. The above boilerplate text was automatically generated by fMRIPrep with 

the express intention that users should copy and paste this text into their manuscripts 

unchanged. It is released under the CC0 license. Sections referring to estimates not 

considered in our preprocessing workflow were omitted. 

Preprocessing quality control. Quality control of anatomical and functional data 

preprocessing was ensured by visual inspection of fMRIPrep’s output summary. For each 

subject, brain mask and brain tissue segmentation of the T1w, spatial normalization of the 

anatomical T1w reference, and surface reconstruction were examined. Furthermore, FD, 

DVARS and the three region-wise global signals were checked for large deviations suggesting 

excessive motion. Indices of all subjects were found to suffice for subsequent data analysis. 

General linear model analysis. Mixed-effects general linear model (GLM) analyses were 

performed using SPM12 (SPM, RRID:SCR_007037). Before data were entered into the GLM 

analyses, they were smoothed with an 8 mm FWHM Gaussian kernel. 

Memory test functional brain activity. We assessed brain regions contributions to correct 

memory recall and categorization performance in GLM analyses modeling brain activity during 

trials in which participants made correct versus incorrect decisions. At the first level, for each 

memory test, onsets and durations until motor responses following stimulus 

presentation (separately for correct decisions, incorrect decisions and responses to the odd-

even number judgement task) were convolved with a standard hemodynamic response 

function. These were modeled together with 6 head-motion regressors obtained from 

fMRIPrep (three rotations and three translations) as fixed effects in a GLM for each individual 

subject. High-pass filtering was implemented in the matrix design by using a cutoff period of 

128 sec to remove low-frequency drifts from the time series. Serial correlations in the signal 

were estimated by using a first-order autoregressive plus white noise model and a restricted 

maximum likelihood (ReML) algorithm. The effects of interest consisted in the hemodynamic 

response to correct and incorrect decisions in the different memory tests. This was tested by 
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obtaining statistical parametric maps from positive contrasts for correct and incorrect decisions 

separately. These summary statistic images were further smoothed (6 mm FWHM Gaussian 

Kernel) and entered in a second-level analysis. 

Data of all participants were entered in a full factorial random effects model with the 

factors performance (correct vs. incorrect decisions) and group (night-sleep vs. day-wake) 

treating participants as a random factor. Main effects and interactions were tested using 𝑡-

contrasts. ReML estimates of variance components were used to allow for unequal variance 

and possible deviations from sphericity. 

Q-value modulation. In GLM analyses on modulation by 𝑄-value, correlations between 𝑄-

values obtained from the RL model and brain activity in the implicit memory test were 

performed. At the first level, a 𝑄-value regressor was obtained by calculating the absolute 

difference between participants’ 𝑄-values of the two exemplars in the present implicit memory 

test trial and convolving this with a standard hemodynamic response function. Therefore, this 

analysis tests for brain regions that display variance in their activity according to the difference 

between participants’ value representations of the presented unknown exemplars. Similar to 

the GLM analysis on modulation of brain activity according to memory test performance, the 

𝑄-value regressor was modeled together with responses to the odd-even number judgement 

task and 6 head-motion regressors obtained from fMRIPrep (three rotations and three 

translations) as fixed effects in a GLM for each individual subject. High-pass filtering was 

implemented with a cutoff period of 128 sec, and serial correlations in the signal were 

estimated by using a first-order autoregressive plus white noise model and a restricted 

maximum likelihood (ReML) algorithm. The effect of interest consisted in the hemodynamic 

response to variations in the 𝑄-value difference in the implicit memory test. This was tested by 

obtaining a statistical parametric map from this contrast. This summary statistic image was 

further smoothed (6 mm FWHM Gaussian Kernel) and entered in a second-level analysis 

testing for a (i) significant parametric modulation by 𝑄-values across participants (one-sample 

𝑡-test against 0) and (ii) differences in 𝑄-value modulation between groups (night-sleep vs. 

day-wake, two-sample 𝑡-test) treating participants as a random factor (see above). 

Significance threshold. Only peaks reaching the statistical threshold of 𝑝uncorr < .001 with 

the cluster exceeding a voxel count of 5 are reported in the results section and tables. 

Furthermore, for night-sleep vs. day-wake contrasts, exploratory analyses on 𝑝uncorr < .005 

were performed as we observed strong and reliable effects in behavioral outcomes but not in 

the corresponding GLM analyses on brain activity (see ‘Results’). All coordinates are given as 

standard Montreal Neurological Institute (MNI) coordinates and correspond to the maxima of 

the reported cluster of activation. Coordinates were labeled using bspmview. Functional 

images are displayed on a standard MNI T1 image.  
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