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Sets

Definition 1.1 A set is a collection of objects called elements or members. A set with
no objects is called the empty set and is denoted by () (or sometimes by {}).

notation:

e ¢ € S means that ‘a is an element in S’
e a ¢ S means that ‘a is not an element in S’

V¥ means ‘for all’

d means ‘there exists’

e ! means ‘there exists a unique’
e —> means ‘implies’

e <> means 'if and only if’
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Definition 1.2
e Aset Ais asubset of aset Bif z € A implies x € B, denoted as A C B.
e Two sets A and B are equal if A C B and B C A, denoted as A = B.

e A set Ais a proper subset of B if AC B and A # B, denoted as A C B.

set building notation: we write
{reA|P(z)} or {z|P(z)}

to mean ‘all x € A that satisfies property P(x)’

examples:
e N ={1,2,3,4,...}: the set of natural numbers

e Z=1{0,1,-1,2,-2,3,-3,...}: the set of integers
e Q={m/n|m,neZ, n#0}: the set of rational numbers

e R: the set of real numbers
it followsthat NCZCQCR
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Definition 1.3 Given sets 4 and B:

e The union of A and Bistheset AUB ={x |z € Aorx € B}.

e The intersection of A and B is the set ANB={z |z € A and = € B}.

o The set difference of A and B istheset A\B={x € A|x ¢ B}.
e The complement of A is the set A= {x |z ¢ A}.
e A and B are disjoint if AN B = ().

Theorem 1.4 De Morgan's Laws. If A, B,C are sets, then
e (BUC)"=B°NCY
e (BNC) = B°UCY
e A\(BUC)=A\BnNA\C,
e A\(BNC)=A\BUA\C.
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we prove the first statement:

o let B, be sets, we need to show that

(BUC)"CB°NC° and B°NC°C (BUC)®

e 2 (BUC) = 2¢BUC = z¢ Bandzx¢C
= re€BandxeC® = z€B°NC° = (BUC)"C B°NC*®

ez EBNC* = ze€BandzreC® = x¢ Bandzx ¢ C
— ¢ BUC — z€ (BUC) = B°NC°C (BUQ)"
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Mathematical induction

Axiom 1.5 Well ordering property. If the set S C N is nonempty, then there exists
some x € S such that x <y for all y € S, i.e., the set S always has a least element.

Theorem 1.6 Induction. Let P(n) be a statement depending on n € N. Assume that
we have:

1. Base case. The statement P(1) is true.
2. Inductive step. If P(m) is true then P(m + 1) is true.

Then, P(n) is true for all n € N.

proof:
e suppose S # (), then S has a least element m € S

e since P(1) is true, we have m # 1, i.e., m > 1

e since m is a least element, we have m —1¢ S — P(m — 1) is true
e this implies that P(m) is true = m ¢ S, which is a contradiction

e hence, S =10, i.e., P(n) is true foralln € N
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Example 1.7 Forall ce R, ¢# 1, and for all n € N,

1— n-+1
Ltet 4ot =
—C

proof:
e the base case (n = 1): the left hand side of the equation is 1 + ¢; the right hand

side is 11165 = (H‘f)_(i_c) = 1+ ¢, which equals to the left hand side

e the inductive step: assume that the equation is true for £ € N, i.e.,

1_Ck+l
l4+ce+++cdF="——"-,
1—-c¢
we have
1_ck+1
1+c—|—02—|—---—|—ck+ck+1:174-0’”1
— C
1 — b+l k1 _ a(k+D)+1 1 — k+1)+1
N 1—c¢ N 1—c
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Example 1.8 Bernoulli’s inequality. For all ¢ > —1, (1 +¢)" > 1+ nc for all n € N.

proof:
e for the base case (n = 1), we have (1+¢)' >1+1-¢

e the inductive step: suppose m € N, m > 1 and (1 +¢)™ > 1+ me, then

1+ >0 +me)1+¢)=1+(m+1De+me?>14 (m+1)c
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Functions

Definition 1.9 If A and B are sets, a function f: A — B is a mapping that assigns
each x € A to a unique element in B denoted f(x).

Definition 1.10 Consider a function f: A — B. Define the image (or direct image) of
a subset C C A as
f(C)=A{f(z) e B|zeC}.

Define the inverse image of a subset D C B as

fHD) = {z € A f(z) € D}.

examples:
o [:{1,2,3,4} — {a,b} where f(1) = f(2) =a, f(3) = f(4) = b, we have
f{1,2}) = {a}, f71{b}) = {3.4}

e f: R — R where f(z) = sin(rx), we have f([0,1/2]) = [0,1], f~1({0}) = Z
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Definition 1.11 Let f: A — B be a function.
e The function f is injective or one-to-one if f(z1) = f(x2) implies z1 = 2.
e The function f is surjective or onto if f(A) = B.

e The function f is bijective if f is both surjective and injective. In this case, the
function f~1: B — A is the inverse function of f, which assigns each y € B to
the unique = € A such that f(z) = v.

e if the function f is a bijection, then f(f~1(x)) =

e example: for the bijection f: R — R given by f(z) = 23, we have f~1(z) = ¥z

Definition 1.12 Consider f: A — B and g: B — C. The composition of the functions
f and g is the function go f: A — C defined as

(g0 f)(z) = g(f(z)).

e example: if f(x) = 2% and g(y) = sin(y), then (go f)(z) = sin(x3)
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Cardinality

Definition 1.13 We state that the two sets A and B have the same cardinality if there
exists a bijection f: A — B.

notation:
o |A| denotes the cardinality of the set A

|A| = |B| if the sets A and B have the same cardinality

Al =nif |Al = [{1,...,n}|

|A| < |B] if there exists an injection f: A — B

|Al <|BJ if [A] < B and |A[ # |B]
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Theorem 1.14

o If |A| = |B|, then |B| = |A|.
o If |A| = |B|, and |B| = |C], then |A] = |C].

proof:
e show that the inverse function f~1: B — A of f: A — B is a bijection

e show that the composition go f: A — C of functions f: A— Band g: B— C
is a bijection

Theorem 1.15 Cantor-Schroder-Bernstein. If |A| < |B| and |B| < |A] then |A| = |B|.

Definition 1.16 The set A is countably finite if |A| = |N|. Specifically, the set A
is finite if |[A| = n € N. The set A is countable if A is finite or countably infinite.
Otherwise, we say A is uncountable.
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Example 1.17 The set of even natural numbers and the set of odd natural numbers
have the same cardinality as N, i.e., [{2n |n € N}| = |{2n — 1| n € N}| = |N|.

proof: consider the bijection f: N — {2n | n € N} given by f(n) = 2n and
g: N —{2n—1|n € N} given by g(n) =2n —1

Example 1.18 The set of all integers has the same cardinality as N, i.e., |Z| = |NJ.

proof: consider the bijection f: Z — N given by

2n n>0
f(n):{ —(2n+1) n<0
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Basic set theory

Definition 1.19 The powerset of a set A, denoted by P(A), is the set of all subsets
of A, i.e., P(A)={B| B C A}.

e for a finite set A of cardinality n, the cardinality of P(A) is 2"
examples:

o A= then P(A) = {0}

o A= {1} then P(A) = {0,{1}}

o A={1,2} then P(A) = {0, {1}, {2},{1,2}}

Theorem 1.20 Cantor. If A is a set, then |[A] < |P(A)].

e therefore, IN| < |P(N)| < | P(P(N))| < ---, i.e., there are infinite number of
infinite sets

proof:

we first show that |A| < |P(A)]
e consider the function f: A — P(A) given by f(z) = {x}
e the function f is a injection since

f(z1) = f(22) = {21} = {12} = 71 =122



we now show that |A| # | P(A)| by contradiction
e suppose |A| = |P(A)|, then there is a surjection g: A — P(A)

consider the set B C A given by

B={zeAlz¢g(x)}cP(A)
e since g is surjective and B € P(A), there exists a b € A such that g(b) = B

there are two cases
1. beB = b¢gb) = b¢ B

22b¢B = bé¢glb) = beB
where in either case we obtain a contradiction

e hence, g is not surjective = |A| # | P(4)]

Corollary 1.21 For all n € NU {0}, n < 2".
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2. Real numbers

e ordered sets

e least upper bound property

o fields

e real numbers

e archimedian property

e using supremum and infimum
e absolute value

e triangle inequality

e uncountabality of the real numbers
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Ordered sets

Definition 2.1 An ordered set is a set S with a relation < called an ‘ordering’ such
that:

1. Trichotomy. For all z,y € S, either x <y, x =y, or x > y.
2. Transitivity. If x,y,z € S have z < y and y < z, then x < z.

examples:

e Z is an ordered set with orderingm >n<=m —n N
e Q is an ordered set with ordering p > ¢ <= p — ¢ = m/n for some m,n € N

e Q x Q is an ordered set with dictionary ordering (g,7) > (s,t) <= ¢ > s, or
gq=sandr >t

e the set P(IN) with ordering defined by A < B if A C B is not an ordered set

Real numbers
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Least upper bound property

Definition 2.2 Let S be an ordered set and let £ C S, then:

o If there exists some b € S such that z < b for all x € E, then E is bounded
above and b is an upper bound of F.

o If there exists some ¢ € S such that > ¢ for all x € F, then E is bounded
below and c is a lower bound of .

o If there exists an upper bound by of E such that by < b for all upper bounds b of
E, then by is the least upper bound or the supremum of E, written as

bp =sup F.

e If there exists a lower bound ¢y of E such that ¢y > ¢ for all lower bounds ¢ of E,
then ¢q is the greatest lower bound or the infimum of E, written as

Cco = inf F.
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examples:
e S=Zand E={-2,-1,0,1,2}, then inf E = —2 and sup £ = 2

e S=Qand E={qeQ|0<g< 1} theninfE=0andsupE =1¢ E, i.e.,
the supremum or infimum need not be in £

e S=7and F =N, then inf £ = 1 but sup £ does not exist

Definition 2.3 Least upper bound property. An ordered set .S has the least upper bound
property if every 2 C S which is nonempty and bounded above has a supremum in S.

example: —N = {—1,—-2,—3,...}, to show this (informally), suppose £ C —N is
bounded above, then —FE C N is bounded below and according to the well ordering
principle, —F has a least element x € —F, and thus —x =sup £
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Theorem 2.4 If x € Q and

z=sup{ge Q[ q>0, ¢> <2},

then 2 > 1 and 22 = 2.

proof: let E={q€Q|q¢>0, ¢>?<2}
exr>1sincele F = supk >1

e we show z2 > 2 by contradiction: suppose 22 < 2, let h = min{%, 2(2#:121)}
sincex >1and 22 <2, wehave 0 <h <1/2<1

h<l = (z+h)?=a>+2hx+h><a2®+2hz+h

2—

2
_2—z"
(o s1) Ve have

since h <
1
(I+h)2<x2+(2x+1)h§x2+§(2—x2)<m2+2—x2=2 = xz+heckE

- h>0 = z+h>z butx+heFE = xisnot an upper bound for E, i.e.,
x # sup E, which is a contradiction
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z2—2
2z

e we now show 22 % 2 by contradiction: suppose 22 > 2, let h =
— sincex®>2and x> 1, we have h > 0

- h>0 = (z—h)> =22 —2ha+h>> 2% —2he =22 — (22 —2) =2
—let g€ E, then ¢2 <2 < (x—h)Q, hence
(z—h)?—¢*=(z—h)+q)((x—h)—q) >0 = (x—h)—q¢>0,
i.e., t —h>qforallge E = x — his an upper bound for E

- h>0 = z>x—h = x # supFE, which is a contradiction

e therefore, 22 = 2
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Theorem 2.5 Theset E = {q € Q| ¢ >0, ¢*> < 2} does not have a supremum in Q.

proof (by contradiction): suppose there exists some z € Q such that x =sup £
e by theorem 2.4, we have z > 1 and 22 =2
e in particular, x > 1 sinceifr =1 = 22 =1 #*2
e r € Q = there exist m,n € N (m > n) such that x = m/n, i.e., m =nx € N
elet S={keN|kxeN}CN,then S#0sincenes
e by the well ordering property, there is a least element ko € S
o let ky = ko(xz — 1) = kox — ko € Z, in particular, k; € Nsincex >1 = k1 >0

e 12 =2 = 1z < 2 as otherwise 2 > 4, hence
ki =ko(zr—1)<ko2—-1)=ky = k1 ¢S
o ki =ko(x — 1) = ki = kox? — kox, since 22 = 2, we have
kix =2ky — kox = ko —ko(x — 1) =ko—k1 e N = k1 €5,

which is a contradiction

Real numbers
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Fields

Definition 2.6 A set F'is a field if it has two operations: addition (+) and multiplication
(+) with the following properties.

Al) If z,y € F thenx +y € F.
A2) Commutativity. For all z,y € F', x +y =y + .
A4) There exists an element 0 € F suchthat 0+ z=x =2+ 0 forall z € F.

(

(

(A3) Associativity. For all z,y,z € F, (x+y)+z=xz+ (y + 2).
(

(A5

)
)
)
) For all z € F, there exists a y € F such that x +y = 0, denoted by y = —xz.
(M1) If 2,y € F then z -y € F.
(M2) Commutativity. For all z,y € F, z-y =1y - x.
(M3) Associativity. For all z,y,z € F, (x-y)-z=z-(y - 2).
(M4) There exists an element 1 € F suchthat 1 -2 =x =z -1forallz € F.
(M5) For all z € F'\ {0}, there exists an 2! € F such that z - 71 = 1.

)

(D) Distributativity. For all z,y,z € F, (x+vy)-z=xz-z2+7y- 2.

Real numbers
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examples:
e Qs a field

e Z is not a field since it fails (M5)
e Zy ={0,1} where 1 +1 =0 (mod 2) is a field
o Z3=1{0,1,2} with c =a+ b (mod 3), i.e.,
241=3=0 and 2-2=4=3+1=1,

is a field

Theorem 2.7 If x € F where F' is a field then 0z = 0.

proof: zz = (x +0)r =22+ 0r = 0z =0

Real numbers
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Definition 2.8 A field F' is an ordered field if F' is also an ordered set with ordering
< and satisfies:

1. Forallz,y,z€e F,a <y = x+z2<y+=z.
2. If z >0 and y > 0 then zy > 0.

If x > 0 we say z is positive, and if x > 0 we say = is nonnegative.

examples:
e Q is an ordered field

e Zy=1{0,1} where 1 +1 =0 is not a ordered field
(if0>1 = 04+1>141 = 1>0;if1>0 = 1+1>14+0 = 0>1)
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Theorem 2.9 Let F' be an ordered field and x,y, z,w € F, then:
e If z >0 then —x < 0 (and vice versa).
e If x> 0and y < z then zy < zz.
o If £ <0 andy < z then xy > xz.
o If £ # 0 then 22 > 0.
e lf0<z<ythen0<1l/y<1/z.
o If 0 <z <y then 22 < 9.

o Ifx <yand z<wthenz+ 2z <y+w.

Theorem 2.10 Let z,y € F where F is an ordered field. If z >0and y <0orz <0
and y > 0, then zy < 0.

proof:
e 2>0,y<0 = 2z2>0, - y>0 = —2y>0 = 2y <0
e <0, y>0 = —2z>0,y>0 = —zy>0 = zy <0
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Theorem 2.11 Greatest lower bound. Let F' be an ordered field with the least upper
bound property. If A C F' is nonempty and bounded below, then inf A exists in F.

proof: let B ={—x |z € A}
e AC F bounded below = da€e F, Ve € A, a<zx = da€ F,Vx € A,
—a>—x = da€eF,VxeB, —a>x = B C F has an upper bound —a
(this also shows that if a is a lower bound of A then —a is an upper bound of B)

e [ has the least upper bound property = sup B € F'

e letc=supB,thenc>z, Ve B — —c<—x,VxeéB — —c<uz,
Ve € A =— —c € Fis an lower bound of A

e we also have ¢ < —a with a being a lower bound of A = —c>a = —c€F
is the greatest lower bound of A, i.e., —c=infA € F
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Real nubmers

Theorem 2.12 There exists a “unique” ordered field, labeled R, such that Q C R and
R has the least upper bound property.

e one can construct R using Dedekind cuts or as equivalence classes of Cauchy
sequences.

Theorem 2.13 There exists a unique € R such that > 1 and r? = 2, i.e., V2eR

but\/§¢Q.

proof: let E={zcR|z>0, 22 <2} CR
e we have z < 2 for all x € E (since if z > 2 = 22 > 4) = E is bounded
above — sup F exists in R

e let r = sup F, using the same proof for theorem 2.4 we have r > 1 and 2 = 2
e to show the uniqueness, suppose 7 > 1, 72 = 2, then

P =0 = r+fM)r-7F)=0 = r—7F=0 = r=r

(sincer>1,7>1 = r+7>0)
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Theorem 2.14 If x € R satisfies x < e forall e € R, € > 0, then 2 < 0.

proof by contradiction:

e suppose = > 0 satisfies z < e for all ¢ > 0
er>0 = 2r>2>0 = z>2/2>0

e take € = /2 we have = > € > 0, which is a contradiction

Real numbers

2-14



Real numbers

Archimedian property

Theorem 2.15 Archimedian property. If z,y € R and = > 0, then there exists an
n € N such that nx > .

proof by contradiction:
e suppose nz <y foralln e N = Vn e N, n<y/x = N is bounded above
by y/x = there exists supN € R
e leta=supN = a—1 < aisnot an upper bound of N = dm € N,

a—1l<m = a<m+1€N = ais not an upper bound of N, which is a
contradiction

Theorem 2.16 Density of Q. If z,y € R and x < y then there exists some r € Q such
that x <r <y.

proof:

e first suppose 0 < x < y, by the Archimedian property, we have
nly—xz)>1 = ny>nr+1

for some n € N



let S ={k e N|k>nx} CN, by Archimedian property, there exists some
p€ Nsuchthatp >nr = S #0

by the well ordering property, there is a least element m € S such that m > nx
meN — m>1
fm=1thenm—-1=0 — nr>m—-—1=0sincex >0

if m>1, thenm—1¢& N but m—1¢ S since m >m — 1 is the least element
— nx>m—1 = m<nr+1<ny

hence, we have
nt<m<ny = x<m/n<y

for some m,n € N, i.e., there exists an r = m/n € Q such that z <r < y

now suppose x < 0, if z < 0 < y then simply take r = 0; if x <y <0, we have
0 < —y < —ux, thus there exists some 7 € Q such that

—yY<r<—r = <1<y

(by the first case), i.e., we have z < r < y by taking r = —7

Real numbers
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Theorem 2.17 Suppose S C R is nonempty and bounded above. Then, x = sup S if
and only if:

1. x is an upper bound of S.

2. For all € > 0, there exists some y € S such that x —e <y < .

proof:
e first suppose x = sup S
— obviously, x is an upper bound of S

— forall e >0, we have x > x — e = x — € is not an upper bound of S, i.e., there
exists some y € Ssuchthat z —e<y <=z

e now suppose x is an upper bound of S, and satisfies zt —e <y < z for all e > 0
and for some y € S, we only need to show that for all z that is an upper bound of
S, we have z < z

— assume there exists an upper bound z of S smaller than z, i.e., y < z < x for all
yes

—takee=xz—2>0(sincer>z2) = s >y>r—c=x—ax+2=2 = y>=z
for some y € S, i.e., z is not an upper bound of S, which is a contradiction
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Theorem 2.18 Let S = {1 — 1 | n € N}, thensup S = 1.

proof:
e if n € N, then 1—%<1 —> 1 is an upper bound of S

e let € > 0, then by the Archimedian property, for some n € N, we have
1 1 1

ne>1 —= e>— —= —e<— = 1l—-e<1—-—-<1
n n n

by theorem 2.17, we have sup S =1

Remark 2.19 We have similar property as theorem 2.17 for infimum. Suppose S C R
is nonempty and bounded below, then z = inf S if and only if:

e 7 is a lower bound of S.

e For all € > 0, there exists some y € S such that x <y < x +e.
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Using supremum and infimum

Definition 2.20 For z € R and A C R, define

r+A={r+a|ac A} rA={za|ac A}.

Theorem 2.21 Let A C R be nonempty, we have:

e If z € R and A is bounded above, then sup(z + A) = x + sup A.
e If x > 0 and A is bounded above, then sup(zA) = zsup A.

proof:
e suppose z € R and A is bounded above:

— forallae A, we have a <supA = x+a<x+supd,ie, thesetx+ Ais
bounded by = + sup A

— let € > 0, for some b € A, we have
supA—e<b<supA = (z+supA)—e<z+b<z+supA,

i.e., sup(x + A) =z +sup 4
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e suppose x > 0 and A is bounded above:

—forallae A, a<supA = xza < xsupA, i.e., the set A is bounded by xsup A
—lete>0 = ¢/x >0, for some b € A, we have

supA —e/x <b<supA = xsupA—e<ab<zsupA,

i.e., sup(zA) =xsup A

Remark 2.22 Similarly, we can also show that:

e If x € R and A is bounded below, then inf(x + A) = = + inf A.
e If x > 0 and A is bounded below, then inf(zA) = zinf A.
o If x <0 and A is bounded below, then sup(zA) = zinf A.
o If x <0 and A is bounded above, then inf(xA) = x sup A.

Theorem 2.23 Let A, B C R where x <y forallxz € A, y € B, then sup A < inf B.

proof: forallz € A, y€ B, x <y = B is bounded below by +t = z <inf B
= A is bounded above by inf B = sup A <inf B
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Absolute value

Definition 2.24 If z € R, we define the absolute value of z as

Theorem 2.25

e |x| >0, and, |z| = 0 if and only if z = 0.

| — 2| = |z| for all z € R.

|xy| = |z||y| for all z,y € R.

o |z|? =22 for all z € R.

|z| <y if and only if —y <z <y.

—lz| <z < |z| for all z € R.
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Triangle inequality

Theorem 2.26 Triangle inequality. For all x,y € R,

|z +y| < |z + |yl

proof: let z,y € R
e z+y< |z[+y|

o v+ —y<|—z[+|[-yl=lz|+ |y = —(z]+y]) <z+y
e hence, we have

—(zl+lyl) <z +y <lz[+ ]yl = |z +yl <lz[+]y]

Corollary 2.27 Reverse triangle inequality. For all z,y € R,

| = |yl| < |z —yl.
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Uncountabality of the real numbers

Definition 2.28 Let x € (0,1] and let d_; € {0, 1,...,9}. We say that x is represented
by the digits {d_; | i € N}, d.e., x = 0.d_yd_g- -, if

z=sup{107'd_; +107%d_o +--- +107"d_,, | n € N}.

. —_ 2 5 0 . 1 1y _ 1
example: 0.2500--- = sup{$, 75 + 105> 15 + 105 + 065> -} = SuP{3, 1} =1

Theorem 2.29

e For all set of digits {d_; | i € N}, there exists a unique = € [0, 1] such that
z=0.d_1d_o---.

e For all z € (0, 1], there exists a unique sequence of digits d_; such that
z =0.d_1d_9--- and

0.d_yd_g-dp <z <0d_yd_g-d_p+107", forallneN.  (2.1)

e the second part indicates that the digital representation of 1/2 is 0.4999- - -
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Theorem 2.30 Cantor. The set (0, 1] is uncountable.

proof (by contradiction):
e assume (0, 1] is countable, then there exists a bijection z: N — (0, 1], let

z(n) = O.d(_nl)d(_nz) -+, néeN,
(n)

where d'”/ denotes the ith decimal of the real number z(n) € (0, 1], and let

1 dY 1
e_;j = - 2.2
e let y=0.e_1e_o---, since all e_; are nonzero, e_1,e_o, ... satisfies (2.1);
according to theorem 2.29, we have 0.e_je_s--- being the unique decimal

representation of y

e again according to theorem 2.29 and all e_; are nonzero, we have y € (0,1] =
dm eN, y=xz(m)= O.d(_n})d(_fg) ... =0.e_1e_9---, however, we have
€ m # d(_rzg since (2.2), i.e., for all m € N, 2(m) # y, which is a contradiction

Corollary 2.31 The set of real numbers R is uncountable.
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3. Sequences

e sequences and limits

e monotone sequences and subsequences

e inequalities and operations involving limits
e limit superior and limit inferior

e Bolzano-Weierstrass theorem

e Cauchy sequences
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Sequences and limits

Definition 3.1 A sequence (of real numbers) is a function z: N — R. To denote a

sequence we write (xy,)- |, where z,, is the nth element in the sequence.

e sequence need not start at n =1, e.g., the sequence z: {n € Z|n>m} — Ris

denoted (z,,)0",.

Definition 3.2 A sequence (z,),-, is bounded if there exists some B > 0 such that
|xn| < B for all n € N.

examples:

e the sequence (%)Zozl is bounded since % <1 foralln

e the sequence (n),~ ; is not bounded since for all B > 0 there exists some n > B
according to the Archimedian property

Sequences



Definition 3.3 A sequence ().~ , is said to converge to z € R if for all € > 0, there
exists an M € N such that for all n > M, we have |z, — z| < €.

The number x is called a limit of the sequence. If the limit x is unique, we write

r = lim xz,.
n—oo

A sequence that converges is said to be convergent, and otherwise is divergent.

Remark 3.4 A sequence (x,),-, is divergent if for all z € R, there exists some € > 0,
such that for all M € N, there exists an n > M, so that |z,, — z| > €.

Theorem 3.5 Let z,y € R. If for all ¢ > 0, |z — y| < ¢, then x = y.

proof: assume z #y = |z —y| > 0; take e = 3|z —y| = |z —y| < 3]z —y|
= |z —y| < 0, which is a contradiction

Theorem 3.6 If (z,,),~ , converges to x and y, then z = y, i.e., a convergent sequence
has a unique limit.
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proof: let ¢ > 0
o (xy);”, converges to x = IM; € N, Vn > M, |z, — x| < €/2

o (z);2, converges toy = IMy € N, Vn > My, |z, —y| <¢/2
o let M = My + M>, then M > My and M > M>, then we have
|z — x| <€/2 and |zp —y| < €/2,

hence,

|z —y|=|(x —zm) + (xpr — y)|
<l|z—zm|+ |y —2M]
<€/2+¢€/2

=c

e according to theorem 3.5, we have x =y

Remark 3.7 Sometimes we write ‘'z, — = as n — oo’ to mean z = lim,, .o ,,. We
may also avoid the ‘as n — oo’ part if the limiting process is clear from the context.
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Example 3.8 Given the sequence (z,,),-, with z,, = ¢ € R for all n € N, we have
lim,, 00 Tp, = C.

proof: let ¢ > 0, M =1, then for all n > M, we have |z, —c¢|=|c—¢c|=0<e¢

Example 3.9 The sequence (%)ZO: converges to x = 0, i.e., limy, % =0.

1

proof: let € > 0, choose an M € N such that M > 1/e (such an M exists according
to the Archimedian property), then for all n > M, we have |1 — 0| = |1| < §; <e

o0
Example 3.10 The sequence (m)n=1 converges to z = 0.

proof: let ¢ > 0 choose M € N such that M > e~!/2, then for all n > M, we have
1 1

< — <
2n M

1 1
n?+2n 4100 ‘_n2+2n+100
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Example 3.11 The sequence (xy,),-; where z,, = (—1)" is divergent.

proof: let x € R, M € N, then

xar — zarsn| = [(-1)Y = (=M =2

= 2=|(ay—2)+ (@ —2py1)| <l|zm — 2|+ |xp41 —
= Jzy—2z[>1 or |xpgr—z|>1,

i.e., let e =1, n = M, we have either |z, — x| > €or |z,41 —z| > €

Theorem 3.12 If (z,,),- ; is convergent, then (z,),~ is bounded.

proof:

® suppose (:cn)zozl converges to x, let ¢ = 1, then there exists some M € N such
that foralln > M, |z, —z| <1 = =, < |z| +1
e let B = max{|z1], |x2|, ..., |xpm]|, |x| + 1}, since x,, < |xy,| for alln € N, n < M,

and z,, < |z| + 1 for all n > M, we have B > |z,]| for alln € N
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Monotone sequences

Definition 3.13

e A sequence (zy),- is monotone increasing if z,, <z, for all n € N.

e A sequence (z,),. is monotone decreasing if =, > z, for all n € N.

e If (z,),- is either monotone increasing or monotone decreasing, we say the
sequence (z,,),2, is monotone (or monotonic).

examples:

o . .
e the sequence (%)nzl is monotone decreasing

e the sequence (—1)™ is monotone increasing

e the sequence ((—1)"); is not monotone
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Theorem 3.14 A monotone sequence (z,,),-, converges if and only if it is bounded.

o0

e If the sequence (z,,),

is monotone increasing and bounded, then
lim z, = sup{z, | n € N}.
n—oo

e If the sequence (x,,),. ; is monotone decreasing and bounded, then

lim z,, = inf{x, | n € N}.
n—o0

proof: we prove for monotone increasing sequences, the other case is similar

e suppose (1)~ is convergent, according to theorem 3.12, it is bounded
e suppose (z,),-; is monotone increasing and bounded
- (zn),2, is monotone increasing = x, < T4 foralln € N

— (@), is bounded => the set {z,, | n € N} has supremum z = sup{z,, | n € N}

— let € > 0, according to theorem 2.17, there exists some M € N such that
r—e<xp <z then for all n > M, we have

r—e<zazy<zp<z<z+e = |z, —z|<e¢
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Example

recall the following lemma from example 1.8 for the proof of the next theorem:

Lemma 3.15 Bernoulli’s inequality. If x > —1 then (x +1)" > 1+ nx for all n € N.

Theorem 3.16 If ¢ € (0,1) then the sequence (¢");”; converges and lim,,_,, ¢" = 0.

, 1
n)OO

n—1 does not converge.

If ¢ > 1, the sequence (¢

proof:

e if ¢ > 1, we show that the sequence (¢")> ; is unbounded (and hence does not
converge):
— let B > 0, then there exists some n € N, n > % such that

A"=(c=1)+1)">1+n(c—1)>n(c—1)>B

(the first inequality is because of lemma 3.15)
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e if c € (0,1), we first show that (¢");” ; is monotone decreasing and bounded (and

hence, convergent), i.e., show that Al <er<cforallneN by induction:
— suppose n =1 = ¢? < ¢ < ¢, the first inequality holds since 0 < ¢ < 1

— suppose . > 1, and "1 < ¢™ < ¢, then we have ¢"T2 < " Tl < ¢ < ¢
let lim,,_yoo ¢ = L, we now show that L =0
— let € > 0, then there exists some M & N such that for all n > M such that

1
lc" — L] < 5(1 —c)e

— hence, we have

(1—¢)|L| = |L - cL|
— (L = MH) 4 (M D)
<|L — M 4 ¢|cM — I
<|L—cMH 4+ |cM — L

< %(1 —c)e+ %(1 —c)e
= (1 - 6)67

i.e., |L| < e for all € > 0 (according to theorem 2.14) — |L|<0 = L =0
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Subsequences

Definition 3.17 Let ()~ ; be a sequence and (n;);°, be a strictly increasing sequence

of natural numbers. The sequence (@n,)seq is called a subsequence of (z,),” ;.

example: consider the sequence (z,,),-, = (n),~,, i.e., 1,2,3,4,...
e the following are subsequences of (), ;:
- 1,3,5,7,9,11,..., described with ()2, = (T2i-1);o;

- 2,4,6,8,10,12, ..., described with (z,,);o, = (z2:);o;

- 2,3,5,7,11,13, ..., described with (z,,);—, where n; are primes

e the following are not subsequences of (z,,),~;:
- 1,1,1,1,1,1,...

- 1,1,3,3,5,5,...
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Theorem 3.18 If lim,, o x,, = x, then all subsequences of (z,,),- ; converge to z.

proof:

o let (zy,);o, be a subsequence of ()77,
e let € > 0, then there exists some My € N such that |z, — z| < € for all n > M)
o let M = My, then for all ¢ > M, since n; > i > M = My, we have

|Tn, — x| <€

Remark 3.19 Theorem 3.18 implies that the sequence ((—1)"),"; is divergent.
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Sequences

Inequalities involving limits

Theorem 3.20 The sequence (z,,),-; converges with lim, . 2, = x if and only if

the sequence (|z, — x|),—, converges with lim, . |z, — x| = 0.

proof: let ¢ > 0
e suppose lim,, o T, = z, then IMjy € N such that Vn > My, |z, — z| < ¢; let
M = My, then ¥Vn > M = My, |z, — 2 — 0| = |z, — x| <€
e suppose lim, o0 |2, — x| =0, then IM € N, Vn > M, |z, —z — 0| < ¢, i.e.,
|zy, — x| <€

o0

o2 (bn)o2y, and (zy);2 be sequences

Theorem 3.21 Squeeze theorem. Let (ay)
such that

an < x, < by

for all n € N. Suppose that (a,),-, and (b,),-; converge and

lim a, =z = lim b,.
n—oo n—oo

Then (z,,),2; converges and lim,, o T, = .
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proof: let ¢ > 0

e a, > x —> IM; € N such that Vn > My, |a, — x| < €
e b, > x = IMs € N such that Vn > Mo, |b, — z| <€

e a,<x,<b, = a,—z<1)

—z<b,—z

take M = max{M;i, Ms}, then Vn > M, we have

—e<ap—cr<zxp—ax<by—x<€e = |r,—x|<e€

2

Example 3.22 The sequence (

n > : : n?
m) L converges with hmn_>oo ey

n—=

=1

proof:

e let € > 0, we have

n2

n2+n+1

2
.0—>03nd1—>O:> m

n

Sequences

1= n+1 n—|—1_1
Cn24+n+1| " n2+n n
—1‘—>0 — o
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Theorem 3.23 Let (z,,),~; and (yn),-, be sequences.

o If (z,,),2 and (yp )y converge and z,, <y, for all n € N, then we have

o If (z,,),- converges and a < z,, < b for all n € N, then a < lim;,_,00 z,, < b.

proof: we show the first statement since the second statement can then be proved by
considering sequences (yy ), and (z,),—; where y, = a <z, <b= 2z,

o let lim, o0 , = x and limy, 00 Y = Y, SUPpPOSE T > ¥y

er>y = x—y>0lete="5%>0

o z, >z = IM; € Nst.Vn>M, |z, —z| <

® Yy =y = IMp e Nsit.Vn> M, |y, —y| < F

let M = max{My, M}, we have zpy —x > =5 and yy — y < %57, hence,

r—y Tty r—y
> —_ = =
Ty > T 5 5 Y+ 5

> YM,

which contradicts to x,, < y,, for all n € N
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Operations involving limits

Theorem 3.24 Suppose lim,_, o , = & and limy,_, o0 Y = ¥.
e The sequence (Zy, + Yn)y is convergent and limy, o0 (Zy + yn) = = + y.
e For all c € R, the sequence (cxy,),- ; is convergent and lim,,_, czy, = cx.

e The sequence (Z,yn)ne; is convergent and limy, oo Zpyn = Ty.

oo
o If y, # 0 for all n € N and y # 0, then the sequence (%) ) is convergent and
n ) n=
proof:

e toshowzx, —»z, ¥y, >y = Tpn+yn, —>x+y, lete>0
- x, > & = IM; € N such that Vn > My, |z, — x| < ¢/2

- yp >y = IM, € N such that Vn > My, |y, — y| < €/2
— let M = max{M;j, M>}, then for all n > M, we have

[(@n +yn) — (@ +y)| < |zn —2[+yn —yl <€/2+€/2=¢
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e to show x,, > — cx,, - cx, let e >0
- x, > = IM € N such that VYn > M, |z, — ar:|<|

— then for all n > M, we have |cz,, — cx| = |c||z, — x| < BT

e we show that x, = =, yp >y = Zpyn — V-
- Zp =T = |z, —2|—0

— hence, we have

cH—l6

el o ¢

cH»l

Yn =Yy = |yn —y| — 0, and (y,,),—, is bounded, i.e., B >0, |y,| < B

0 < |znyn — 2yl = |TnYn + 2Yn — TYn — Y|
== |(xn - I)yn + (yn - y)I|

< an — 2|[yn| + [yn —

hence, according to theorem 3.21, |z,y, — 2y| — 0

Sequences

yllz|

— y||z|

Tp—2| >0 = |2, —2z|B—0,
lyn —y| = 0 = |yn — yl|z| = O, then |z, — z|B + |y, —

yllz] =0
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e toprove z, > &, yp = Yy (yp #0 foralln e N, y #0) = %%ﬁ,wefirst

show that there exists some b > 0 such that |y, | > b:
- Iete:%,then Ynp >y = IM eNst.Vn> M, |y, —y| < ‘—gl

— then for all n > M, we have

Y Y
WL o=l il oll = ol > 2
(the second inequality is from the reverse triangle inequality)
— take b = min{|y1|,...,|yml, |y|/2}, we have |y,| > b foralln e N
we then show that <yi) converges with lim,, . yi = %: note that
"/ n=1
11 - - -
0< ‘: Yn y': yn — Y < |Yn yl’
Yn Y Yny |ynl |yl bly|

< =

[yn —y| 1 1 1 1
and y, >y = bl — 0, hence, o Y — 0, t.e., ™ —

put together, x, — x and yi — % — ;—” — i
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Theorem 3.25 If ().~ is a convergent sequence with lim,, o, z, = z, and z,, > 0
for all n € N, then the sequence (,/wn)zo:l is convergent and lim,, o0 \/ZTr, = /7.

proof:
e suppose z = 0, let € > 0, then we have z,, -0 = dM € N s.t. Vn > M,
|tn — 0| = |zn| < € = VYn > M, |\/Zn — VT| = |/Tn| < Ve < €

e suppose = > 0, we have

(Van = VO + Vo) | _ e —o] _ |wn =2l
Va4 Ve VantVE T Vi

0< [Vay — V| =

hence, z, > 2 = |z, — 2| >0 = ‘:””7\/;1'%0 = [\/Tn — Vx| =0

Remark 3.26 Suppose the sequence (xn)le is convergent and lim,, oo z, = . One
can prove that lim, . xfj =gk by induction. Moreover, if z,, > 0 for all n € N, one
can also prove that lim,,_, &z, = ¥/x.
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Theorem 3.27 If (z,,)77, is convergent and lim,,_,o 2, = z, then (|z,,]),, is conver-
gent and limy, o0 |2y| = |2].

proof: let ¢ >0
e r, - x — IM € N such that Vn > M, |z, —z| < ¢

e by reverse triangle inequality, for all n > M, we have

|n| = |2]| < |2n — 2] <€

Sequences 3-20



Some special sequences

Theorem 3.28 If p > 0 then lim,, ;.o n P = 0.

proof: let € > 0, choose M € N such that M > (1/€)"/P, then for all n > M,
[n™P — 0| =1/nP <1/MP <e

Theorem 3.29 If p > 0 then lim,_,o p'/™ = 1.

proof:
o if p=1, limy oo p*/™ = limy, o0 11/ =1
e suppose p > 1
—p>1 = pt/r>1V/n=1 — pt/"—1>0

— according to the Bernoulli's inequality (example 1.8), we have

, n , ~1
1+ =1) =140V 1) = s pro1>0
n
-kl 50 = p/"-1-50 = p/" 1

e if0<p<1l = 1/p>1, hence, lim,_,00 p"/™ = lim,, ;00 W =1/1=1

Sequences 3-21



Theorem 3.30 The sequence (nl/”)zo: is convergent and lim,,_,oc n'/™ = 1.

1

proof:
e one can simply show that /™ > 1 by induction = n!'/? —1 >0

e according to the binomial theorem, for all ,y € R and n € N, we have
— |
(z+9)" = Xhoo ()" *y", where () = gy

1/n

eletx=1 y=n"/"—1, forall n > 1, we have

n=(1+n"_1)" = znj (Z) (¥ —1)f > <g> (/" — 1)

k=0

n! 1/n 2_1 1/n 2
= n272!(n_2)!(n —1) —gn(n—l)(n -1)
2 1/n
— >n/"—=1>0
n—1
— /" 150 = n'/" 51
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Limit superior and limit inferior

Definition 3.31 Let (a:n)ff:l be a bounded sequence. Define, if the limits exist,

(inf{xg | K > n}).

limsupz, = lim (sup{zy | k >n}) and liminfz, = lim
n—00 n—00 n—00 n—00

They are called the limit superior and limit inferior, respectively.

Theorem 3.32 Let (x,,),.; be a bounded sequence, and let
an, =sup{xi | k >n} and b, =inf{xy | k > n}.

Then:

e The sequence (ay),- ; is monotone decreasing and bounded.
e The sequence (b,),~; is monotone increasing and bounded.

e We have liminf,, ;o x, < limsup,,_, ., Zn.

Sequences 3-23



proof:

e we first prove the following lemma:

Lemma 3.33 Let AL BC R, A,B # 0, and A, B are bounded. If A C B then we
have inf B < inf A < sup A < sup B.

- AC B = sup B is an upper bound of A = sup A <sup B
— similarly, inf B is an lower bound of A = inf B < inf A
- AB#0) = infA<supA = infB<infA<supA<supB

e we now show the first two statements in the theorem
— (xn),—, is bounded = there exists some B > 0 such that —B < z,, < B

— foralln € N, we have {z, | k >n+ 1} C {xy | k > n} C {z, | n € N}, according
to lemma 3.33, this implies that

-B S bn S bn+1 S Ap+1 S ap S B,

i.e., (an), - is bounded monotone decreasing and (b,,),-; is bounded monotone
increasing (= (an),., and (b,),—, converge)

e according to the previous inequalities, we have b, < a, foralln e N =
limy, 00 by, < limy, 500 @y, (theorem 3.23), i.e., liminf,, o 2, < limsup,,_, . =y
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Example 3.34 We have limsup,,_,,, (—1)" =1 and liminf,,_,o, (—1)" = —1.

proof: Vn € N, the set {(—1)" |k >n} = {-1,1} = sup{(-1)" |k >n} =1,
inf{(-1)* | k >n} = -1 = limsup, .., (—1)" =1 and liminf, o (—1)" = —1

Example 3.35 We have lim supnﬁoo% = liminfnﬁooi =0.

proof: for all n € N, we have sup{1/k | k > n} = 1/k and inf{1/k | k > n} =0,
hence,

1
limsup— = lim — =0 and liminf— = lim 0=0
n—soo N n—00 n—oo N n—oo
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Bolzano-Weierstrass theorem

Theorem 3.36 Let (xn)zo:l be a bounded sequence. Then, there exists subsequences
($n1);>i1 and (xml)fil such that

lim z,, =limsupx, and lim z,,, =liminfx,.
1—00 n—00 1—00 n—r00

proof: let a,, = sup{zy | k > n}
e a; =sup{xg | k>1} = 3In; >1suchthata — 1<z, <a
® ap, 11 =sup{xg |k>n1+1} = Ing >ny st an, 41 — % < Tpy < Gyl
® ap, 11 =sup{xg |k >na+ 1} = Ing >ny s.t. apy41 — % < Tng < Gpgtil
e repeatedly, we can find a sequence of integers n; < ng < --- such that

An;_1+1 — ; < Ty, < An;_1+1

(defining ng = 0)

° (am_1+1)z1 is a subsequence of (ay),, and lim,_,~ a, = limsup,,_, . x
= limy o0 @, ,+1 = limsup,,_,, zn = limy, o Ty, = limsup,,_,, Tn

e similarly, we can find a subsequence of (x,),. ; that converges to liminf, . =,
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Theorem 3.37 Bolzano-Weierstrass. Every bounded sequence consisting of real num-
bers has a convergent subsequence.

Theorem 3.38 Let (x,),., be a bounded sequence. Then, (z,),-; converges if and
only if liminf,,_,. , = limsup,,_, ., Zn.

proof:

e suppose lim,_,- Zn = x, then the subsequences that converge to limsup,, ,.,
and liminf,, o, z,, must converge to x (theorem 3.18)

e suppose limsup,,_,., ©, = liminf, , x, =z, for all n € N, according to the
squeeze theorem,

inf{zy | k >n} <z, <sup{zy |k >n} = lim z, =2
n—o0
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Cauchy sequences

Definition 3.39 A sequence (x,,),- ; is Cauchy if for all ¢ > 0, there exists an M € N
such that for all n,k > M, we have |z, — x| < e.

Remark 3.40 A sequence (z,),-, is not Cauchy if there exists some ¢ > 0, such that
for all M € N, there exists some n, k > M, so that |z, — x| > €.

Example 3.41 The sequence (%):}:1 is Cauchy.

proof: let € > 0, choose M € N such that M > 2/¢, then for all n,k > M, we have

2<
M

1 1

—'S < €

| =

1
—+
n

n k

Example 3.42 The sequence ((—1)").~, is not Cauchy.

proof: let e=1, M e N, n =M, k=M +1, then |(—1)" — (-1)F| =2 >
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Theorem 3.43 If the sequence (x,,),- is Cauchy, then (x,),-, is bounded.

proof:
o let e=1, (z,)5o, is Cauchy = 3IM € N such that Vn,k > M, |z, — x| <1

elethk=M = Yn>M, |z, —axm| <1 = Vn>DM, |z,| <|zpm|+1

e take B = max{|z1|,|z2],...,|xm], |xp]| + 1}, then |z,| < B foralln e N

Theorem 3.44 If the sequence (z,,), ; is Cauchy and a subsequence (z, );=, converges,
then (z,,),-, converges.

proof: let ¢ >0

o0

o (z).7, is Cauchy = 3M; € N such that Vn,k > M, |z, — zi| < €/2
o let lim; yo0 Tp, = ¢ == IM> € N such that Vi > My, |z, — x| <€/2
o let M = max{Mi, Ma}, then Vk > M, ny, > k > M, ni > k > Mo, hence,

|z — x| <ok — Xn, | + |20, — 2| <€/24+€/2=¢
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Theorem 3.45 Completeness of the real numbers. A sequence of real numbers (x,,),7

is Cauchy if and only if the sequence (z,,),., is convergent.

proof:

e suppose (), is Cauchy = (z,,),-, is bounded (theorem 3.43) = there
exists convergent subsequence of (z,,),-; (theorem 3.37) = (z,),~, is
convergent (theorem 3.44)

e suppose lim,_, T, = z, let € > 0, then IM € N, Vn > M, |z, — x| < €/2; let
k> M, then |z, — x| < |z, —z|+ |z — 2| <€/2+€/2=¢

Remark 3.46 We say a set is Cauchy-complete, or just complete, if all Cauchy
sequence of elements in the set converges to some point in the set. Theorem 3.45
indicates that R is complete.

Remark 3.47 The set Q is not complete. Since Q does not have the least upper bound
property, then, e.g., sup{z, | n € N}, sup{zy | k > n}, etc., might not exist in Q.
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Series

Definition 4.1 Given a sequence (z,,),-, the formal object >">° ; x,, is called a series.

n=1"

A series converges if the sequence (sy,),._; defined by
m
Sm = :g:: Tp =21+ "+ Tm

converges. The numbers s,, are called partial sums. If the series converges, we write
oo

E T, = lim s,,.
m—0o0

In this case, we treat > > | x,, as a number.

If the sequence (sy,),._, diverges, we say the series is divergent. In this case, > 7 | z,
is simply a formal obJect and not a number.

e series need not start at n =1

Series
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Example 4.2 The series Y 2 | n(n+1) converges.

proof: the sequence of partial sums (sy,),~_; is given by:

“ 1
O S sy
- n n+l1
n=1
1 1 1 1 1 1 1
—1—-4--—4+--= -—
2 2 3 3 4 m m+41
1
=1-—
m+1
hence, s, — 1 = 300 1n(n1+1) converges and > > 1n(n+1):1

Series 4-3



Theorem 4.3 If |r| < 1, then > °° /7™ converges and > o0 (r" = .

proof:

e the sequence of partial sums (s,,)o_; is given by:

— i n __ (Zzl:() rn) (1 - T') . Zzlzo(rn — 7«-”+1) B 1— Tm-i—l
Sm = r’= — —
L=r 1—r 1—7r

n=0

o |[r| <1 = r"™ — 0 (theorem 3.16) = s, —

1—r

Remark 4.4 Series of the form > >° ; ar™ with a,r € R are called geometric series.

Series 4-4



Theorem 4.5 Let (2,,),-, be a sequence and let M € N. Then, > >°, ,, converges
if and only if "7 , x, converges.

proof:

e for all m > M, we have

m M-1 m
DT = it Y
n=1 n=1 n=M

e suppose » 7, x, converges, we have

m m M-1 m M-1
lim E T, = lim E Ty — g T, | = lim E Tn | — Tn
m—00 m—00 m—0o0
n=M n=1 n=1 n=1 n=1
e suppose » 2, x, converges, we have
m m M—-1 m M-1
lim E T, = lim g Ty + g T, | = lim E Tn | + E Tn
m—00 m—00 m—00
n=1 n=M n=1 n=M n=1

Series
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Cauchy series

Definition 4.6 The series > 7, x,, is Cauchy if the sequence of partial sums (sy,)>_;
is Cauchy.

Theorem 4.7 The series > 7 | x,, is Cauchy if and only if >"° | x,, is convergent.

proof: according to theorem 3.45
e suppose > o7 &y, is Cauchy = ()5, is Cauchy = (S,)00_; is

convergent = > >° | x,, is convergent

e suppose » 7, xp is convergent == (sp,),-_, is convergent == (S, )oo_; IS
Cauchy = >°°, x, is Cauchy

n=1

Series
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Theorem 4.8 The series Y | x,, is Cauchy if and only if for all € > 0, there exists an
M € N such that for all m > M and k > m, we have ‘Zi:m_ﬂ xn) < e.

proof: let ¢ > 0

)
m=1

e suppose » o7, &y, is Cauchy = (3" | )
that Vm, k > M (assume k > m), we have

is Cauchy = dM € N such

m k

S -3

n=1 n=1

e suppose JM € N such that for all £ > m > M, ‘Zﬁzmﬂ Tn| < €, then we have

m k k
E Ty — E Tn|l = E Tn| <€,
n=1 n=1 n=m-+1

ie., (0 xy)_ is Cauchy = Y >° | @, is Cauchy

Series



Theorem 4.9 If the series Zzo:l T, converges then lim,,_,o, x, = 0.

proof: let € >0, Y 77 | x, converges = > | x, is Cauchy = 3IM;, € N such
that Vk > m > M, we have ‘Zﬁzmﬂ x| < € (theorem 4.8); choose M = My + 1,
then Vm > M, by taking k = m > m — 1 > My, we have

m
>, o

n=m—1+1

|[2m — 0] =

<e = lim x,=0
n—o0

Remark 4.10 The converse of theorem 4.9 does not hold.

Theorem 4.11 If || > 1 then the series > ;™ diverges.

proof: If |r| > 1, then lim,_,o 7" # 0, according to theorem 4.9, >>° /7™ diverges

Corollary 4.12 The series Y, ar™ with o, € R converges if and only if |r| < 1.

Series
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Theorem 4.13 The harmonic series > ° does not converge.

—1n

proof: we show that a subsequence of (s,,) > _; is unbounded
e consider the subsequence (syi);~, given by

2 1 11 1 | 1 |
SQi:Zﬁ::l_'— 3 + g“rz + g“!‘""f’g + -+ m‘f"F?

n=1

i 2k
1
-1y > g

k=1n=2k-141

[ 2
1+> > 2%—1+Z2k — 2 1) +1)

k=1n=2k=-141

v

k—1

_1+Z22k _1+Z

e (1+1/2)2, is unbounded = (s9i);; is unbounded = (S, )po_; is
unbounded — > >, % does not converge

Series 4-9



Linearity of series

Theorem 4.14 Let « € R and > 7 |, and )7, y,, be convergent series. Then the
series > >° | (axy + yp) converges and

oo [e.e] [e.e]
Z(amn +yn) = aZmn + Zyn
n=1 n=1 n=1

proof: consider the partial sums of > > (oxy, + yn), we have

m m m
Z(amn +yn) = aan —|—Zyn
n=1 n=1

n=1
m m il
— Jlim > ez, +y) =a lim Yoa, - lin 3oy,
n=1 n=1 =l
o) i~ >
n=1 n=1 n=1

Series 4-10



Series

Absolute convergence

Theorem 4.15 If x,, > 0 for all n € N, then the series Zfﬁzl xy, converges if and only
if the sequence of partial sums (s;,),-_; is bounded.

proof:
® suppose » -, xp converges = (Sp,)o_; converges = (Sy,).-_; is bounded

® suppose (sm)gle is bounded, since x,, > 0 for all n € N, we have

m m
Sm = E Tn < 5 Tpn + Tntl = Smt1,
n=1 n=1

i.e., (Sm)pe_; is monotone increasing = (sp,),._, converges = » >° . 1z,
converges

Definition 4.16 The series ) ° | x,, converges absolutely if >, |z,| converges.
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Theorem 4.17 If the series Y~ | x,, converges absolutely then Y >° | x,, converges.

proof:
e we first prove the following claim by induction:

Lemma 4.18 For all z1,...,2, € R, we have |37 | z;| < D7 |zl

— suppose n = 2, we have the triangle inequality |x; + x2| < |z1]| + |z2]

— suppose n > 2, and |>_1 | ;| < S0 || holds, we have
n+1 n+1

n n
Do <D wml el <Yl + e = Y il
=1 =1 =1 =1

e > > | x, converges absolutely = > °°  |x,| converges = let € > 0,
IMENst.VE>m>M, |[SF el =8 ] <e

n=m-+

<

k
S Zn:erl ‘.Z'n‘ <€ —

e hence, for all k > m > M, we have ‘Zﬁ:mﬂ Tn,

o0
Y o Ty CONverges

Remark 4.19 The converse of theorem 4.17 does not hold.

Series



Comparison test

Theorem 4.20 Comparison test. Suppose 0 < x,, < y,, for all n € N.

o If > | y, converges then Y 7, x;,, converges.

o If "  x, diverges then Y > |y, diverges.

proof:
e suppose » >y, converges = (3", y,) ~_, is bounded = 3B >0 s.t.
VmeN, |yl => 01 yn < B = ¥m € N, we have

m m
OSanSZynSB

= (30 @) o_, is bounded = 3", x;, converges (theorem 4.15)
e suppose y o x, diverges = (31" | x,) ~_, is unbounded (theorem 4.15)
—> VB >0, 3m € N such that |} " | z,| = > ", z,, > B, hence, for this m,

m m
Zyn > an > B
n=1 n=1

= (301 ¥n),o_, is unbounded = Y™, y, diverges
Series 4-13



Theorem 4.21 For p € R, the series > o7 converges if and only if p > 1.

n= lnl0
proof:
e suppose > >, np converges, assume p <1, then we have 0 < = S —5: the series
Soo0 L diverges = > %, -L diverges (theorem 4.20), which is a contradiction

m 1

e suppose p > 1, let 5, = > " | %
— we first show that s,,, < som for all m € N: by induction, we have 2™ > m for all
meN = s, =", L <32 L_g.

n=1 np — n=1 np
: 1 .
— we now show that som is bounded by 1+ —=—5:
om
1
Som = —
2m P
n=1
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Series

m 2k m
1
_ —p(k—=1) 9k _ (9k—1
<14y (2k_1)p_1+k§:1217 28— 2"+ 1) + 1)

k=1 n:2k*1+1

m m—1
=143 270Dk Z 4 3 9=k
k=1 k=0
<14 27 =14 3 (2—(p—1))’“
k=0 =0
1
=l

where the last equality is from the fact that p — 1 > 0, and using the properties of
geometric series (theorem 4.3)

— put together, we have 0 < s, < som <1+ ;—5=5—7 = (Sm)pm— is monotone
increasing and bounded = (s,,),»_; converges = > >, -L converges
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Ratio test

Theorem 4.22 Ratio test. Suppose xz,, # 0 for all n and the limit

L= lim ot
n380 [an]

exists.

o If L > 1 then Y >°  x, diverges.

o If L <1 then > > x, converges absolutely.

proof:

e suppose L > 1, then M € N such that Vn > M, % >1 = Vn>M,

|Tpi1| > |zn| = limpoo 2y #0 = Y 7 x,, diverges (theorem 4.9)

e suppose L < 1, let L<a<1
— dM € N such that VYn > M, %Sa = VYn>M, |y < alz,| =

20| < @lzn_1| < QP|zp_o| < < a"Mzy| = |2 <" Mzy|, V0> M

Series 4-16



— consider the partial sums of the series > | |z, |, assume m > M, we have

— hence, the sequence of partial sums (3" |z,|)

m
> el
n=1

M-1 m M-1 s
= 2 fal 2 fonl < D fanl+ D
M—-1 M—-1

Z |zn] + Z " Mlzy| = Z |xn|+|xM|Za

n=M

—~ [z m|
= E |xn|+ )
— 11—«

IN

where the last equality is from the properties of geometric series and 0 < o < 1

_, Is monotone Increasing and
m=1

bounded = >"°° | |z,| converges = > > ,, converges absolutely

Remark 423 If L =

2

o0
nln

diverges, and » 7

—5 converges.

1in theorem 4.22 then the test doesn’t apply. For example,

Series
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Example 4.24 The series ) 7, (n—1)" converges absolutely.

2+1
proof:
Cut1 i n?
5 = — < — = lim 2 L < lim
n® +1 ns+1 n n—00 (71—221 n—o00 (n 4 1)

2:

Example 4.25 The series ) %T converges absolutely for all z € R.

proof:

2]

n—oon + 1

=0<1

n—0o0

Series
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Root test

Theorem 4.26 Root test. Let ) 7 | x,, be a series and suppose that the limit

L= lim |z,|""
n—oo

exists.
o If L >1 then > ° x, diverges.

o If L <1 then > > x, converges absolutely.

proof:

e suppose L > 1, then IM € N s.t. Vn > M, |z,|'/" > 1 = Vn > M,
= limy oo 2y #0 = Y 7, z, diverges (theorem 4.9)

Tn| >1

e suppose L < 1, let L<a <1
— 3M € N such that Vn > M, |xn|1/"§a = VYn>M, |z,| <a"

Series
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— consider the partial sums of the series > | |z, |, assume m > M, we have

m M-1 m M-1 00
2 fonl = D fzal + 2 fzal < D lonl + 2 lel
n=1 = n=M = n=M

M-1 M-1
< D loal + > o -2 lxnl+ZaM+"
n=M
M—

1 [eS)
=) feal+aM > a”
n=0

n=1

M-1 aM
= Z ‘x”| + 1 )
—
n=1

where the last equality is from the properties of geometric series and 0 < a < 1

— hence, the sequence of partial sums (3" ; |xn|)m | is monotone increasing and
bounded = 7 | |z,| converges = >, x,, converges absolutely

Remark 4.27 Similarly, if L = 1 in theorem 4.26 then the test doesn't apply.
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Alternating series

Theorem 4.28 Let (x,), , be a monotone decreasing sequence with lim,,_,, z,, = 0.
Then the series > > | (—1)"x;,, converges.

proof: consider the partial sums of Y ° | (—1)"z,, given by s, => " | (—1)"zp
e (z,),2, is monotone decreasing and z, -0 = Vn e N, z, > 2,41 >0

e we first show that the subsequence (s2;,),-_; converges, notice that

2m

Som = Z (—D)"zp, = —21+ 22 — 23+ - — Tam—1 + Tom (4.1)

n=1

— rearranging the terms in (4.1), since 41 < x,, Vn € N, we have

Som = (T2 — 21) + (T4 — 23) + -+ + (T2 — T2m—1)
> (x2 — 1) + (23 — x2) + - - + (T2 — Tam—1) + (T2m+t2 — Tam41)

= 52(m+1)

= (S2m),e_; is monotone decreasing
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— rearranging the terms in (4.1) differently, since x,, > x,+1 > 0, Vn € N, we have

Som = —x1 + (T2 — x3) + (¥4 — @5) + -+ + (T2m—2 — Tam—1) + Tam > —21

= (S2m),u_, is bounded below
— put together, we conclude that (sa.,),-_, converges, let so,,, —

e we now show that (s,,)-_, also converges to z, let € > 0

Series

Som — x| < €/2

- Soym — x = dM; € N such that Ym > My,

- x, > 0 = 3IM; € N such that Vm > My, |z;,| < €/2
let M = max{2M; + 1, My}, then Vm > M, m > 2M; + 1 and m > My

— if mis even — 5 > Mj, hence
S — x| = |s2.m — x| <€/2<¢

m=1 > Af, hence

2

— if mis odd, then m — 1 iseven and m — 1 > 2M; —
[Sm — x| = [Sm—1 — T+ Zpm| = ‘32_771,2—1 —x—i—xm’

< ‘52% —x‘ +lrm| <€/2+€/2=c¢

put together, we have (sp,),~_, converges = > >, (—1)"x, converges
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Corollary 4.29 The series > J converges but does not converge absolutely.

proof:

e since (%)Zozl is monotone decreasing with lim,HOO% =0, it follows immediately
—1 n
from theorem 4.28 that >~ | (T) converges

n n'’

e since > 7, ‘( L' ’ S0 L, and 302 | L diverges, we conclude that

Yo (771) does not converge absolutely
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Rearrangements

Theorem 4.30 Suppose y 7 | x,, converges absolutely and >~ >° | z,, = z. Leto: N —
N be a bijective function. Then, the series Y >, Ty (n) IS absolutely convergent and
S, Ty(n) = . In other words, absolute convergence implies, if we rearrange the
sequence, the new series will still converge to the same value of the original series.

proof:

o we first show > 0% | @, | converges, i.e., (301 [Ty(m)) is bounded

o
m=1
= 302 | |zn| converges = (30", |zy|),_, is bounded = 3B > 0 such that
VvmeN, Y |z, < B

- VmeN, {1,...,m} is a finite set = Ik € N such that

o({1,...,m}) C{1,... Kk},

hence,
m k
Z‘xa(n)‘: Z |z SZIxn| <B
n=1 ne€o({1,...,m}) n=1

= VmeN, > " | |Z,(n)| is bounded
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e we now show that Y " | 2,¢,) =z, let € > 0
- >z, =2 = IM, € N such that for all k > m > M, we have

m k
Zznfz <¢/2 and Z Tn| < €/2
n=1 n=m-+1

— theset {1,..., My} is finite = 3IM € N, M > M, such that
{1,..., My} Co({1,...,M}),
hence, for all m > M, let p = max(c({1,...,m})) > My, we have
o{l,....m}H={1,..., Mo} U{My+1,...,p}

— consider the partial sums of 2211 To(a), for all m > M, we have

= E mn—m:

m M, p
Zxa(n)—x ixn—x—i— Z Tn
n=1 n=1

n€o({1,...,m}) n=Moy+1
My D

< an*er Z Tn| <€/2+€/2=c¢
n=1 n=Muy+1

. m oo
= limpmsoo ),y To(n) =T = Yo To(n) =T
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5. Continuous functions

e cluster points of sets

e limits of functions and sequential properties
o left and right limits

e continuous functions

e operations that preserves continuity

e extreme value theorem

e intermediate value theorem

e uniform and Lipschitz continuity
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Cluster points of sets

Definition 5.1 Let S C R. We say that the point ¢ € R is a cluster point of S if for
all § > 0, we have (¢ —d,c+ ) NS\ {c} # 0, i.e., for all § > 0, there exists some
x € S, such that 0 < |z — ¢| < 4.

examples:
e S={1/n|n € N} has a cluster point c=0

e S =(0,1) has a set of cluster points given by [0, 1]

S = Q has a set of cluster points given by R

S = {0} has no cluster points

e S = Z has no cluster points

Continuous functions
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Theorem 5.2 Let S C R. Then c is a cluster point of S if and only if there exists a
sequence (z,,),~, of elements in S\ {c} such that lim,, o z, = c.

proof:
e suppose c is a cluster point of S, then V§ > 0, 3z € S such that 0 < |z —¢| < ¢
- Vn € N, choose z,, € S such that 0 < |z, — [ < &

- %%0 = |z, —¢| >0 = x, > ¢

e suppose there exists a sequence (z,,)--; with z,, € S\ {c} for all n € N such
that z, — ¢, letd >0

-z, — cwith 2, € S\ {¢} = 3IM € N such that Vn > M, 0 < |z, —c| < 0

— choose x = )y, then we have 0 < |z — ¢| < § = S has cluster point ¢

Continuous functions



Limits of functions

Definition 5.3 Let f: S — R be a function and c be a cluster point of S C R. Suppose
there exists an L € R, and for all € > 0, there exists some § > 0 such that for all z € S
and 0 < |z — ¢| < 4, we have |f(z) — L| < e. We then say f(z) converges to L as x
goes to ¢, and we write

fz) =L as z—ec

We say L is a limit of f(x) as x goes to ¢, and if L is unique, we write

lim f(x) = L.

Tr—cC

Remark 5.4 The function f: .S — R does not converge to L € R as x goes to a cluster
point ¢ of S implies that there exists some € > 0, such that for all § > 0, there exists
somez € S and 0 < |x —¢| <9, so that |f(z) — L| > e.

Continuous functions
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Theorem 5.5 Let f: S — R be a function and ¢ be a cluster point of S C R. If
f(xz) — Ly and f(x) — Lo as x — ¢, then L; = Lo.

proof: let ¢ > 0

o f(z) = Ly asx — ¢ = 301 > 0 such that for all z € S and 0 < |z — ¢| < 61,
[f(z) = La] < e/2

e f(x) > Lyasx — ¢ = T3 > 0 such that for all z € S and 0 < |z — ¢| < J9,
|f(z) — La| < €/2

e choose § = min{dy, d2}, then for all z € S and 0 < |z — ¢| < 0, we have
|L1 = Lo| = |L1 = f(z) + f(z) = Lo| < [f(2) = Li| + | f(2) — Lo| <€/24€/2=¢

= [1=1Lo
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Example 5.6 Let f(z) = ax +b. Then, for all ¢ € R, we have lim,_,. f(z) = ac+b.

proof: let ¢ > 0, choose § = Wlﬁ then for all z € R and 0 < |z — ¢| < §, we have

la]

|f(x) — (ac+b)| = |(ax + b) — (ac+ )| = |a||z — ¢| < |a|d = |a\+16§€

Example 5.7 Let f: (0,00) — R with f(z) = \/z. Then, for all ¢ > 0, we have
lim, . f(z) = v/c.

proof: let € > 0, choose § = €,/c, then for all z > 0 and 0 < |z — ¢| < §, we have

f(a?)—\/6|=|f—\/5|=‘(ﬁ_\/‘/2£‘/f;ﬁ) e S L Y
1 z#0

Example 5.8 Let f(x) = { . Then, lim,_,o f(x) =1 (# f(0)).

2 =0

proof: let € > 0, choose § = 1, then Vz satisfies 0 < |z| < 0, we have x #0 — Vz
satisfies 0 < |z| < §, we have |f(z) — 1| =|1—-1]=0<e¢

Continuous functions
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Theorem 5.9 Let f: S — R be a function and ¢ be a cluster point of S C R. Then,
the following statements are equivalent:

e The function f(x) converges to L € R as z goes to ¢, i.e., lim,_,. f(x) = L.

e For all sequences (z,,),-; in S\ {c} such that lim,,_,o 2, = ¢, we have
limy, o0 f(zn) = L.

proof:

e suppose lim,_,. f(z) = L, let € >0
— 36 > 0, such that for all zx € S and 0 < |z — ¢| < J, we have |f(z) — L| < e
- Zp— ¢z, €S\ {c} = IM eNsuchthatVn > M, 0< |z, —¢|<d =
Vn > M, we have |f(x,) — L| <e, i.e., f(z,) = L
e suppose for all sequences in S\ {c} s.t. x,, — ¢, we have f(z,) — L
— assume lim, . f(z) # L = Je > 0s.t. V§ > 0, there exists some = € S and
0<|z—c|<d,sothat |f(x)—L|>e€

— choose a sequence ()2, s.t. Vn € N, z,, € S\ {c}, 0 < |z, — ¢| < % and
|f(x,) —L| >eforallneN

- however, L -0 = 2, 5 ¢ = f(z,) > L = IM €Nst. Vn> M,
|f(zn) — L| < €, which is a contradiction

Continuous functions



Theorem 5.10 For all ¢ € R, we have lim,_,. 2% = ¢%.

proof: let (z,),., be a sequence in R\ {c} such that z,, — ¢, then according to
theorem 3.24, we have 22 — ¢ = lim, .. 2> = ¢? (theorem 5.9)

Theorem 5.11 The limit lim,_,sin(1/x) does not exist, but lim,_,o zsin(1/z) = 0.

proof:

e we first show that lim, gz sin(1/z) = 0: let (z,),.; be a sequence in R\ {0}
such that x,, — 0; since 0 < |z, sin(1/x,)| < |x,| for all n € N, and z,, — 0, we
have |z, sin(1/z,)] - 0 = lim, oz sin(l/z) =0

e we now show that lim,_,osin(1/x) does not exist:

— choose a sequence (zn),zo:l where z,, = ﬁ then we have z,, — 0
o
n=1"’

sin(1/2,) = sin (W) _ Lyt

— consider the sequence (sin(1/zy,)) we have

= (sin(1/z,)),~, does not converge —> lim,_,osin(1/x) does not exist

Continuous functions



Sequential properties

Theorem 5.12 Let f,g: S — R be functions and ¢ be a cluster point of S C R.
Suppose f(z) < g(x) for all x € S, and we have lim,_,. f(z) and lim,_,. g(z) both
exist, then lim,_,. f(z) < lim,_,. g(z).

proof: let (z,),~, be a sequence in S\ {c} such that z,, — ¢

e lim, . f(z) and lim,_,. g(z) exist = (f(xn)),—; and (g(z,)),—, converges

o let f(zn) — L1, g(xn) — Lo, since f(z) < g(x) for all z € S, we have L; < Lo,
i.e., limy_. f(z) < limg. g(z)

similarly, we can prove the following theorems using the properties of sequences:

Theorem 5.13 Let f: S — R be a function and ¢ be a cluster point of S C R.
Suppose the limit lim,_,. f(z) exists, and there exists a,b € R such that a < f(z) < b
for all z € S\ {c}, then a < lim,_,. f(z) <b.

Continuous functions
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Theorem 5.14 Let ¢ be a cluster point of S C R, and f,g,h: S — R be functions
such that f(z) < g(z) < h(z) for all z € S\ {c}. Suppose lim,_,. f(z) = limy—. h(x),
then lim, . g(x) = lim, . f(z) = lim, . h(z).

Theorem 5.15 Let ¢ be a cluster point of S C R, and f,g: S — R be functions such
that limg_. f(z) and lim,_,. g(x) both exist, we have:

o lim, .(f(z) + g(x)) = limg—yc f(x) + limy . g(x);
o limy.(f(2) - g(2)) = limg . f(2) - limg—c g(2);
o if limy . g(z) # 0 and g(x) # 0 for all x € S\ {c}, then

lim f(zx) _ limg ¢ f(z)
a—c g(x)  limgeg(z)’

Theorem 5.16 Let ¢ be a cluster point of S C R and f: S — R be a function such
that lim,_,. f(z) exists, then we have lim,_,. |f(z)| = | limy—. f(x)|.
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Left and right limits

Definition 5.17 Let S C R and f: S — R be a function.

Suppose ¢ is a cluster point of SN (—o0,c), we say f(z) converges to L as x — ¢, if
for all € > 0, there exists a § > 0 such that for all z € S and ¢ — § < x < ¢, we have
|f(x) — L] < e. We call such a limit the left limit of f at ¢, denoted lim,_, .- f(x).

Suppose c is a cluster point of SN (c,00), we say f(z) converges to L as x — ¢, if
for all € > 0, there exists a 6 > 0 such that for all z € S and ¢ < x < ¢+ §, we have
|f(x) — L| < e. We call such a limit the right limit of f at ¢, denoted lim,_,.+ f(x).

Example 5.18 Consider the function f given by

f(x):{ 1 >0

0 =<0,

we have lim,_,y- f(x) =0 and lim,_,q+ f(x) = 1, even if f(0) is undefined.
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Continuous functions

Definition 5.19 Let S C R and ¢ € S. We say the function f is continuous at c if
for all € > 0, there exists a § > 0 such that for all z € S and |z — ¢| < J, we have
|f(z) = flo)] <e

We say the function f is continuous on the set U for U C S if f is continuous at every
point of U.

Remark 5.20 The function f is not continuous at point ¢ € S if there exists some
e > 0 such that for all 6 > 0, there exists some x € S and |z — ¢| < J, so that

|f(z) = f(e)| > e
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Example 5.21 The function f(z) = ax + b is continuous on R.

proof: let c € R, € > 0, choose § = Ia\ﬁ then for all z € R and |z — ¢| < §, we have

(@) — 1(0)| = az + b — ac — b] = Jallz — | < [als = %

<
jal+1°7°¢

Example 5.22 The function f given by

is not continuous at ¢ = 0.

proof: choose e =1 and let § > 0, then x = §/2 satisfies |z| < ¢, but

[f(z) = fO) =1 -0[=12>¢

Continuous functions
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Theorem 5.23 Let S C R be a set, ¢ € S be a point, and f: S — R be a function.

e If ¢ is not a cluster point of S, then the function f is continuous at c.

e If ¢ is a cluster point of .S, then the function f is continuous at c if and only if
lim, . f(x) = f(c).

e The function f is continuous at ¢ if and only if for all sequences (xy,),-; in S
with lim,, o 2, = ¢, we have lim,, o f(z,,) = f(c).

proof: to show the first statement, let € > 0
e c € S and cis not a cluster point of S = 3§ >0s.t. (c—3d,¢c+9)NS = {c}

e then for all z € S such that |z — ¢| < d, we have z = ¢, and hence,
[f(z) = Fle)l =1f(e) = f(e)| =0 <e

we now show the second statement:

e suppose f is continuous at ¢, let € > 0
— f is continuous at ¢ == 3§ > 0 such that for all z € S and |z — ¢| < §, we have

[f(@) = fle)] <e
—thenVz € Sst. 0<|z—c| <4, |f(z)— fo)] <e = limg. f(x) = f(c)

Continuous functions



e suppose lim, . f(z) = f(c), let e >0
- f(z) = f(c) asx — ¢ = 36 > 0 such that forall z € Sand 0 < |z —¢| < J, we

have [f(z) — f(c)| < e

— then for all z € S such that |z — ¢| < 0: if = ¢, we have

[f(@) = flO)l =1f(c) = flo)| =0 <e
ifx#c,wehave 0<|z—¢c|<d = |f(z)— flo)] <e
— put together, we conclude that the function f is continuous at ¢
we now show the third statement

e suppose f is continuous at ¢, let (z,,),-; be a sequence in S, z, = ¢, let € >0
— [ is continuous at ¢ = 3¢ > 0 such that for all x € S and |z — ¢| < §, we have
[f(z) = flo)] <e
- 2, >c¢ = IM €N suchthatVn > M, |z, —¢| <é = Vn > M,
[f(zn) = flo)] <€ = (f(zn))nzy = f(0)
e suppose for all (z,,)72; in S such that z, — ¢, we have f(z,) — f(c)
— assume f is not continuous at ¢ = Je > 0, V§ > 0, Iz € S such that |[x — | < 4,
but [f(z) — flc)| > €
— choose z,, € S such that Vn € N, 0 < |z, — ¢| < L but [f(z,) — f(z)] > €
-150 = z,5¢ = f(z,) = f(c) = IM € N such that Vn > M,
|f(zn) — f(c)] < €, which is a contradiction
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Continuous functions

Theorem 5.24 The functions sinz and cos z are continuous functions on R.

proof:
e recall the following properties of sinx and cosz for all z € R:
- sin?(z) + cos?(x) =1 = |sinz| <1 and |cosz| <1
— |sinz| < |x]
— sin(a + b) = cos(a) sin(b) + sin(a) cos(b)
— sin(a) — sin(b) = 2sin (452) cos (%£2)

e we first show that sinz is continuous, let ¢ € R, let € > 0, choose § = ¢, then for
all x € R such that [z — ¢| < §, we have

. . . (T —cC z+c . (T —cC |z — |
| sinz — sin ¢| ‘2s1n( 3 )cos( 5 ). _2‘511&( 5 )) <2 3 |z —c| <e

e we now show that cosx is continuous, let ¢ € R, let (z,,),2; be a sequence with
Tn — ¢, then we have x, + 5 — ¢+ 7, and hence,

T . T
lim cosz, = hm sin (mn + —) = sin <c+ —) =cosc
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Theorem 5.25 Dirichlet function. The Dirichlet function given by

)1 zeqQ
o=y e

is not continuous on all of R.

proof: let c € R

e if c € Q, then for all n € N, there exists z,, ¢ Q such that ¢ < z, < c+ %;
% — 0 = z, — ¢, however,

Tim f(wa) =0 # f(c) =1

= (f(zn)),—, does not converge to f(c)

e if ¢ ¢ Q, then for all n € N, there exists x,, € Q such that ¢ < x,, < ¢+ %;
% — 0 = z, — ¢, however,

Jim f(zn) =17 f(e) =0

= (f(zn)),—, does not converge to f(c)
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Operations that preserves continuity

Theorem 5.26 Let f,g: S — R be functions on S C R and are continuous at ¢ € S.

e The function f + g is continuous at c.
e The function f - g is continuous at c.

o If g(x) # 0 for all x € S, then the function f/g is continuous at c.

proof: we show that the function f + g is continuous at ¢, the other two statements
can be proved similarly; let (x,,).>; be a sequence in S with z,, — ¢

e fis continuous at ¢ = lim, o0 f(2n) = f(c)
e g is continuous at ¢ = limy,_,o0 g(xn) = g(c)

e hence, limy, oo (f(zn) + g(xn)) = f(c) + g(c) = f+ g is continuous at ¢

Theorem 5.27 Let f: B — R and g: A — B be functions on A,B C R. If g is
continuous at ¢ € A and f is continuous at g(c) € B, then f o g is continuous at c.

proof: let (x,),. | be a sequence in A and z,, » ¢ = g(z,) = g(c) =
f(g(zyn)) = f(g9(c)) = fogis continuous at ¢
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Theorem 5.28 Let f be a polynomial function of the form
f(x) :apa?p—i----—i-alx—i—ao.

Then, the function f is continuous on R.

proof: let c € R, let ().~ be a sequence in R and z,, — ¢, then we have

nh_)rglo flzy) = Jgrgo(apxg + -+ a1z, + ao)
=ap lim 2f +--- 4+ a; lim x, + ag
n—oo n—oo

=apc’ + -+ aic+ayg = f(c)

Example 5.29 Theorems 5.26 and 5.27 allows us to show that some given function is
continuous without a huge € — § proof, for example:

2

e The function 1/22 is continuous on (0, cc), since 22 is continuous on (0, ).

: 2. . : : .
e The function (cos(1/z?%))” is continuous on (0,c0), since cosz is continuous on
R, and 22 is continuous on (0, 00).
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Extreme value theorem

Definition 5.30 A function f: S — R is bounded if there exists some B > 0 such
that for all z € S, we have |f(z)| < B.

Theorem 5.31 If the function f: [a,b] — R is continuous then f is bounded.

proof:
e suppose f is unbounded, then VB > 0, 3x € [a, b] such that |f(x)| > B

e let (x,,),2, be a sequence in [a,b] such that for all n € N, |f(z,)| > n

(n)peqisin [a,b] = (zp),— is bounded = there exists a subsequence
(@n;);=; (theorem 3.37) that converges to c € R

e a<z,<b = a<umz, <b = cé€la,b

[ is continuous on [a,b] = f(zp,) = f(c) = (f(zn,))se; is bounded

however, |f(xn,)| > ni = (n;);2, is bounded, which is a contradiction
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Definition 5.32 Let f: S — R be a function. We say the function f achieves an
absolute minimum at ¢ if f(z) > f(c) for all z € S. We say the function f achieves
an absolute maximum at d if f(x) < f(d) for all z € S.

Theorem 5.33 Extreme value theorem. Let f: [a,b] — R be a function on a closed,
bounded interval [a, b]. If the function f is continuous on [a, b], then f achieves absolute
maximum and absolute minimum on [a, b].

proof: we show the case for absolute maximum

e [ is continuous on [a,b] = f is bounded = the set E = {f(z) | = € [a,b]}
is bounded = sup F € R exists

e sup F is the supremum of {f(x) | = € [a,b]} = Vz € [a,b], f(z) <supF, and,
there exists some sequence (f(zy))—; with z,, € [a,b] such that f(z,) — sup E

o (x,);2isin [a,b] = there exists a subsequence (x,);-, such that z,, — d
and d € [a,b] = f(zn,) = f(d) (since f is continuous)

o f(zy) > supE = f(x,,) > supE = supE = f(d) = there exists a
point d € [a, b] such that f(x) < f(d) for all z € [a, D]
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Remark 5.34 To apply the extreme value theorem, the function f has to be continuous
on a closed, bounded interval.

If the function f: [a,b] — R is not continuous, consider the function given by

which neither achieves an absolute maximum nor an absolute minimum on [0, 1].

If the function f: S — R is continuous but S not closed and bounded, consider the

function given by
1 1
f('r)zi_ ) 52(071)7

r 1—=x

which neither achieves an absolute maximum nor an absolute minimum on [0, 1].
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Intermediate value theorem

Theorem 5.35 Let f: [a,b] — R be a continuous function. If f(a) < 0 and f(b) > 0,
then there exists some ¢ € (a,b) such that f(c) = 0.

proof: let a; = a, by =D, for all n € N, given a, and b,, define a, 1 and b, as:
® i1 = Gy, byyy = 2ofbn if f(9tin) >0
o apiq = 2t by = by, if f(2F) <0

then the sequences (ay,),-; and (by),-, has the following properties:
e 0 <ay<ant1 <bpy1 <b, <bforallne N = (an),, and (by), -, are

monotone and bounded = (ay),—; and (b,),~, converge, let a,, — ¢, b, — d

o f(an) <0, f(by) >0 for all n € N, since f is continuous, ¢,d € [a,b] =
limy, 00 f(an) = f(c) <0 and limy, 00 f(br) = f(d) >0

bn— bn—1—an—1 b— 1
.bn+1—an+1: nzan: n 22” :..-:Zna :}bn—anzﬁ(b—a)

= limy o0 (by — an) = limy, 00 271%1(5 —a) =0=1limy_00 by — limy, o0 ap,
— lim, o0 b, = lim,, ,oa, — c=d
put together, we have f(c) <0, f(d) >0, and f(c) = f(d) = f(c)=f(d)=0
= Jc € (a,b) such that f(c) =0
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Theorem 5.36 Bolzano's intermediate value theorem. Let f: [a,b] — R be a contin-
uous function. Suppose y € R such that f(a) < y < f(b) o f(b) <y < f(a), then
there exists a ¢ € (a, b) such that f(c) =v.

proof: we consider the case for f(a) < y < f(b), the other case is similar
e let g: [a,b] — R be a function given by g(x) = f(z) — y, then g is continuous on
[a, b] (theorem 5.26)

o fla)<y<f(b) = ()
such that g(c) = f(¢)—y =

= fla) =y <0, 9(b) = f(0) ~y >0 = 3Jc€ (a,D)
0 (theorem 5.35) = dc € (a,b) such that f(c) =y

Theorem 5.37 Let f: [a,b] — R be a continuous function. Suppose the function f
achieves absolute minimum at ¢ € [a, b], and achieves absolute maximum at d € [a, b].
Then, we have f([a,b]) = [f(c), f(d)], i.e., every value between the absolute minimum
value and the absolute maximum value is achieved.

proof:
e according to theorem 5.33, we have f([a,b]) C [f(c), f(d)]
e according to theorem 5.36, we have [f(c), f(d)] € f([¢,d]) € f([a,b])
e hence, f([a,b]) = [f(c), f(d)]

Continuous functions 5-24



Remark 5.38 Similarly, theorem 5.36 is false if the function f is not continuous.

Example 5.39 The polynomial given by f(z) = 22°2! 4 22920 1-9.032 + 1 has at least
one real root.

proof: we have f(0) =1 >0 and f(—1) = —8.03 < 0, hence, by theorem 5.36, there

exists some ¢ € (—1,0) such that f(c) =0
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Uniform continuity

Example 5.40 The function f(z) = 1 is continuous on (0,1).

proof: let ¢ € (0,1) and € > 0, choose § = mln{Q, , then Vz € (0, 1) such that
|z —¢| < d, we have

o [z —lel<lw—c[ <6< 3

l
o
AN
B
|
o
ﬂ Hr—’

1 2
Enp
lz] = c

T

e hence, ‘%—%‘ =7

Remark 5.41 Example 5.40 shows that in the definition of function continuity, the
number § can depend on both the number € and the point c.

Definition 5.42 Let f: S — R be a function. We say the function f is uniformly
continuous on S if for all € > 0, there exists some § > 0 such that for all z,c € S and
|z —¢| < d, we have |f(z) — f(c)| <e.

Remark 5.43 In the definition of uniform continuity, the number § only depends on e.
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Example 5.44 The function f(x) = 22 is uniformly continuous on [0, 1].

proof: let ¢ > 0, choose 0 = §, then for all z,c € [0,1] and |z — c[ < J, we have
|z 4+ ¢| <2, and hence,

If(z) = fle)| = a2 =P =|z+clzr—c|<|z+¢d<20=2-e=¢

Remark 5.45 Let f: S — R be a function. We say the function f is not uniformly
continuous on S if there exists some € > 0 such that for all § > 0, there exists some
xz,c€ S and |z —¢c| < §sothat |f(z) — f(c)] > e

Example 5.46 The function f(z) = 1 is not uniformly continuous on (0, 1).

proof: choose € = 2, let § > 0, choose ¢ = min {5, %} T = % then we have
e z,c€ (0,1) and |x—c|:§§%<5

1_ 1| _lz= _c. .2 _1 _
it =hm =5 Fd=22=c
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2

Example 5.47 The function given by f(z) = x* is not uniformly continuous on R.

)

proof: choose ¢ = 2, let § > 0, choose ¢ = %, xr = c+ g, then we have

e z,cc R and |x—c|:g<5

o 22— =|ztcl|lr—c=(2c+3) - 5=(3+9) :2+%>2:e

[\G][S%)

Theorem 5.48 Let f: [a,b] — R be a function. Then, the function f is continuous on
[a, b] if and only if f is uniformly continuous on [a, b].

proof:

e suppose f is uniformly continuous on [a,b]: let ¢ € [a,b], € > 0, then according to
uniform continuity, 36 > 0 such that for all = € [a,b] and |z — ¢| < §, we have

[f(z) = fle)] <€

e suppose f is continuous on [a, b]

— assume f is not uniformly continuous on [a, b], then Je > 0 such that Vé > 0, there
exists x, ¢ € [a,b] such that |z — ¢| < § but |f(z) — f(c)] > €
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— choose sequences (zn)pry and (c,),—; such that for all n € N, z,,, ¢, € [a, b],
| — cn| < nv but [f(z,) — f(ca)| > €

— since x, € [a,b] for all n € N, there exists a subsequence (2, );-, of (z,),—, such
that x,,, — ¢ and ¢ € [a,b] (theorem 3.37)

— take subsequence (cy,, )i, of (¢,),—, according to the indexes n; of (z,,);=,, then

Cn,

7

oo
€ [a,b] for all n € N = there exists a subsequence (cn) such that
i)

Cn,, —~dand de [a, b]

o0
— take subsequence (xn)
J A
j=1
then z,, — csince x,,, = ¢
J

oo
of (zn,);=; according to the indexes n;; of (cm_) ,
)i= _ ) e

-0< |{En11 - Cnij =0 s

1 1 :
< = and . =0 = limj_ |an — Cny,

nlj

lim; Tn, = lim; o0 Cn;, = C= d

— since f is continuous on [a,b] and x,, — ¢, ¢,, — ¢, we have
J J

lim f(zy, ) = lim f(cn, ) = f(c)

]*)OO ‘]‘)

=  0=|f(c) = f(o)| = lim [f(wn, ) — flen, )l =€
j—o0 7 7
which is a contradiction

Continuous functions 5-29



Lipschitz continuity

Definition 5.49 Let f: S — R be a function. We say the function f is Lipschitz
continuous on S if there exists some K > 0 such that for all x,y € S, we have

[f(@) = fy)] < Kz —yl.

Remark 5.50 Geometrically, the function f is Lipschitz continuous if and only if all
lines intersects the graph of f in at least two distinct points has slope in absolute value
less than or equal to K.

Theorem 5.51 Let f: S — R be a function. If the function f is Lipschitz continuous,
then f is uniformly continuous.

proof: let ¢ > 0
e f is Lipschitz continuous = JK > 0 such that for all x,y € S, we have

[f(2) = f(y)| < Kz —y|
e choose § = ¢/(K + 1), then for all z,y € S and |z — y| < J, we have

K
1) = F)] < Ko =yl < Ko = =~

e<e
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Example 5.52 The function f(z) = \/z is Lipschitz continuous on [1,00), but is not
Lipschitz continuous on [0, c0).

proof:
e consider the function f: [1,00) — R given by f(z) =/, then Vz,y € [1,00):
—z>1lLy>1 = o+,y>2

— hence,
3 - =yl
@) = FWI = VE = Vil = 2 <

= f is Lipschitz continuous with K = 1/2

e consider the function g: [0,00) — R given by g(z) = v/z, let K > 0, choose

I:O,y:ﬁ,then

'f(xx) ‘ ’\/5_ ‘ \;g—\/K?H>\/ﬁ—K

= [f(x) = f(y)| > K|z —y]
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Derivative

6. Derivative

definition and basic properties

differentiation rules

Rolle's theorem and mean value theorem

Taylor's theorem



Derivative of functions

Definition 6.1 Let I be an interval, let f: I — R be a function, and let ¢ € I. We say
the function f is differentiable at c if the limit

L f@ = )

T—C T —c

exists. We call L the derivative of f at ¢, and we write f'(¢) = L.

If f is differentiable at all ¢ € I, then we say the function f is differentiable, and we
write f’ or % for the function f'(z), z € I.

Example 6.2 Consider the function f(x) = ax + b, then f'(¢) = a for all ¢ € R.

proof: let x,c € R, then we have

limM:Iimax+b_(ac+b) zlimmzlima:a
T—C xr—c r—c xr—c r—c I —C T—c
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Example 6.3 Consider the function f(x) = 22, then f/(c) = 2c for all c € R..

proof: let x,c € R, then we have

_ 2 2 B
limM:limx ¢ :limw:lim(x—kc):%
T—C Tr—cC T—Cc I — C T—C T —C T—c

Theorem 6.4 Suppose the function f: I — R is differentiable at ¢ € I, then f is
continuous at c.

f@)=f(c)

proof: f is differentiable at c € I = the limit lim,_,. exists, hence,

lim f(z) = lim (f”‘f()< o+ f<c>> — J(e) -0+ f(e) = £(0

T—C r—c Tr —C

Remark 6.5 The converse of theorem 6.4 does not hold.

Derivative
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Example 6.6 The function f(z) = |z| is not differentiable at 0.

proof: let (z,),. , be a sequence with z,, = =07 ) foralln e N
. og‘%‘ggand%—m — 2, =0
o

e consider the sequence (W) , we have
n n=1

fan) = FO) el S
Tn—0 oz, =D = (1)

(w) f (0)

e lim, ;o (—1)" does not exist = lim,_,o does not exist

Remark 6.7 There exist functions that are continuous but nowhere differentiable.

Derivative
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Differentiation rules

Theorem 6.8 Let I be an interval, let f: I — R and ¢g: I — R be differentiable

functions at ¢ € 1.

o Linearity. Let @ € R. Define h(z) = af(z) + g(x), then 1/ (c) = af'(c) + ¢'(c).

e Product rule. Define h(x) = f(x)g(zx), then h'(c) = f'(c)g(c) + f(c)g'(c).
e Quotient rule. If g(z) # 0 for all z € I, define h(x) = f(x)/g(x), then

proof: f,g differentiable at ¢ = lim,_, f(xgz C(C) lim,,_, 9(2:9(0) exists, and f, g

C

continuous at ¢ = lim,—,. f(x) = f(c¢), limy—. g(z) = g(c)
o if h(z) = af(z)+ g(c), then we have

lim () — h(c) — lim af(z) +g() —af(c) —g(c)
:aig%+i%w =Ozf/(c)+g’(c)

Derivative
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o if h(x) = f(x)g(x), then we have
ha) —he) . F@)o(x) ~ f(g(e)

lim

o o 1)) — F)g(e) + F@)gle) ~ @)oo
i QW) — F0) + T@)(9(x) - 9(0)
= () tim PO ZTO 4 g ) 29 ey 4 peg (0

o if h(z) = f(x)/g(z), then we have

) he) L f@) /o)~ f(0)/le) F(@)g(e) — F(Q)g()

T—c xr —cC xTx—rc Tr—cC _;11—>H1c g(x g(C) Tr —cC
i L f(@)g(e) — f(e)g(z) + f(2)g(x) — f(z)9(2)
e g(a)g(c) r—c
L @ (@) = () ~ @) (g(x) — 9(c)
whe g(2)9(0) r—c
f'()g(c) = fle)g'(c)

Derivative



Theorem 6.9 Chain rule. Let Iy, I> be two intervals. Let g: I1 — R be differentiable
at ¢ € I; and f: Is — R be differentiable at g(c). Define h: I; - R by h = fogy,
then h is differentiable at ¢, and

proof: let d = g(c)
e define the following functions:

fly)—f(d) d g(x)—g(c)
uy={ = VT g @)=y e TP
f(d) y=d =

then we have

f(y) — f(d) :f'(d):u(d)

lim u(y) = lim

y—d y—d Yy — d
lim v(z) = lim 9@) = 9(c) =g'(c) = v(c)
Tr—cC Tr—cC Tr — C ’

i.e., u is continuous at d, v is continuous at ¢
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e note that f(y) — f(d) = u(y)(y — d) and g(x) — d

v(z)(x — ¢), we have

W) —h(c) = fg(x)) = f(d) = u(g(x))(g(x) — d) = u(g(x))v(z)(z — )

e put together, we have

lim h(z) — h(c)

T—C T —c T—C

Derivative

= lim u(g(z))v(z) = u(g(c))v(c) = f'(g(c))d (c)
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Rolle’s theorem

Definition 6.10 Let f: S — R with S C R.

The function f is said to have a relative maximum at ¢ € S if there exists some § > 0
such that for all z € S and |z — ¢| < J, we have f(x) < f(c).

The function f is said to have a relative minimum at ¢ € S if there exists some § > 0
such that for all z € S and |z — ¢| < 4, we have f(z) > f(c).

Theorem 6.11 If the function f: [a,b] — R has a relative maximum or minimum at
¢ € (a,b) and f is differentiable at ¢, then f’(c) = 0.

proof: we show the case for ¢ being a relative maximum point
e c € (a,b) is an relative maximum point = 3 > 0 such that for all = € [a, ]
and |z — ¢| < 0, we have f(x) < f(c)
e let (z,,),2 | be a sequence with z, = ¢ — % for all n € N, then we have z,, < ¢,
Tp — ¢ and |z, —c| <dforallme N = f/(c) :limnﬁm% >0
e let (yn),~ | be a sequence with y, = ¢+ % for all n € N, then we have y,, > ¢,
Yn — ¢, and |y, —c| <dforallme N = f'(c) zlimn_mOM <0

Yn—C

Derivative 6-9



Remark 6.12 In theorem 6.11, the function f does not necessarily have to be defined
on a closed interval, but the point ¢ where the relative extremum is achieved has to be
on the open interval (a,b).

Remark 6.13 Absolute extremum is a special case of relative extremum.

Theorem 6.14 Rolle. Let the function f: [a,b] — R be continuous and differentiable
on (a,b). If f(a) = f(b), then there exists some ¢ € (a,b) such that f’(¢) = 0.

proof: let f(a) = f(b) = K; f is continuous on [a,b] = there exists an absolute
maximum point ¢; € [a,b] and an absolute minimum point ¢z € [a, b] (theorem 5.33)

e if c; > K, then ¢; € (a,b) = f'(c1) = 0 (theorem 6.11)
o if co < K, then ¢3 € (a,b) = f’(c2) = 0 (theorem 6.11)

o ifc; =cp =K, then K < f(z) < K for all x € [a,b] = f(x) = K for all
x € [a,b] = f'(¢) =0 forall c € (a,b)
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Derivative

Mean value theorem

Theorem 6.15 Mean value theorem. Let the function f: [a,b] — R be continuous and
differentiable on (a,b), then there exists some ¢ € (a, b) such that

f®) = f(a) = f'(c)(b - a).

proof:
o define g: [a,b] — R with g(x) = f(z) — f(b) + {O= @D — z)
e since g(a) = g(b) = 0, by theorem 6.14, there exists ¢ € (a, b) such that
f(0) — f(a)

() =0=f()- 1Y = 1)~ (@) = Fe)b-a)

Theorem 6.16 If the function f: I — R is differentiable and f/(x) = 0 for all z € I,
then f is constant.

proof: let a,b € I with a < b, then f is continuous on [a, b] and differentiable on
(a,b) = 3Fc € (a,b) such that f(b) — f(a) = f'(¢)(b —a) =0 (since f'(x) =0 for
alzel) = f(b) = f(a)



Theorem 6.17 Let f: I — R be a differentiable function.

e The function f is increasing if and only if f'(x) >0 for all x € I.
e The function f is decreasing if and only if f/(x) <0 for all z € I.

proof: we prove the first statement
e suppose f'(x) >0 for all x € I, let a,b € I with a < b, then f is continuous on
[a,b] and differentiable on (a,b) = Jc € (a,b) s.t. f(b) — f(a) = f'(c)(b—a)
(theorem 6.15) and f'(¢c) >0 = f(b) — f(a) >0 = f(a) < f(b)
e suppose f is increasing, let ¢ € I, then we can find a sequence (z,,),-; with
either x,, < ¢ or x,, > ¢ for all n € N such that z,, — ¢
—ifx, <cforallne N = f(z,) < f(c) for all n € N, and hence

T—c Tr—c n—o00 Ty —C
—ifz, >cforalln e N = f(x,) > f(c) for all n € N, and hence

f/(c): lim f(T)_f(C) — 1 L >

T—c xr—c n—00 Ty, —C

in either case, we have f’(c) >0
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Derivative

Taylor’s theorem

Definition 6.18 We say the function f: I — R is n-times differentiable on J C [ if
f'of", .., ) exist at every point in J, where f(") denotes the nth derivative of f.

Theorem 6.19 Taylor. Suppose the function f: [a,b] — R is continuous and has n
continuous derivatives on [a,b] such that f("*1) exists on (a,b). Given zo,z € [a,b],
there exists some ¢ € (g, x) such that

2= S~ ) () wg)E 4 L@ e
1) = 3 gy e =0+ g
We denote
" (n1)
Py(x) = l'f(k) (zo)(z — x0)* and Ry (z)= f(n+1()')(:c — )" !
k! !

as the nth order Taylor polynomial and the nth order remainder of f, respectively.
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proof: let x,zg € [a,b] and = # x¢ (if x = o then any c satisfies the theorem)

o let M, ., = % then we have

f(z) = Py(z) + Mg 2, (z — xo)n—&-l

e note that for all 0 < k < n, we have f*)(zq) = P,(lk)(xo)
o let g(s) = f(s) — Pu(s) — My, (5 — x0)" ", then we have

g(zo) = f(z0) — Pu(x0) — My (0 — 20)" " =0
g'(x0) = f'(x0) = P} (20) — My zo(n+1)(x0 — 20)" =
9" (w0) = f(x0) = P (w0) = Moz (n + 1)!(wo — 79) = 0

e by theorem 6.15:

g(xo) =g(r) =0 == Jx; between zy and = s.t. ¢'(z1) =0
g (o) =¢'(x1) =0 =z, between z¢ and z1 s.t. ¢"’(z2) =
g™ D(xg) =g V(z,_1) =0 = Iz, between zq and z,_; s.t. g™ (z,) =0
g™ (20) = g™ (x,) =0 = Jc between o and z,, s.t. g""V(c) =0

Derivative



e note that

dn+1

WMx7x0 (s —20)"tt = Myao(n+1)! and P(c) =0

e we have the (n + 1)-times derivative of g at ¢ given by

(n+1)
0= gD (0) = FO(e) = Mgy (n+ 1) —> Mgy = 1)

e hence, we have

Derivative
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Theorem 6.20 Second derivative test. Suppose the function f: (a,b) — R has two
continuous derivatives. If 2o € (a,b) such that f/(xo) = 0 and f”(zo) > 0, then f has
a strict relative minimum at xg.

proof:
e it is easy to show that f” is continuous and f”(xg) > 0 = there exists some
d > 0 such that for all ¢ € (29 — d, 209 + ¢), we have f"(c) >0

e then for all = € (xg — 0,29 + 0), by theorem 6.19, there exists some ¢y between x
and xg such that

£(2) = f(z0) + f'(w0) & — 7o) + 5./ (co)(w — wo)’

e ¢o between z and zg = ¢¢ € (xg — 3,20 +0) = [f"(c) > 0, and since
f'(zg) = 0, we have

£() = flwo) = /")~ w0)* >0 = () > f(zo)

Derivative
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7. Riemann integral

e Riemann sum and some useful facts

e Riemann integral of continuous functions
e properties of Riemann integral

e fundamental theorem of calculus

e integration by parts

e change of variables

Riemann integral



Riemann sum

Definition 7.1 A partition z = {xo,z1,...,2,} of [a,b] is a finite set such that
a=x0<x1 < - <xp =0
The norm of z, denoted ||z||, is a number defined as

llz|| = max{x1 — xo, z2 — 21, ..., Tp — Tp-1}.

Definition 7.2 let = be a partition of [a,b]. A tag of z is a finite set £ = {&1,...,&}
such that

a=20<& <21 <& << <Ly <& <z =0

The pair (z,§) is referred to as a tagged partition.

example: (z,§) = ({1,3/2,2,3}, {5/4,7/4,5/2}) is a tagged partition with norm
lz|| = max{3/2 — 1, 2—3/2, 3—2} =1

Riemann integral
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Definition 7.3 The Riemann sum of f corresponding to (z,£) is the number

Sp(z,€) =D F(&) (@i —wi).
=1

Remark 7.4 For a continuous function f on [a,b] that is positive, the Riemann sum
S¢(x,&) is an approximate area under the graph of f. As ||z| — 0, we should expect
these approximate areas to converge to some number, which we interpret as the area
under the graph of f on the interval [a,b].

Riemann integral
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Some useful facts

Definition 7.5 We define the set C([a,b]) = {f: [a,b] = R | f is continuous}.

Definition 7.6 Let f € C([a,b]) and 7 > 0, we define the modulus of continuity of
the function f as

wy(7) = sup{|f(z) = f(W)| | |z —yl < 7}

Theorem 7.7 For all f € C([a,b]), we have lim,_,o ws(7) =0, i.e., for all € > 0, there
exists some ¢ > 0 such that for all 7 < 6, we have wy(7) < e.

proof: let ¢ > 0
e f€C([a,b]) = f is uniformly continuous on [a,b] = 3d > 0 such that for
all z,y € [a,b] and |z —y| < J, we have |f(z) — f(y)| < €/2

e let 7 < 9, then for all z,y € [a,b] and |z —y| < 7, we have |z —y| < § =
|f(x) — f(y)| <e€/2forall z,y € [a,b] and |x —y| <7 = €/2 is an upper
bound of the set {|f(z) — f(y)| | |zt —y| <7} = wy(1) <€/2 <€

Riemann integral
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Theorem 7.8 Let f € C([a,b]), then w¢(7) has the following properties:

e Forall z,y € [a,b], we have wy(|z —y|) > |f(z) — f(y)|.
e Monotonicity. If 71 < 79, then wy (1) < wy(72).

Definition 7.9 Let (z,§) and (2/,¢’) be tagged partitions of [a,b]. We say 2’ is a
refinement of z if z C 2.

Theorem 7.10 Let (z,£) and (2/,¢') be tagged partitions of [a,b] such that 2’ is a
refinement of z. If f € C([a,b]), then

1S5(z,€) = Sy, ) < we(llzl) (b — a).

proof: let z = {xo,...,zn}, £ = {&1, ..., &n}, 2/ = {ag, .. 2}, & = {81, ..., &)
e fori=1,...,n, let g(i) = {2, s T ) g(i) = {18258t St

xi_1:$;<l‘;+1<"-<$;€:$i
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e then foralli =1,...,n, we have

|F(&) (i — 1) — Sp(y,

k k
= Z P = Tp1) Z J(&)( Ty_q)
l=q+1 l=q+1
k k
= | > (&) = fe (@ — 2| < D 1f(&) — FEDI(l — -y
l=q+1 l=q+1
k k
<3 wplw - m)@h ) <Y wpllal) ) -2 y)
l=q+1 l=q+1

=wr(llz|)(@; — zi-1)
— the first inequality is by lemma 4.18
— the second inequality is from &;,&; € [zi—1, x;]

— the third inequality is by the second statement of theorem 7.8, and ||z|| > z;

Riemann integral
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e put together, we have

1S (z, &) —

n

Sy, &) =

n

D (FE&) (i — zima) — Sp(y™, <))

i=1

<D G @i —wion) = Sp(y?, <) |<wa lz]) (i = wi-1)

i=1

= w([lz])(b - a),

where the last inequality is by plugging in (7.1)

Theorem 7.11 Let (z,§) and (2/,¢’) be any two tagged partitions of [a,b] and f €
C([a,b]), then

|Sy(2,8) = Sp(a, &) < (wy(llzl)) +we(ll2'])) (b — a).
proof: let 2’ = z Uz’ and £" be a tag of 2”, then by theorem 7.10, we have

S (z, &) — Sy(a’

Riemann integral

) < 185(z,8) — Sp(a”, ")+ [S5(z",€") = Sy (2, &)
< (wy(llzl) +we(llz'1)) (b - a)
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Riemann integral of continuous functions

Theorem 7.12 Let f € C([a, b]), then there exists a unique number denoted f; f(x) dx
with the following property: For all sequences of tagged partitions ((Q(T),§(T))>Oi1 such
that lim, o |2 || = 0, we have

lim Sy(z §(T / f(z
r—00

proof: uniqueness follows immediately from uniqueness of limits of sequences of real
numbers, we only need to show the existence

o let ((g(r),g(’")))w be a sequence of tagged partitions with lim, ||g(’”)|| =0,

o0
we first show that (Sf(g(r),g(”)> is a Cauchy sequence; let € > 0

— by theorem 7.7, 3§ > 0 such that for all 7 < 0, wy(7) < m

- [ly™ y(’“)H <4, |y <é = V¥r,s>M,
we have wy (|ly™]) < 55545 wf(lly )||) -0

Riemann integral



— hence, for all r,s > M, by theorem 7.11, we have
1S5y, ¢) = S5y, ¢

< (gl D+ w00 - ) < (5550 + 5 ) -0 =€

let L = lim, o Sf(g(r),g(’")) (which exists by theorem 3.45)

o let ((g(r)é(r))):il be any sequence of partitions with lim, o, [|2("|| = 0, we

now show that lim, Sf(g(r)é(”)) =1L
- since ||z — 0, [ly™|| — 0, by theorem 7.7, we have

Tim (wy (lz™) + wr (D) (b~ a) = 0

- Siy (") - L = Sy, (")~ L] =0
— by theorem 7.11, we have

0 < [S(e, €M) — L < [87(, €M) = S5y, ¢+ 185 (47, ¢) — L
< (s (I 1) +wr(ly™ D) b —a) +Sp(y", (") — LI

= lim, 00 [Sy (2™, M) — L| = 0 (theorem 3.21)

Riemann integral
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Remark 7.13 Let f € C([a, b]). We sometimes write

b b
[ t@a= [+
By convention, we also define

/aaf:() and /baf:/abf.

Riemann integral
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Properties of Riemann integral

Theorem 7.14 Linearity. Let f,g € C([a,b]) and « € R, then

/ab<af+g>=a/abf+/abg.

proof: let ((@”,é”))m be a sequence of tagged partitions such that ||z(")|| — 0,

r=1

then we have

b
[ (@ +9) = lim Supyfa”, )

= lim (aS;(2®,£0) + S, (), £0)

r—00

)
=a lim Sp(z™, ) + lim Sy(z,¢™)

r—00 r—00
b b
e f )
a a

Riemann integral



Theorem 7.15 Additivity. Let f € C([a,b]) and a < ¢ < b, then we have

/abfz/:f+/cbf-

proof:
o0
o let ( ) ) be a sequence of tagged partitions of [a, ¢] with ||y || — 0
Y — Y
o let ( z , )T be a sequence of tagged partitions of [c, b] with |[z(")| — 0

then (( (r) f(r))> _with z(") :g( )U 2" and f(r —C )Un( ") is a sequence
of tagged partitions of [a, ]
ly@ =0 and |27 =0 = 2@ < [y + 2] =0

hence, we have

/f_lmsf 7,€0) = lim (S;(y"), <) + S5z, 7))

r—00 = r—00
(r)
= lim (3, () + lim (= /f+/f

Riemann integral



Theorem 7.16 Let f,g € C([a,b]) and f(x) < g(z) for all x € [a, b], then we have

/abfﬁ/abg

proof: let ((g(”,g(”))m be a sequence of tagged partitions with [|z(")|| — 0, then

- r=1
n(r) n(m)

€0) =3 f(el) @ — 20 < Zg ") 2Dy = 5y (2, £0)
=1

= lim, oo Sf(ﬁ(r)7§(r)) < limy o0 Sg(i(r)vé(r)) - f;f < f;g

Corollary 7.17 Let f € C([a, b]), then ‘f;f‘ < f;|f|

proof: £f(x) < |f(z)] = fabif = if;’f < f;|f| (theorem 7.16)
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Theorem 7.18 Let f € C([a,b]), and

my =inf{f(z) [z € [a,b]}, My =sup{f(z) |z € [a,b]}
Then, we have

b
my(b—a) S/ f<My(b—a).

proof: let (@(r) ; §(T))> b

r=1

be a sequence of tagged partitions with ||z

)| = 0, then
()

(™
€0y = Z FEN @ — 2

D> mpal” — 7)) = mypb - a)
=1
n(v ()
") = Zf =l

—a") <> M@l =2 = My(b - a)
=1
= my(b—a) <lim, 00 Sp(

x(r),é(r)) < Mf(b —a)

Riemann integral



Fundamental theorem of calculus

Theorem 7.19 Fundamental theorem of calculus. Let f € C([a,b]).

e If F: [a,b] — R is differentiable and F’ = f, then

b
/ f=F(b) - Fla).

e The function G(z) = [ f is differentiable on [a, b] with

proof:
o let (g(r))zl be a sequence of partitions with ||z(")|| — 0, by theorem 6.15, there
exist tags £ with £ € [2\7) 2{7], i = 1,...,n(), such that

11—

F(a\") — F@") = /()@ — 7)) = fe) @ —2))

Riemann integral



oo

hence, for the sequence of tagged partitions ((g(r),é(r))) » we have

™

n(
€)= 2 SEMN @ —ail) = 3 P — Pl = FO) - Flo)

= [0 f =m0 Sp(2"),£7) = F(b) - F(a)
e we only need to show that G is differentiable and G’ = f, i.e., let ¢ € [a, ], we

need to prove that lim,_,. % = lim,_,. % = f(c); let e >0
— f continuous on [a,b] == 3 > 0 such that for all ¢ € [a,b] and |t — ¢| < J, we

have |(t) — f(c)| < ¢/2
— suppose x € (¢,c+ 0), then for all t € [c, z], we have |f(t) — f(c)| < €/2, hence,

o —f@4= ﬁ—f@’

xic</aﬂ”ﬁ_/mﬂ@dg‘le‘/7ﬂ0—f@)ﬁ
1 €

€ €
dt<7 it = - <
(©)] L2 o W =g<e

r—cC

(the first inequality is by corollary 7.17)
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w_f(c) <e

Tr—c

— suppose x € (¢ — 0, ¢), using similar argument, we have
— put together, we conclude that for all z € [a,b] and 0 < |z — ¢| < §, we have

S il I

Tr—c fle)

<€

= limwzhmwz

T—c T—c e T —¢C

f(e)

Riemann integral
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Integration by parts

Theorem 7.20 Integration by parts. Suppose f,g € C([a,b]), f',¢" € C([a,b]), then

b b
/ f'a = (f®)g(b) — F(a)g(a)) - / fd.

proof: let F' € C([a,b]) with F(z) = f(z)g(z), by theorem 6.8, we have

F'(z) = f'(z)g(z) + f(2)g'(2),

and hence,
b
/ f'(@)g(x) de + / f(@)g (@) dz = / (f'(2)g(@) + f(2)g () da
- / F(x) dz = F(b) — F(a) = f(b)g(b) — f(a)g(a)

= [P f'g=(f(b)g(b) — f(a)g(a)) — [} fg'

Riemann integral

7-18



Change of variables

Theorem 7.21 Change of variables. Let f € C([c,d]) and ¢: [a,b] — [c, d] be contin-
uously differentiable with ¢(a) = ¢ and ¢(b) = d. Then, we have

/ " ) du = / ' (@) (@) da.

proof:
e let F': [a,b] — R be a function with F’ = f, then we have

d
| fw du=F@) - P
e by theorem 6.9, we have

(F o) (x) =F'(e(x)¢(z) = flo(x))e'(x),

and hence,

b d
/ F(o(@))@(2) dx = F(p(b)) - F(p(a)) = F(d) — F(c) = / £(u) du

Riemann integral



8. Sequences of functions

power series

pointwise and uniform convergence
interchange of limits

Weierstrass M-test

properties of power series
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Power series

Definition 8.1 A power series about z( € R is a series of the form

oo
Z am(x - xO)m'
m=0

Definition 8.2 Let > a,,(z — 20)™ be a power series, if the limit

R = lim |am]1/m
m—00

exists, we define the radius of convergence p as

) 1/R R>0
7)1 « R=o0

Sequences of functions 8-2



Theorem 8.3 Let >~ am(z —x0)™ be a power series and R = lim, o0 |am|1/m

exists. If R = 0, the series converges absolutely for all x € R. If R > 0, the series
converges absolutely if |z — z¢| < p and diverges if |x — x| > p.

proof: consider the root test (theorem 4.26), we have

L= lim |am(z — z0)™ "™ m — Rla — x|

= |z —xo| lim |an]
m—0o0 m—o0

e suppose R =0, thenwe have L=0<1forallz€e R = Y~ amn(z—z)"
converges absolutely for all z € R

e suppose R >0
—iflz—a9|<p = L<Rp=1 = Y~ amn(z—x0)" converges absolutely

—iflzg—a9|>p = L>Rp=1 = Y °_jam(z— )" diverges
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Remark 8.4 Let >~ a,(z —20)™ be a power series with radius of convergence p.
Define f: (zo — p, o + p) — R such that

f(x) = Z am(x - xo)m7
m=0

S
n=1’

then, the function f is the limit of a sequence of functions (f,) given by

n

f(2) = lim fo(x), fal@) =) am(z—zo)"

m=0

Example 8.5 Consider the geometric series >~z (which is a power series with
am =1, xg = 0), we have f: (=1,1) — R given by

@)=t =3 am = lim fula), fule)= 3
m=0

1—
X m=0

Sequences of functions
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Example 8.6 Exponential function. Consider the power series with a,, =
we have the exponential function f(z): R — R, given by

f(z) = exp(x Z % nl;ngofn(x), fu(z) = Z %
m=0 m=0

1
ml :B():Ox

Remark 8.7 Based on remark 8.4, we may ask several questions.

(1) Is the function f continuous?

(2) If (1) is true, is f differentiable, and does f' = lim,,~ f,?

(3) If (1) is true, does f;f = limy, 00 f: fn?

Sequences of functions
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Pointwise convergence

Definition 8.8 Let (f,,) 2, with f,,: S — R for all n € N be a sequence of functions,

n=1
and let f: S — R be a function. We say that (f,,) -, converges pointwise (or just

n=1

converges) to f if for all x € S, we have lim,, o frn(x) = f(x).

Example 8.9 Let f,(x) = z™ be defined on [0,1], then we have the sequence of

0 z€]0,1
functions (f,)>., converges pointwise to f(x) = { ) * [1 ) .
Tr =

proof: 1

o ifz€0,1): limy oo™ =0 0.81

o if z=1: limy 001" =1 - 061

= 04

Remark 8.10 A sequence of continuous 021 4 72 25 10/ 10
functions may not converge pointwise to a 0 ‘

0 02 04 06 0.8 1
T

continuous function.
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Example 8.11 Let f,(z): [0,1] — R be defined by

Anx T e [O, ﬁ]
fal@) =< 4n—4n’z z € [ﬁ %]
0 T € [% 1] ,

then (f,),=, converges pointwise to f(z) =0 (x € [0,1]).

proof: if x =0, we have lim,,_, f(0) = 0; if € (0,1], then IM € [0, 1] such that

Vn > M, % < z, and hence,

(fal@)ry = fi(z),..., far—1(2),0,0,0,... = lim f,(z) =0
16 32
8 —
o © © B
& ] & 2
0 0 0 0
011 1 011 1 01 1 1
4 2 84 8 16
X X T T
8-7
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Uniform convergence

Definition 8.12 Let (f,),; with f,: S — R for all n € N be a sequence of functions,
and let f: S — R be a function. We say that (f,),—, converges uniformly to f if

for all € > 0, there exists some M & N such that for all n > M and z € S, we have

[fu(z) = f(z)] <e.

Theorem 8.13 Let f: S = R, f,: S — R for all n € N be functions. If the sequence
of functions (f,),-, converges uniformly to f, then (fy),>; converges pointwise to f.

proof: let c€ S, e >0
o (fn),, converges uniformly to f = IM € N such that for all n > M and

z €S, [falz) = f(z)] <e
e hence, Vn > M, |fn(c) — f(c)] <€ = (fn),—; converges pointwise to f

Remark 8.14 Let f: S — R, f,: S — R for all n € N be functions. The sequence
(fn)pey does not converge to f uniformly if there exists some € > 0 such that for all
M € N, there exist some n > M and some x € S, so that |f,(z) — f(z)| > €.
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0 ze€l0,1)

Theorem 8.15 Let f,(x) = 2™, n €N, and let f(z) = { ) )
xr =

e The sequence (f,),-, converges uniformly to f on [0,b] for all 0 < b < 1.

e The sequence (f,),-; does not converges to f uniformly on [0, 1].

proof:

o lete>0,b€(0,1), thend” -0 = IM € N such that Vn > M, " < e =
Vn > M and z € [0,b], we have

[fo(z) — f(2)] = 2" <V <e
e choose ¢ = 1/2, then VM € N, choose n = M, x = (1/2)1/M < 1, we have

[fule) = fla)| =2 =1/2>¢

Sequences of functions
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Interchange of limits

Example 8.16 In general, limits cannot be interchanged. For example,

im tim 7 hmo=0,  tm im - gmo1—,
n—ook—oo n/k+1  n—oo k—oon—oon/k+1 koo

Remark 8.17 Based on example 8.16, we may ask the following questions.

e If f,: S — R with f,, continuous for all n € N and (f,),—; converges to f
uniformly or pointwise, then is f continuous?

e If f,: [a,b] — R with f,, differentiable for all n € N, and (f,,),—, converges to f,

n=1
(f1)o2, converges to g uniformly or pointwise, then is f differentiable and does

f'=g?

o If f:[a,b] > R, neN, f:[a,b] - R, with f,, and f continuous, and (f,);~
converges to f uniformly or pointwise, then does fff = lim,, 0 f: fn?
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Remark 8.18 If convergence is only pointwise, the answer is no for all questions in
remark 8.17.

e Let f,(z) = 2" on [0,1], n € N. Example 8.9 shows that (f,),-, converges
pointwise to a noncontinuous function.

n+1

o Let fu(z) = 551 on [0,1], then (f,,),~, converges to f(x) = 0 pointwise on
[0,1] and (f},)o—; converges pointwise to g given by g(z) = { (1) i f [10’ 1) ,
but f/(1) =0# g(1) = 1.

A’y T € [O, %]
e Let fn: [0,1] = R be given by f(z) = ¢ 4n—4n’z =z € [5-, 1] | then
0 NS [%, 1]
(fn)n—q converges to f(z) = 0 pointwise on [0,1] (example 8.11), but
/f—O;éhm fn—hm(112n):1
n—oo 2 n
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Theorem 8.19 If f,: S — R is continuous for all n € N, f: S — R, and (f,),2,
converges to f uniformly, then f is continuous.

proof: letc€ S, ¢ >0

e fyn continuous on S, c € S = 3§ > 0 such that forall z € S and |z — ¢| < 0,
we have |f,(x) — fn(c)| < €/3

o f, — f uniformly = JM € N such that for all n > M and x € S, we have

F(2) = fal@)| < ¢/3
e hence, for all z € S and |z — ¢| < d, we have
|f(z) = flo)| = |f(z) = fm(2) + fau(x) — far(e) + faule) — f(c)]
< |f(@) = fu@)| + [fm (@) = fa ()] + [ fale) = f(c)]

L
37373°°¢
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Theorem 8.20 If f,,: [a,b] — R is continuous for all n € N, f: [a,b] - R, and
(fn)p2, converges to f uniformly, then fff = lim,, 00 ff fn.

proof: let ¢ >0
e by theorem 8.19, we know that f is continuous on [a, b]

o (fn)oo converges uniformly to f == 3IM € N such that for all n > M and
x € [a,b], we have |f(z) — f(2)] < ;5

e hence, for all n > M, we have

Lo LA oo o [ e

where the first inequality is by corollary 7.17

Remark 8.21 Notationally, theorem 8.20 says that

b b b
/ f:/ lim f, = lim / fn-
a a n—oo n—0o0 a
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Theorem 8.22 If f,: [a,b] — R is continuously differentiable, f: [a,b] — R,

g: la,b] - R, and

o (fn)o2, converges to f pointwise,

o (f)>, converges to g uniformly,

then f is continuously differentiable and f' = g.

proof: let x € [a,b]
e by theorem 8.19, we know that g is continuous on [a, b]
e by theorem 7.19, we have

n—oo

[ o=t = 1@ =t [ gi= i o) — lim g

o f, — f pointwise = lim, o frn(z) — limy, o0 fr(a) = f(z) — f(a)
o fl, = g uniformly = lim,— [ f7, = [" g (theorem 8.20)
e put together, we have

[ o=t@-t@) — (/g)z (2) = ()
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Weierstrass M-test

Theorem 8.23 Weierstrass M-test. Let fi.: S — R for all kK € N. Suppose there exists
My, > 0, k € N, such that

(a) |fr(x)| < My for all z € S,

(b) >-p2, My, converges.

Then, we have the following conclusion.

(1) The series > 22, fx(z) converges absolutely for all z € S.

(2) Let f(x) =332, fr(x) for all 2 € S, then the series (3}, fx).—, converges to
f uniformly on S.

proof:

(1) |fr(z)| < My, >p2y My, converges = > 1=, | fr(z)| converges (theorem 4.20)
= > 72 fx(x) converges absolutely
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(2) let € > 0; > -2, My converges —> IM € N s.t. Vn > M, we have
o0 o0 n
DL Mp=|) M=) M
k=n+1 k=1 k=1
then, for all n > M and z € S, we have

Y ful@) =D fulw) > fula)
P k=1

k=n+1

<€

< 3 @< Y Mi<e

k=n+1 k=n+1

Sequences of functions
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Properties of power series

Theorem 8.24 Let > 7 ap(z — 20)" be a power series with radius of convergence
p € (0,00], then for all r € (0, p), the series Y 72 j a(z — 20)" converges uniformly on
[xo — 1, x0 + 7).

proof:
e note that we have |x — zg| < r for all z € [zg — r, 20 + 7]
o let fr = axp(x — mo)k, choose My, = |ag|r*, k € N, then Vx € [x¢ — 7,20 + 7],

[fe(@)] = lar(e = 20)*| = |ax|lz — zo|* < |ax|r® = M

e consider the root test (theorem 4.26) for ).~ ) M}, we have

r/p p< o0
0 p =00

k—o0

1/k
L= lim M/* = lim (\ak\rk> = lim |ay|"*r = {
k—o0 k—o0

since € (0,p), we have L <1 = ;2 M, converges absolutely

e put together, by theorem 8.23, we have (3_7_( fr)rey = D po ak(® — a:o)k
converges uniformly on [xg — 7, o + 7]
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Theorem 8.25 Let > 7 ax(z — 20)" be a power series with radius of convergence
p € (0, 00], then we have the following conclusion.

e Forall ¢ € (xg — p,zo + p), the function given by the series Y 72 aj(z — xo)k is
differentiable at ¢, and

% (Z ay(x — a:o)k>
k=0

e For all a,b such that z9p — p < a < b < xg + p,

Tr=c k=0
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Metric spaces

Definition 9.1 Let A and B be sets. The Cartesian product is the set of tuples defined

as
AxB={(z,y) |z €A, ye B}

examples:
o {a,b} x{c,d} ={(a, ), (a,d), (bc),(b,d)}
e the set R? = R x R is the Cartesian plane

is a subset of the Cartesian plane bounded by a

e the set [0,1]* = [0,1] x [0,1] is
(0,1), (1,0), and (1,1)

square with vertices (0,0),

Remark 9.2 To denote an element in the set R", we write x = (z1,...,2,) € R",
or simply x € R", where the subscripts i = 1,...,n denote the ith entry of the tuple
(x1,...,xy) that describes x.

We also simply write 0 € R" to mean the point (0,0,...0) € R".

Metric spaces
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Definition 9.3 Let X be a set, and let d: X x X — R be a function such that for all
z,y,z € X, we have

d(z,y) > (nonnegativity)

d(z,y) =0 |f and only if x =y,

d(z,y) = d(y, ), and (symmetry)
. d(x z) < d(x,y) +d(y, 2). (triangle inequality)

Then the pair (X, d) is called a metric space. The function d is called the metric or
the distance function. Sometimes we just write X as the metric space if the metric is
clear from context.

Example 9.4 The real numbers R is a metric space with the metric d(z,y) = |z —y|.

proof:

e the first three properties follows immediately from the properties of the absolute
value (theorem 2.25)

e to show the triangle inequality, let z,y, 2 € R, then we have

d(a,z) = lo —z[=lx —y+y —z[ < |z —y[ + |y — z[ = d(z,y) + d(, 2)

Metric spaces
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Definition 9.5 Let (X, d) be a metric space. A set S C X is said to be bounded if
there exists a point p € X and some number B € R such that

d(p,z) < B forallz € S.

We say (X, d) is bounded if X is a bounded set.

Metric spaces
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Cauchy-Schwarz inequality

Theorem 9.6 Cauchy-Schwarz inequality. Suppose x = (z1,...,z,) € R", y =

(y1,---,yn) € R", then
n 2 n n
=1 i=1 i=1

proof:

n n n n

03 (ways —ajw) =D (@7y) — 2miyjajyi + 25y7)

i=1 j=1 i=1 j=1

n n n n n n
() (30 ) + () (58] -2 (o) (o
i=1 j=1 i=1 j=1 i=1 j=1

= (B = (£4) (59)

Metric spaces



Theorem 9.7 The function f: R" x R™ — R given by

f(-’l',y) = \/(l’l—y1)2+...+(xn_yn)2 _

is a metric for R".

proof: we show that f satisfies the triangle inequality, by theorem 9.6, we have

Z —Yi+Yi _Zi)2

+QZ —yi) (Wi — )+ Y (Wi — 2)°

1 =1

+2\l . 2i Z _Zz
z:l

Metric spaces

i=1

+JZ yi — ) ) = (f(@,9) + f(y,2))°
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n-dimensional Euclidean space

Definition 9.8 The n-dimensional Euclidean space is the metric space (R", d) with
the metric d defined by

Remark 9.9 For n = 1, the n-dimensional Euclidean space reduces to the real numbers
and the metric given by (9.1) agrees with the standard metric for the set of real numbers
d(xz,y) = |z — y| in example 9.4.

Metric spaces

9-7



Open and closed sets

Definition 9.10 Let (X, d) be a metric space, x € X, and 6 > 0. Define the open ball
and closed ball, of radius § around x as

B(z,0) ={ye X |d(z,y) <} and C(z,0)={ye X |d(z,y) <},

respectively.

Example 9.11 Consider the metric space R, for z € R and § > 0, we have

B(z,0) = (xr — 6,z +6) and C(z,9)= [z — 0,z +J].

Example 9.12 Consider the metric space R?, for z € R? and § > 0, we have

B(x,6) = {y € R* | (z1 — 11)” + (22 — y2)* < °}.

Metric spaces
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Definition 9.13 Let (X, d) be a metric space. A subset V' C X is open if for all x € V,
there exists some § > 0 such that B(z,0) C V. A subset E C X is closed if the
complement E¢ = X \ E is open.

examples:
e (0,00) C R is open; [0,00) C R is closed
e [0,1) C R is neither open nor closed
e the singleton {z} with x € X is closed

Theorem 9.14 Let (X, d) be a metric space.

(1) The sets ) and X are open.
(2) If Vi,...,V} are subsets of X, then ﬂle V; is open, i.e., a finite intersection of
open sets is open.

(3) Let {V; C X | i € I} be a collection of open subsets of X, where I is an arbitrary
index set, then | J;; Vi is open, i.e., a union of open sets is open.

proof:
e the sets () and X are obviously open
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. Ieta:eﬂlevi, thenx e Vi,..., V;
- Vi,..., Vi areopen = 36y,...,0 > 0s.t. B(x,6,) CV4,...,B(z,0;) C Vi
— choose § = min{éy,...,0}, then B(x,8) C Vi,..., Vi = B(z,8) SN, Vi
o let x € | J;c; Vi, then IV, € {V; | i € I} such that 2 € V},

— Vi isopen == 36 > 0 such that B(x,6) €V}, C,;c; Vi

Theorem 9.15 Let (X, d) be a metric space.

(1) The sets () and X are closed.

(3) Let {V; C X | i € I} be a collection of closed subsets of X, where I is an arbitrary
index set, then ﬂieIVi is closed, i.e., an intersection of closed sets is closed.

(2) If Vi,...,Vj are subsets of X, then Ule V; is closed, i.e., a finite union of closed
sets is closed.

Remark 9.16 Note that in theorem 9.14, the statement (2) is not true for an arbitrary
intersection. For example, (2, (—1/n,1/n) = {0}, which is not open in R.

Similarly, in theorem 9.15, the statement (3) is not true for an arbitrary intersection.
For example, (J;2 ;[1/n,00) = (0, 00), which is not closed in R.
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Theorem 9.17 Let (X, d) be a metric space, z € X, and § > 0. Then B(z,J) is open
and C(z,9) is closed.

proof: we show that B(z,J) is open; let z € B(z,J), then d(z,z) < §
e choose € =0 — d(x, 2), let B(z,€) = {y € X | d(y, 2z) < €} be an open ball

o let y € B(z,¢€), we have d(y, z) < €, and hence
d(z,y) <d(z,z)+d(z,y) <d(z,z)+e=d(x,z) +J —d(z,z) =0

— y € B(z,0) = B(z,¢) C B(z,0)
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Closure and boundary

Definition 9.18 Let (X, d) be a metric space and A C X. The closure of A is the set
clA=(|{ECX|Eisclosed and A C E},

i.e., cl A is the intersection of all closed sets that contain A.

Definition 9.19 Let (X, d) be a metric space and A C X. The interior of A is the set
int A={x € A| B(z,0) C A for some § > 0}.
The boundary of A is the set

bdA=clA)\ int A.

example: consider A = (0,1] and X = R, then we have c1 A =[0,1], int A = (0,1),
and bd A = {0, 1}
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Remark 9.20 Notationally, in some textbooks, the closure, interior, and boundary of
some set A are denoted as

A=clA, A°=intA, and O0A=DbdA,

respectively.

Theorem 9.21 Let (X, d) be a metric space and A C X.

e The closure cl A is closed and A C cl A.
e If Ais closed, then cl A = A.

proof: let clA=({F C X | Eis closed and A C E}

o the first statement follows directly from the definition of closure and theorem 9.15

o if Aisclosed, then A€ {EC X |Eisclosedand ACE} = clACA =
A=clA

Metric spaces 9-13



Theorem 9.22 Let (X, d) be a metric space and A C X, then = € cl A if and only if
for all § > 0, we have B(z,6) N A # 0.

proof: we show the following claim: = ¢ cl A if and only if there exists some § > 0
such that B(z,0)NA=10
e suppose = ¢ cl A, then z € (cl A)°
- clAisclosed = (clA)“isopen = 3§ > 0s.t. B(x,8) C (clA)° C A° =
B(z,5)NA=10

e suppose 30 > 0 such that B(z,0) N A =0, let z € X
- B(z,6) is open = (B(x,0)) is closed
- B(z,0)NA=0 = AC(B(x,6) = clAC (B(z,0))"
- x € B(z,8) = z ¢ (B(z,¢)"

— put together, we have z ¢ cl A

Metric spaces 9-14



Theorem 9.23 Let (X, d) be a metric space and A C X, then int A is open and bd A
is closed.

proof:
o let x €int A
-z €int A = 36 > 0 such that B(x,4) C A
— let z € B(x,0); B(xz,d) open = e > 0 such that B(z,¢) C B(z,0) CA =
z€intA = B(z,0) Cint A = int A is open
e int A open —> (int A)“ closed = bd A =clA\int A=clAN (int A)“ is
closed (theorem 9.15)

Theorem 9.24 Let (X, d) be a metric space and A C X, then x € bd A if and only if
for all § > 0, we have the sets B(z,d) N A and B(z,d) N A° are both nonempty.

proof:
e suppose z € bd A4, let § >0

- 2z€bdA = z € clA, and hence, by theorem 9.22, we have B(z,0) N A # ()
— assume B(z,d) N A° =0, then we have B(z,0) C A = z € int A, which is a
contradiction
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e suppose B(z,d) N A # () and B(x,0) N A° #£ () for all § > 0, assume = ¢ bd A
- 2x¢bdA = x¢clAorxcint A

- ifx¢clA = 3§y > 0 such that B(z,dp) N A = 0, which is a contradiction

- ifxeint A = 3§y > 0 such that B(z,d0) C A = B(x,dp) N A = (), which is
a contradiction

Theorem 9.25 Let (X, d) be a metric space and A C X, then bd A = cl ANcl(A°).

proof: let x € bd A, § >0
e by theorem 9.24, we have B(z,d) N A and B(z,d) N A° nonempty

e by theorem 9.22, B(z,0)NA#() = z€clAand B(z,/)NA°#£() =
x € cl A¢

e hence, we have bd A = cl AN cl(A°)
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Metric spaces

Sequences in metric spaces

Definition 9.26 A sequence in a metric space (X,d) is a function z: N — X. To

°2 1, where z;, is the nth element in the sequence.

denote a sequence we write (z;,)
A sequence (z,),~; is bounded if there exists a point p € X and B € R such that

d(p,zy) < B for all n € N.

Let (n;);2; be a strictly increasing sequence of natural numbers, then the sequence

(Zp,; )soq is called a subsequence of (), ;.

Definition 9.27 A sequence (z,),.; in a metric space (X,d) is said to converge to
a point p € X if for all € > 0, there exists some M € N such that for all n > M, we
have d(x,,p) < €.

The point p is called a limit of (z,,),~ . If the limit p is unique, we write
lim x, = p.
n—oo

A sequence that converges is said to be convergent, and otherwise is divergent.
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Theorem 9.28 A convergent sequence in a metric space has a unique limit.

proof: let x,y € X such that x,, - z and z,, = y; let € > 0
e x, »>x = 3JM; € N such that Vn > M, d(z,,x) < €/2

e x, >y = IMs € N such that Vn > Ms, d(z,,y) < €/2

e hence, for all n > M, we have
A(e,y) < (e, 2) + dn,y) < 5+ 5 =

= d(z,y) =0 = z=y

Theorem 9.29 A convergent sequence in a metric space is bounded.

proof: suppose x, > p € X
e lete>0, z, > p = IM € N such that Vn > M, d(z,,p) < €

e choose B = max{d(z1,p),...,d(znm,p),€}, then for all n € N, d(z,,p) < B
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Theorem 9.30 A sequence (x,,),~; in a metric space (X, d) converges to p € X if and
only if there exists a sequence (ay,), -, of real numbers such that for all n € N, we have

d(zp,p) <ap, and lim a, =0.

n—oo

proof:
® suppose T, — p
- &y, —op = Ve>0,3IM € Nst. Vn> M, d(x,,p) <e = d(zn,p) =0

— choose a,, = d(z,,,p) for all n € N, then we have d(z,,p) < a,, and a,, — 0

e suppose a,, — 0 with a, € R and d(zy,p) < ay, let € >0
- 0<d(xn,p) <an, an — 0 = d(z,,p) — 0 (theorem 3.21)

- d(xn,p) >0 = IM € N such that Vn > M, d(z,,p) <€ = z, = p
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Theorem 9.31 Let (z,,);7 ; be a sequence in a metric space (X, d). If (), converges
to p € X, then all subsequences of (x,), ; converges to p.

proof: let ¢ > 0
e let x,, — p, then IM € N such that Vn > M, d(z,,p) < €

o let (zy,);2, be a subsequence of (z,,),2,, then we have n; > i

e hence, for all i > M, we have n; > M = Vi > M, d(xy,,p) <€
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Convergence in Euclidean space

Theorem 9.32 Let (,)°>°, be a sequence in R, where z,, € R¥ for all n € N. Then

(Tn)p—; converges if and only if (), ; converges for all i =1,...,k, i.e.,
lim x, = (lim Tni, --., lim x, k)
n—oo n— o0 n—oo

proof:

e suppose 2, — p € R¥, let e >0
- xp, > p = IM € N such that Vn > M, d(z,,p) < e

— hence, Vn > M, we have

k
2 2 2 .
{I?n,p Z Tn,i — z <6 - (mn’i_pi) < €7, 221,...,]{
i=1
= |zn;—pi| <eforalli=1,...,k = x,; > p;foralli=1,...k
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e suppose z,; — p; foralli=1,...,k lete >0, p=(p1,...,pk)
- ZTpi—pi,t=1,....,k = 3M;,..., My € N such that Vn > M;, we have
|£Cnvifpi‘<6/\/E,Z‘:1,...,k

— choose M = max{My,..., My}, then Vn > M, we have

d(zn,p) = éwm pi)? < i(\/})z: iek -

i=1

- Ty — P

Metric spaces 9-22



Convergence properties of topology

Theorem 9.33 Let (X, d) be a metric space and (z,),-, be a sequence in X, then
(z5,),~; converges to p € X if and only if for all open sets U C X with p € U, there

exists some M € N such that for all n > M, we have z,, € U.

proof:
e suppose z, — p, let U C X be openand pc U
— U is an open set contains p = 30 > 0 such that B(p,0) CU

-z, —op = IMeNst.Vn>M, d(z,,p) <éd = VYn>M, x, € B(p,9)
— Vn>M, z,e€U

e suppose for all open sets U C X with p € U, there exists some M € N such that
z, €U foralln> M;lete>0

— choose U = B(p,¢), then M € N such that Vn > M, x,, € B(p,€)

— hence, Yn > M, d(z,,p) <e¢ = xz, =D
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Theorem 9.34 Let (X, d) be a metric space, £ C X be a closed set, and (z,),-, be
a sequence in E that converges to some p € X, then we have p € F.

proof: assume (z,),~, in E converges to p but p ¢ E
e p¢ E — peE°
e Fis closed = FE° is open, then by theorem 9.33, 3M &€ N such that Vn > M,
xn € B¢ = VYn> M, x, ¢ E, which is a contradiction

Theorem 9.35 Let (X, d) be a metric space and A C X, then p € cl A if and only if
there exists a sequence (z,,),., of elements in A such that lim,_, 2, = p.

proof:
e suppose p € cl A, then by theorem 9.22, we have B(p,5) N A # () for all 6 > 0

— choose (z,,),, such that z,, € A and d(z,,p) < % foralln € N

- 0<d(zn,p)<iandl -0 = d(z,,p) >0 = =z, — p (theorem 9.30)

e suppose ().~ in Aand z, — p, let § >0
-z, —op = IMeNst.Vn>M, d(z,,p) <d = VYn>M, x, € B(p,9)

— then, since z,, € A, we have B(p,§) N A # 0 = p € cl A (theorem 9.22)
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Cauchy sequences and completeness

Definition 9.36 Let (X, d) be a metric space. A sequence (xy),- in X is Cauchy if for
all € > 0, there exists some M € N such that for all n,k > M, we have d(x,, zx) < €.

Theorem 9.37 A convergent sequence in a metric space is Cauchy.

proof: let x,, — p, € > 0, then M € N such that Vn,k > M, d(z,,p) < €/2 and
d(x,p) < €/2, and hence Vn,k > M, we have

d(xn, zk) < d(Tn,p) +d(zR,p) < €/2+€/2=c¢

Definition 9.38 We say a metric space (X, d) is complete or Cauchy-complete if all
Cauchy sequences in X converges to some point in X.
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Theorem 9.39 The Euclidean space R” is a complete metric space.

proof: let ()72, be a Cauchy sequence with z,, € R” for alln € N; let € > 0
o (), is Cauchy = 3IM € N such that Ym,n > M, d(zp, — z,) < €

e hence, for all m,n > M, we have

k
2 .
(dxm,mn mel Tn,i) 2o = |, — , i=1,...,k
=1
— the sequence of real numbers (z,,;).~ , is Cauchy foralli =1,... k
e by theorem 3.45, we conclude that (z,;), , converges forall i =1,... k

e then, by theorem 9.32, we conclude that the sequence (z,),-, converges
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