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Basic set theory

Sets

Definition 1.1 A set is a collection of objects called elements or members. A set with
no objects is called the empty set and is denoted by () (or sometimes by {}).

notation:

e a € S means that ‘a is an element in S’

a ¢ S means that ‘a is not an element in S’

¥ means ‘for all’

3 means ‘there exists’

d! means ‘there exists a unique’
e — means ‘implies’

e <> means ‘if and only if’

Basic set theory
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Definition 1.2

e Aset Ais asubset of aset B if v € A implies x € B, denoted as A C B.
e Two sets A and B are equal if A C B and B C A, denoted as A = B.

o A set A is a proper subset of B if A C B and A # B, denoted as A C B.

set building notation: we write
{reAlPx)} or {z|P(x)}

to mean ‘all x € A that satisfies property P(z)’

examples:
N ={1,2,3,4,...}: the set of natural numbers

Z=1{0,1,—-1,2,-2,3,-3,...}: the set of integers

Q= {m/n|m,n € Z, n+# 0}: the set of rational numbers

e R: the set of real numbers
it followsthat NCZCQCR

Basic set theory

Definition 1.3 Given sets A and B:

The union of A and B isthe set AUB ={z |z € A or z € B}.

The intersection of A and B istheset ANB ={x |z € A and x € B}.
The set difference of A and B istheset A\ B={z € A|x ¢ B}.

The complement of A is the set A°={z |z ¢ A}.

A and B are disjoint if AN B = 0.

Theorem 1.4 De Morgan’s Laws. If A, B,C are sets, then
e (BUC)"=B°NCY
e (BNC)" = B°UCS
e A\ (BUC)=A\BnNA\C,
e A\(BNC)=A\BUA\C.

Basic set theory
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we prove the first statement:

e let B, (' be sets, we need to show that

(BUC)"CB°NC® and B°NC°C(BUC)”

ez (BUC) = 2¢BUC = z¢Bandx¢C
= ze€Bandxe(C® = rze€B°NC° = (BUC)"C B°NC°

e x€BNC* = ze€Bandzrxc€(C® = x¢ Bandax ¢ C
— ¢ BUC — z€(BUC)" = B°NC“C (BUQ)*
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Mathematical induction

Axiom 1.5 Well ordering property. If the set S C N is nonempty, then there exists
some x € S such that x < y for all y € S, i.e., the set S always has a least element.

Theorem 1.6 Induction. Let P(n) be a statement depending on n € N. Assume that
we have:

1. Base case. The statement P(1) is true.
2. Inductive step. If P(m) is true then P(m + 1) is true.

Then, P(n) is true for all n € N.

proof:

e suppose S # (), then S has a least element m € S

e since P(1) is true, we have m # 1, i.e., m > 1

e since m is a least element, we have m — 1 ¢ S = P(m — 1) is true
e this implies that P(m) is true = m ¢ S, which is a contradiction

e hence, S =10, i.e., P(n) is true for all n € N
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Example 1.7 For all ce R, ¢ # 1, and for all n € N,

1— n+1
1-|—c—|—c2+---—|—cn=1—c
— C

proof:

e the base case (n = 1): the left hand side of the equation is 1 + ¢; the right hand

side is 11__062 = (H?_(i_c) = 1+ ¢, which equals to the left hand side

e the inductive step: assume that the equation is true for k£ € N, i.e.,

1 — ¢kt
l+e+c+ i tch=—v—,
1—c
we have
1— Ck:—l—l
l+ctc®+- 4+ = 1——|—ck+1
—c
1 — ekl 4 ekl _ p(k+1)+1 1 — (kD)1
N 1—c N 1—c
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Example 1.8 Bernoulli’s inequality. For all ¢ > —1, (1 +¢)" > 1+ nc for all n € N.

proof:
e for the base case (n = 1), we have (1 +¢)' >1+1-¢

e the inductive step: suppose m € N, m > 1 and (1 +¢)™ > 1+ mc, then

(146" >0 +me)(1+¢) =14+ m+De+me® >1+ (m+1)e
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Functions

Definition 1.9 If A and B are sets, a function f: A — B is a mapping that assigns
each = € A to a unique element in B denoted f(x).

Definition 1.10 Consider a function f: A — B. Define the image (or direct image) of
a subset C C A as
f(C)={f(x) e BlzcC}.

Define the inverse image of a subset D C B as

D) ={x € A| f(x) € D}.

examples:
o f:{1,2,3,4} — {a,b} where f(1) = f(2) =a, f(3) = f(4) = b, we have
F{1,2}) = {a}, f1({b}) = {3,4}

e f: R — R where f(x) = sin(nz), we have £([0,1/2]) = [0,1], f~1({0}) = Z

Basic set theory 1-9

Definition 1.11 Let f: A — B be a function.
e The function f is injective or one-to-one if f(z1) = f(x2) implies z1 = .
e The function f is surjective or onto if f(A) = B.

e The function f is bijective if f is both surjective and injective. In this case, the
function f~1: B — A is the inverse function of f, which assigns each y € B to
the unique = € A such that f(z) = v.

e if the function f is a bijection, then f(f~!(z)) ==z
e example: for the bijection f: R — R given by f(z) = 23, we have f~!(z) = ¥z

Definition 1.12 Consider f: A — B and g: B — (. The composition of the functions
f and g is the function go f: A — C defined as

(g0 f)(x) = g(f(x)).

e example: if f(z) = 23 and g(y) = sin(y), then (g o f)(x) = sin(x?)
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Cardinality

Definition 1.13 We state that the two sets A and B have the same cardinality if there
exists a bijection f: A — B.

notation:
e |A| denotes the cardinality of the set A

|A| = | B| if the sets A and B have the same cardinality

Al =nif]Al = [{1,...,n}

|A| < |B] if there exists an injection f: A — B

| Al < |Bl if |[A] < [B] and |A] # |B|

Basic set theory 1-11

Theorem 1.14

e If |A| = |Bj|, then |B| = |A|.
e If |A| =|B|, and |B| = |C], then |A| = |C]|.
proof:

e show that the inverse function f~!: B — A of f: A — B is a bijection

e show that the composition go f: A — C of functions f: A— Band g: B — C
is a bijection

Theorem 1.15 Cantor-Schroder-Bernstein. If |A| < |B| and |B| < |A| then |A| = |B.

Definition 1.16 The set A is countably finite if |A| = |N|. Specifically, the set A
is finite if |A| = n € N. The set A is countable if A is finite or countably infinite.
Otherwise, we say A is uncountable.
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Example 1.17 The set of even natural numbers and the set of odd natural numbers
have the same cardinality as N, i.e., [{2n | n € N}| = [{2n —1 | n € N}| = |N|.

proof: consider the bijection f: N — {2n | n € N} given by f(n) = 2n and
g: N —{2n—1|n € N} given by g(n) =2n—1

Example 1.18 The set of all integers has the same cardinality as N, i.e., |Z] = |N].

proof: consider the bijection f: Z — N given by

2n n>0
f(n):{ —(2n+1) n<o0

Basic set theory 1-13

Definition 1.19 The powerset of a set A, denoted by P(A), is the set of all subsets
of A, i.e., P(A) ={B| B C A}.

e for a finite set A of cardinality n, the cardinality of P(A) is 2"
examples:

e A =0 then P(A) = {0}
={0,{1}}
)= {0, {1}, {2},{1,2}}

Theorem 1.20 Cantor. If A is a set, then |A| < |P(A4)|.

o A= {1} then P(A)
o A={1,2} then P(A

e therefore, (N)| < |P(P(N))| <---, i.e., there are infinite number of
infinite sets

proof:
we first show that |A| < |P(A)]

e consider the function f: A — P(A) given by f(z) = {x}
e the function f is a injection since

f(x1) = f(@2) = {21} = {22} = w1 =129

Basic set theory 1-14



we now show that |A| # | P(A)| by contradiction
e suppose |A| = |P(A)|, then there is a surjection g: A — P(A)

consider the set B C A given by

B={aeA|adg)eP)

e since g is surjective and B € P(A), there exists a b € A such that g(b) = B

there are two cases
l.beB = b¢glb) = b¢ B

2.0¢ B = bé¢glb) = beB
where in either case we obtain a contradiction

hence, g is not surjective = |A| # |P(A)]

Corollary 1.21 For all n € NU {0}, n < 2™.
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2. Real numbers

e ordered sets

e least upper bound property

e fields

e real numbers

e archimedian property

e using supremum and infimum
e absolute value

e triangle inequality

e uncountabality of the real numbers

Real numbers 2-1

Ordered sets

Definition 2.1 An ordered set is a set S with a relation < called an ‘ordering’ such
that:

1. Trichotomy. For all x,y € S, either x <y, x =y, or x > y.
2. Transitivity. If z,y,z € S have x < y and y < z, then z < z.

examples:

e Z is an ordered set with orderingm >n <= m —n €N
e Q is an ordered set with ordering p > ¢ <= p — ¢ = m/n for some m,n € N

e Q x Q is an ordered set with dictionary ordering (q,7) > (s,t) <= ¢ > s, or
g=sandr >t

e the set P(IN) with ordering defined by A < B if A C B is not an ordered set

Real numbers 2-2



Least upper bound property

Definition 2.2 Let S be an ordered set and let £ C S, then:

e |f there exists some b € S such that < b for all z € F, then E is bounded
above and b is an upper bound of E.

o If there exists some ¢ € S such that « > ¢ for all x € F, then E is bounded
below and c is a lower bound of E.

e If there exists an upper bound by of E such that by < b for all upper bounds b of
E, then bg is the least upper bound or the supremum of E, written as

bo = supE.

e |f there exists a lower bound ¢y of E such that ¢y > ¢ for all lower bounds ¢ of F,
then ¢ is the greatest lower bound or the infimum of E, written as

Co = inf F.

Real numbers

examples:
e S=Zand E={-2,-1,0,1,2}, then inf E = —2 and sup £ = 2

e S=Qand E={qeQ|0<qg< 1} theninfE=0andsupE =1¢ E, i.e.,
the supremum or infimum need not be in F

e S=7Zand E =N, then inf £ = 1 but sup E does not exist

Definition 2.3 Least upper bound property. An ordered set S has the least upper bound
property if every E C S which is nonempty and bounded above has a supremum in S.

example: —N = {—1,-2,-3,...}, to show this (informally), suppose £ C —N is
bounded above, then —FE C N is bounded below and according to the well ordering
principle, —FE has a least element x € —F, and thus —z =sup F

Real numbers



Theorem 2.4 If z € Q and

z=supf{geQ|q¢>0, ¢ <2},

then x > 1 and 22 = 2.

proof: let E={q€Q|q¢>0, ¢> <2}
e r>1sincele F = supE >1

e we show z? > 2 by contradiction: suppose x> < 2, let h = min{%, Q(ZTafl)}

sincexz >1and 22 <2, wehave 0 <h <1/2<1

h<l = (z+h)?=a>+2hax+h?<z?+2hz+h

. 2—gz2
since h < Soa+T)r We have

1
(ac+h)2<x2+(2x+1)h§x2+§(2—m2)<932—|—2—x2:2 = rx+heck

x # sup F, which is a contradiction

Real numbers

_— 2_
e we now show z? % 2 by contradiction: suppose 2% > 2, let h = I2x2

— since 2 >2and x > 1, we have h > 0

~h>0 = (z—h)’=22—2he+h?>22—2hz=2— (22 —2) =2
— let ¢ € E, then ¢2 < 2 < (z — h)?, hence
(@=0°—¢*=(@=h)+a)((x-h)-q) >0 = (2=h)—q>0,
i.e., t—h >qforallg e E —> x — h is an upper bound for E

- h>0 = z>x—h = x #supkFE, which is a contradiction

e therefore, 22 =2

Real numbers

h>0 = x4+ h>x butz+héeFE = xis not an upper bound for FE, i.e.,

2-5
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Theorem 2.5 Theset £ = {g € Q| ¢ > 0, ¢* < 2} does not have a supremum in Q.

proof (by contradiction): suppose there exists some = € Q such that x = sup £/
e by theorem 2.4, we have x > 1 and x2 =2
e in particular, x > 1 sinceifr =1 — 2 =1 =+ 2
o © € Q = there exist m,n € N (m > n) such that x = m/n, i.e., m =nzx € N
o let S={keN |kre N} CN,then S#0sincencs
e by the well ordering property, there is a least element kg € .S
o let ky = ko(x — 1) = kox — ko € Z, in particular, k; € Nsincex >1 = k1 >0

o 12 =2 =— 1 < 2 as otherwise 22 > 4, hence
ki =ko(x —1) <ko(2—1)=ky = k1 ¢ S
o k1 =ko(x — 1) = kiz = kox? — kox, since 22 = 2, we have
kix = 2ky — kox = ko —ko(x — 1) =ko — k1 e N = k; € S,

which is a contradiction

Real numbers 2-7

Fields

Definition 2.6 A set F'is a field if it has two operations: addition (+) and multiplication
() with the following properties.

(Al) If x,y € F thenxz+y € F

(A2) Commutativity. For all z,y € F, x +y =y + x.

(A3) Associativity. For all z,y,z € F, (x+y) + 2z =z + (y + 2).

(A4) There exists an element 0 € F such that 0+ =2 =x+0 for all z € F.
(A5) For all x € F, there exists a y € F such that z + y = 0, denoted by y = —x.
(M1) If z,y € F thenx -y € F.

(M2) Commutativity. For all z,y € F, z -y =1y - x.

(M3) Associativity. For all z,y,z € F, (z-y)-z=x-(y- 2).

(M4) There exists an element 1 € F' suchthat 1.z =z =xz-1forall z € F.
(M5) For all z € F\ {0}, there exists an =1 € F such that z - 27! = 1.

(D) Distributativity. For all z,y,z € F, (t+y)-z=z-2+y- 2.
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examples:
e Q is a field

e Z is not a field since it fails (M5)
e Zy=1{0,1} where 1 +1 =0 (mod 2) is a field
o Z3=1{0,1,2} with c=a+ b (mod 3), i.e.,
241=3=0 and 2.-2=4=3+1=1,

is a field

Theorem 2.7 If x € F where F' is a field then 0z = 0.

proof: zz = (x+0)z =22+ 0xr = Oxr =0

Real numbers 2-9

Definition 2.8 A field F' is an ordered field if F' is also an ordered set with ordering
< and satisfies:

1. Forallz,y,ze Fe <y —= z+2<y-+=z.
2. If £ >0 and y > 0 then xy > 0.

If x > 0 we say x is positive, and if z > 0 we say z is nonnegative.

examples:
e Q is an ordered field

e Zy={0,1} where 1 +1 =0 is not a ordered field
(if0>1 = 04+1>141 = 1>0;if1>0 = 1+1>14+0 = 0>1)

Real numbers 2-10



Theorem 2.9 Let F' be an ordered field and z,y, z,w € F, then:

e If z >0 then —x < 0 (and vice versa).
o If x>0 and y < z then xy < zz.

o If x <0andy < zthen xy > xz.

o If x # 0 then 22 > 0.

e If0<z<ythen0<1/y<1/x.

o If 0 <z <y then 22 < 9%

e lfr<yand z<wthenx+ 2z <y+w.

Theorem 2.10 Let x,y € F where F'is an ordered field. If z >0 and y < 0orx <0
and y > 0, then zy < 0.

proof:
e 1r>0,y<0 = >0, -y>0 = —2y>0 = 2y <0
e <0, y>0 = —2>0,y>0 = —2y>0 = 2y <0

Real numbers 2-11

Theorem 2.11 Greatest lower bound. Let F' be an ordered field with the least upper
bound property. If A C F' is nonempty and bounded below, then inf A exists in F.

proof: let B={—x |z € A}

e AC F bounded below = dJac F, Ve € A, a <z = dac F,Vx € A,
—a>—xr = da€ F,Vx € B, —a>x = B C F has an upper bound —a
(this also shows that if a is a lower bound of A then —a is an upper bound of B)

e [ has the least upper bound property — sup B € F

e letc=supB,thenc>x,VreB — —c< —x, VrEeB — —c<ux,
Ve € A = —c € F is an lower bound of A

e we also have ¢ < —a with a being a lower bound of A — —c>a = —c€eF
is the greatest lower bound of A, i.e., —c=inf A € F

Real numbers 2-12



Real nubmers

Theorem 2.12 There exists a “unique” ordered field, labeled R, such that Q C R and
R has the least upper bound property.

e one can construct R using Dedekind cuts or as equivalence classes of Cauchy
sequences.

Theorem 2.13 There exists a unique € R such that » > 1 and 72 = 2, i.e., V2eR

but v2 ¢ Q.

proof: let E={z e R|2>0, 22 <2} CR
e we have x < 2 forall z € E (since if v > 2 = 2% >4) = FE is bounded
above =— sup F exists in R
e let r = sup E, using the same proof for theorem 2.4 we have r > 1 and 7% = 2
e to show the uniqueness, suppose 7 > 1, #2 = 2, then

P—it=0 = (r+M0r—-7N=0 = r—7F=0 = r=r

(sincer>1,7>1 = r+7>0)
Real numbers 2-13

Theorem 2.14 If x € R satisfies x < e for all e € R, € > 0, then z < 0.

proof by contradiction:

e suppose = > 0 satisfies x < € for all ¢ > 0
e x>0 = 2z>2>0 = x>z/2>0

e take € = /2 we have z > € > 0, which is a contradiction
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Archimedian property

Theorem 2.15 Archimedian property. If x,y € R and z > 0, then there exists an
n € N such that nx > y.

proof by contradiction:
e suppose nx <y forallne N = Vn e N, n<y/x = N is bounded above
by y/x = there exists supN € R
o let a=supN = a — 1 < ais not an upper bound of N — dm € N,
a—1<m — a<m+1€N = ais not an upper bound of N, which is a
contradiction

Theorem 2.16 Density of Q. If x,y € R and z < y then there exists some r € Q such
that x <r <wy.

proof:
e first suppose 0 < z < y, by the Archimedian property, we have

nly—z)>1 = ny>nr+1

for somen € N
Real numbers 2-15

o let S={k e N |k>nz} CN, by Archimedian property, there exists some
p € N such thatp >nx = S #

e by the well ordering property, there is a least element m € S such that m > nx
emeN — m>1
eifm=1thenm—-1=0 = nr>m-—-1=0sincex >0

e ifm>1 thenm—1€&N butm—1¢ S since m >m — 1 is the least element
— nr>m—1 = m<nr+1<ny

e hence, we have
nr<m<ny = x<m/n<y

for some m,n € N, i.e., there exists an r = m/n € Q such that z <r <y

e now suppose = < 0, if x < 0 < y then simply take r = 0; if x < y < 0, we have
0 < —y < —x, thus there exists some 7 € Q such that

—yY<r<-—r=—= < -r<y

(by the first case), i.e., we have z < r < y by taking r = —7
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Theorem 2.17 Suppose S C R is nonempty and bounded above. Then, x = sup S if
and only if:

1. z is an upper bound of S.
2. For all € > 0, there exists some y € S such that x —e < y < .

proof:
e first suppose © = sup S
— obviously, x is an upper bound of S

— for all e > 0, we have x > x — ¢ = x — € is not an upper bound of S, i.e., there
exists some y € S suchthatzr —e <y <=z

e now suppose x is an upper bound of S, and satisfies t — e <y < x for all € > 0
and for some y € S, we only need to show that for all z that is an upper bound of
S, we have z < z

— assume there exists an upper bound z of S smaller than z, i.e., y < z < x for all
yesS

—takee=2x—2>0(sincex>z) = z>y>r—ec=rv—c+z=2 = y>=z
for some y € S, i.e., z is not an upper bound of S, which is a contradiction

Real numbers 2-17

Theorem 2.18 Let S = {1 — 2 | n € N}, then sup S = 1.

proof:
° ifneN,thenl—%<1 — 1 is an upper bound of §

e let € > 0, then by the Archimedian property, for some n € N, we have

1 1 1
ne>1 — e>— — —e<—— —= 1l—e<1—-<1
n n n

by theorem 2.17, we have sup S =1

Remark 2.19 We have similar property as theorem 2.17 for infimum. Suppose S C R
is nonempty and bounded below, then z = inf S if and only if:

e 1 is a lower bound of S.

e For all € > 0, there exists some y € S such that z <y < x + .

Real numbers 2-18



Using supremum and infimum

Definition 2.20 For x € R and A C R, define

r+A={r+alac A}, zA = {za|ac A}.

Theorem 2.21 Let A C R be nonempty, we have:

e If z € R and A is bounded above, then sup(z + A) = = + sup A.
e If z >0 and A is bounded above, then sup(zA) = xsup A.

proof:
e suppose = € R and A is bounded above:

— forallae A, we havea <supA — xz+a<xz+supA, ie, thesetx+ Ais
bounded by = + sup A

— let € > 0, for some b € A, we have
supA—e<b<supA = (x+supA)—e<z+b<x+supA,

i.e., sup(x + A) =z +sup A
Real numbers 2-19

e suppose x > 0 and A is bounded above:

— foralla€e A, a <supA = za < xsupA, i.e., the set xA is bounded by xsup A
—lete >0 = ¢/x >0, for some b € A, we have

supA —e€/r <b<supA = xsupA—e < xzb<zsupA,

i.e., sup(xA) = zsup A

Remark 2.22 Similarly, we can also show that:

e If x € R and A is bounded below, then inf(z + A) = = + inf A.
e If x > 0 and A is bounded below, then inf(zA) = zinf A.
e If £ < 0 and A is bounded below, then sup(zA) = zinf A.
e If z <0 and A is bounded above, then inf(xA) = xsup A.

Theorem 2.23 Let A, B C R where x <y forall z € A, y € B, then sup A < inf B.

proof: forallz € A, y€ B, x <y = B is bounded below by 1 =— x <inf B
—> A is bounded above by inf B = sup A <inf B
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Absolute value

Definition 2.24 If z € R, we define the absolute value of x as

T x>0
|z| =
—x x<0.

Theorem 2.25

e |x| >0, and, |z| =0 if and only if x = 0.

| — x| = |z| for all z € R.

lxy| = |z||y| for all z,y € R.

> = 22 for all z € R.

|z

|z| <y if and only if —y <z <.

—|z| <z < |z| for all z € R.

Real numbers 2-21

Triangle inequality

Theorem 2.26 Triangle inequality. For all z,y € R,

|z +y| <|z| + |yl.

proof: let z,y € R
o z+y < |z|+yl

o v+ —y<|[—z[+|-yl=z[+ ]y = —(z[+]y]) <z+y
e hence, we have

(x| +y)) <z +y <|z|+ |y = |z+y| <|z[+]y|

Corollary 2.27 Reverse triangle inequality. For all z,y € R,

|z = [yl < |o—yl.
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Uncountabality of the real numbers

Definition 2.28 Let = € (0,1] and let d_; € {0, 1,...,9}. We say that x is represented
by the digits {d_; | i € N}, i.e., x = 0.d_1d_o - - -, if

z=sup{107 d_; +107%2d_5 + ---+107"d_, | n € N}.

. _ 2 2,5 2 5 0 _ 1 1y _ 1
example: 0.2500--- = sup{{5, 75 + 105> 16 = 100 T 10050 - --; = SUP1E, 7} = 1

Theorem 2.29

e For all set of digits {d_; | i € N}, there exists a unique x € [0, 1] such that
T = O.d_ld_g MR

e For all z € (0, 1], there exists a unique sequence of digits d_; such that
T = O.d_ld_g -+ and

0.d_1d_9---d_p<x<0d_1d_o---d_,+10"", foralln e N. (2.1)

e the second part indicates that the digital representation of 1/2 is 0.4999 - - -
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Theorem 2.30 Cantor. The set (0, 1] is uncountable.

proof (by contradiction):
e assume (0, 1] is countable, then there exists a bijection z: N — (0, 1], let

z(n) =0.d"d") ..., neN,
where d(_ni) denotes the ith decimal of the real number z(n) € (0, 1], and let
(i)
1 d% #£1
e_; = P 2.2
{ 2 4 =1 (22)
e let y=0.e_1e_5---, since all e_; are nonzero, e_1,e_o, ... satisfies (2.1);

according to theorem 2.29, we have 0.e_je_5--- being the unique decimal
representation of y

e again according to theorem 2.29 and all e_; are nonzero, we have y € (0,1] =
dJm eN, y=x(m) = O.d(_nf)d(_”;) -+~ =0.e_1e_9---, however, we have

e_m # d(_”;i since (2.2), i.e., for all m € N, z(m) # y, which is a contradiction

Corollary 2.31 The set of real numbers R is uncountable.
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3. Sequences

e sequences and limits

e monotone sequences and subsequences

e inequalities and operations involving limits
e limit superior and limit inferior

e Bolzano-Weierstrass theorem

e Cauchy sequences

Sequences

Sequences and limits

Definition 3.1 A sequence (of real numbers) is a function z: N — R. To denote a

sequence we write (z,,),-,, where z,, is the nth element in the sequence.

e sequence need not start at n =1, e.g., the sequence z: {n € Z |n>m} - R is
denoted (z,)7°

n=m

(0.}

Definition 3.2 A sequence (z,),-, is bounded if there exists some B > 0 such that

|z, | < B for all n € N.

examples:

e the sequence (%)Zo is bounded since % <1 foralln

=1

e the sequence (n);” , is not bounded since for all B > 0 there exists some n > B
according to the Archimedian property

Sequences
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Definition 3.3 A sequence (z,,),-, is said to converge to = € R if for all € > 0, there
exists an M € N such that for all n > M, we have |z, — z| < e.

The number z is called a limit of the sequence. If the limit x is unique, we write

r = lim x,.
n—oo

A sequence that converges is said to be convergent, and otherwise is divergent.

Remark 3.4 A sequence (z,,),- is divergent if for all z € R, there exists some € > 0,

such that for all M € N, there exists an n > M, so that |z, — x| > €.

Theorem 3.5 Let x,y € R. If for all € > 0,

x —y| <¢ then z =y.

proof: assume z £y = |z —y| > 0; take € = S|z —y| = |z —y| < iz — y|
—> |z —y| < 0, which is a contradiction

Theorem 3.6 If (x,,),2 | converges to = and y, then z =y, i.e., a convergent sequence
has a unique limit.

Sequences

proof: let € > 0
o (z,),., converges to x = IM; € N, Vn > M, |z, — 2| < ¢/2

o (z),°, convergestoy = IMy € N, Vn > My, |z, —y| < €/2
o let M = My + My, then M > My and M > Ms, then we have
ey — x| <€/2 and  |xp —y| < €/2,

hence,

lz—yl=|(x —znm) + (xmr —y)|
<l|v—zm|+ |y — 27|
< €/2+¢€/2

=€

e according to theorem 3.5, we have x =y

Remark 3.7 Sometimes we write ‘z,, — = as n — oo’ to mean x = lim,,_,oc ,,. We
may also avoid the ‘as n — oo’ part if the limiting process is clear from the context.
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Example 3.8 Given the sequence (z,),-; with z,, = ¢ € R for all n € N, we have
lim,, voo T, = C.

proof: let ¢ > 0, M =1, then for all n > M, we have |z, —c| =|c—¢c| =0<¢

Example 3.9 The sequence (%);O converges to x = 0, i.e., lim, .~ % = 0.

=1

proof: let € > 0, choose an M € N such that M > 1/e (such an M exists according
to the Archimedian property), then for all n > M, we have }% — O| = |%‘ < ﬁ <€

o0

converges to = = 0.
n=1

Example 3.10 The sequence (W)

proof: let ¢ > 0 choose M € N such that M > ¢~1/2, then for all n > M, we have

<1< L <
=on ~am O

2+ 2n+100 | nZ+2n+ 100

1 ‘ 1
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Example 3.11 The sequence (z,,),. , where z, = (—1)" is divergent.

proof: let z € R, M € N, then

aar — @] = [(=DY = ()M =2

= 2=|amv —2)+ (@ —om1)| < |lom —2[+ [z — 2
= |y —z|>1 or |xpyp—x| >1,

i.e., let e =1, n = M, we have either |z, — x| > e or |z,4+1 — x| > €

Theorem 3.12 If (z,,),-, is convergent, then (x,) " is bounded.

proof:
e suppose (z,).-, converges to z, let e = 1, then there exists some M € N such
that foralln > M, |z, —z| <1 = x, <|z|+1
e let B = max{|z1|, |z2|,...,|xnm]|, |z| + 1}, since x,, < |x,| for all n € N, n < M,
and x, < |z|+ 1 for all n > M, we have B > |x,| for all n € N
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Monotone sequences

Definition 3.13

e A sequence (z,),- is monotone increasing if z, < x4 for all n € N.
e A sequence (z,),-, is monotone decreasing if x, > x, for all n € N.

o If (z,,);2 is either monotone increasing or monotone decreasing, we say the
sequence (z,),-, is monotone (or monotonic).

examples:

e 9] . .
o the sequence (+)  is monotone decreasing
oo . . .
o the sequence (—x) " | is monotone increasing

e the sequence ((—1)"),Z; is not monotone
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Theorem 3.14 A monotone sequence (z,),-; converges if and only if it is bounded.

e If the sequence (), is monotone increasing and bounded, then

lim z, = sup{z, |n € N}.
n—oo
e If the sequence (), is monotone decreasing and bounded, then

nh_}rgo xn = inf{z, | n € N}.

proof: we prove for monotone increasing sequences, the other case is similar

e suppose ()., is convergent, according to theorem 3.12, it is bounded
e suppose ()., is monotone increasing and bounded
— (z4),—, is monotone increasing = x, < Tp41 forall n € N

— (xn),—, is bounded = the set {z,, | n € N} has supremum z = sup{z,, | n € N}

— let € > 0, according to theorem 2.17, there exists some M € N such that
T —e<xpy <z, then for all n > M, we have

r—e<zy <z, <zx<zr+e = |r,—x[<e€

Sequences



Example

recall the following lemma from example 1.8 for the proof of the next theorem:

Lemma 3.15 Bernoulli’s inequality. If z > —1 then (x +1)" > 1+ nx for all n € N.

Theorem 3.16 If ¢ € (0,1) then the sequence (¢");2_; converges and lim,,_,, ¢ = 0.
If ¢ > 1, the sequence (¢");2_; does not converge.

proof:
e if ¢ > 1, we show that the sequence (¢"*),~, is unbounded (and hence does not
converge):
— let B > 0, then there exists some n € N, n > CTBl such that
A"=((c=1D)+1)">14+n(c—1)>n(c—1)>B
(the first inequality is because of lemma 3.15)
Sequences 3-9

o if c € (0,1), we first show that (¢") 2, is monotone decreasing and bounded (and
hence, convergent), i.e., show that ctl<en<cforallmeN by induction:
— suppose n = 1 == % < ¢ < ¢, the first inequality holds since 0 < ¢ < 1

— suppose n > 1, and ¢! < ¢” < ¢, then we have ¢"T2 < "l < ¢ < ¢
let lim,,_soo ¢ = L, we now show that L =0
— let € > 0, then there exists some M & N such that for all n > M such that

1
" — L] < 5(1 —c)e

— hence, we have
(1= olLl = L - L]
= |(L = M) + (M — L)
<|L — M 4 ¢ - L
<|L = M 4[N - 1
1 1
< 5(1 —c)e+ 5(1 —C)e
= (1 —c)e,

i.e., |L| < € for all € > 0 (according to theorem 2.14) — |L|<0 = L =0
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Subsequences

Definition 3.17 Let (z,,),- ; be a sequence and (n;);~, be a strictly increasing sequence

of natural numbers. The sequence (zy,);, is called a subsequence of (z,), ;.

example: consider the sequence (z,,),2, = (n),—, i.e., 1,2,3,4,...
e the following are subsequences of (z,,),_;:

- 1,3,5,7,9,11,.. ., described with (z,,)ie; = (22i-1)504

- 2,4,6,8,10,12,.. ., described with ()0, = (22:)i04

- 2,3,5,7,11,13, ..., described with (z,,);—, where n; are primes

e the following are not subsequences of (), :
- 1,1,1,1,1,1,...

- 1,1,3,3,5,5,...
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Theorem 3.18 If lim,, ,- 2, = x, then all subsequences of (.an)gozl converge to .

proof:

(0.0}

o let (x,,);-, be a subsequence of (z,) ",

e let € > 0, then there exists some My € N such that |z, — z| < € for all n > M,
o let M = My, then for all : > M, since n; > 1 > M = M, we have

|z, — x| <€

Remark 3.19 Theorem 3.18 implies that the sequence ((—1)") 2, is divergent.
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Inequalities involving limits

Theorem 3.20 The sequence (z,),. , converges with lim, ., z, = x if and only if

the sequence (|z,, — z|);—; converges with lim,_, |z, — x| = 0.

proof: let € > 0
e suppose lim,, o, 2, = z, then IMy € N such that Vn > My, |z, — x| < €; let
M = My, thenVn > M = My, |z, — 2 —0| = |z, — x| <€
e suppose lim,_,o |z, — x| =0, then IM € N, Vn > M,
|z, — x| <€

xy, —x — 0] <e¢, e,

Theorem 3.21 Squeeze theorem. Let (ay),., (bn),—;, and (xy),-, be sequences
such that
an < Tn < by

00
n=1

for all n € N. Suppose that (ay),-; and (b,),-; converge and

lim a, = x = lim b,.
n—oo n—oo

Then (z,,),-; converges and lim,,_,oo ), = .
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proof: let € > 0
e a, > = JM; € N such that Vn > M, |a, — z| < €
e b, > — dMs € N such that Vn > My,
¢ a4, <z, <b, = ap—z<z,—2x<b,—2x
take M = max{Mj, My}, then ¥Vn > M, we have

by — x| < €

—e<ap—zr<zp—r<by—x<€e = |r,—x|<e€

2

n —
n24n+1 L.

o0
Example 3.22 The sequence (#jﬁl) ) converges with lim,, .~

n=

proof:

e let € > 0, we have

n2 B n+1 <n+1_1
“In?24+n+1 Cn24+n+1| " n24+n n
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Theorem 3.23 Let (x,,),-; and (y,),-, be sequences.

o If (x),—, and (yn), -, converge and z,, <y, for all n € N, then we have

limy, 00 Zp, < limy, 00 Yn.

o If (z,,);2, converges and a < z, <b for all n € N, then a < lim,,_,o z, <.

proof: we show the first statement since the second statement can then be proved by
considering sequences (yy),—; and (z,)p.; where y, =a <z, <b=2z,

o let lim,, oo p =  and limy, 00 Y = ¥y, SUPPOSE T > Y
x>y = x—y>0lete="554>0
e v, > — dM; € N s.t. Vn > My,

T, — x| < HE

o y, -y = dM> € N s.t. Vn > My, |yn—y’<%

o let M = max{M, Mz}, we have zpr — 2 > —%5*% and yar —y < %5, hence,
rT—y T+Yy

Ty > T — = = +—y>
M 5 5 Yy 5 YM,

which contradicts to z,, < y,, for alln € N
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Operations involving limits

Theorem 3.24 Suppose lim,, .o T, =  and lim,, ;o0 Y, = ¥.
e The sequence (xy, + yy), - is convergent and lim,, o0 (2 + yn) = = + y.
e For all ¢ € R, the sequence (ca:n)flo:l is convergent and lim,, . cx, = cz.

e The sequence (zpyp ), is convergent and lim,,_,o TpYyn = xy.

oo
e If y, # 0 for all n € N and y # 0, then the sequence (;—"> , is convergent and
n n=

proof:

e toshowz, =z, yp >y = zpn+yn =+ y, lete>0
- x, > = JM; € N such that Vn > My, |z, — x| < ¢€/2

- yn >y = IM;y € N such that Vn > My, |y, — y| < €/2
— let M = max{M, M}, then for all n > M, we have

[(@n +yn) = (2 +y)| < on — 2+ |yn —y[ <e/2+€¢/2=c¢
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e toshow z,, > — cx, —> cx, let e >0
- &, > ¢ = JM € N such that Vn > M, |z, — z| < |C|+1

||

— then for all n > M, we have |cz,, — cx| = |||z, —

e we show that x, —» z, ¥y, >y = TnYyn — TY:
-z, > = |z, —2|—0

Yn =Yy = |yn —y| — 0, and (y,,),—, is bounded, i.e., 3B >0, |y,| < B

hence, we have

0< ’xnyn - $y| = ’xnyn + TYp — TYn — xy’
= [(#n — 2)Yn + (Yn — y)2|
< lzn = 2llyn| + |yn — yl|2|
< |zn — 2B + |yn — yl|z|

according to the previous statements, |z, — 2| - 0 = |z, —z|B — 0,
Y =yl = 0 = lyn — yllz| = 0, then |z, —2|B + |y, — yllz| = 0

hence, according to theorem 3.21, |z, y, — xy| — 0
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e toprove z, >, yp >y (yp Z0 foralln e N, y #0) = oo — 2, we first
show that there exists some b > 0 such that |y, | > b:
—Iete:|—§’|,thenyn—>y:>EiMGNs.t.VnZM,\yn yl < %
— then for all n > M, we have
Y Y
W s e =0l = Nl = loll = Jyal > 2
(the second inequality is from the reverse triangle inequality)
— take b = min{|y1],...,|ynml, |y|/2}, we have |y,| > b for all n € N
1\~ Hh T 1 _ 1.
we then show that ; converges with lim,, .~ oo =y hote that
O<i_1‘:yn—y:|yn—y| — |
“lun oy YnY yallyl = blyl
and yp =y = ¥4 50 hence, [ — 1| 50, ie., L 1
Yn =Y bly| ’ "lyn Y T y
put together, x,, = x and = —> - z;‘ —>
3-18

Sequences



Theorem 3.25 If (xn)zo:l is a convergent sequence with lim,, , z, = x, and x, > 0
for all n € N, then the sequence (/7). , is convergent and lim, oo \/Zn = /7.

n=1

proof:
e suppose = = 0, let ¢ > 0, then we have z,, = 0 = dM € N s.t. Vn > M,
|2 — 0] = |zn| < € = Yn > M, |\/Tn — VT| = |\/Tn| < Ve < ¢

e suppose x > 0, we have

| = V) (VEn + V)| e, — 1 |z, — x|
0 < Vo = Vol = NN NN A

hence, z, > v = |z, — 2| > 0 = %—m = |/ZTn — V2| =0

Remark 3.26 Suppose the sequence ()., is convergent and lim, o =, = . One
can prove that lim,, :cﬁ = gk by induction. Moreover, if x, > 0 for all n € N, one

can also prove that lim,, . ¥z, = /x.
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Theorem 3.27 If (z,,),-, is convergent and lim,_, 2, = z, then (|z,|),~, is conver-
gent and lim,, oo |zp| = |2].

proof: let € > 0
e , > — dM & N such that Vn > M,

Ty, — x| <€
e by reverse triangle inequality, for all n > M, we have

[ln] = fa]] < |zn — 2] <e
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Some special sequences

Theorem 3.28 If p > 0 then lim,_.,o n" P = 0.

proof: let € > 0, choose M € N such that M > (1/6)1/p, then for all n > M,
In P —0]=1/nP <1/MP < ¢

Theorem 3.29 If p > 0 then lim,,_,o p'/™ = 1.

proof:
o ifp=1, limn_mopl/n = lim, 0o 11/ =1
e suppose p > 1
-p>1 = p/">1Y/"=1 = pl/"—1>0

— according to the Bernoulli's inequality (example 1.8), we have

<1+(p1/“—1)) > 14n(p/n—1) = F— > p! 10

-2l 50 = p/"-150 = pi/">1

e if0<p<1 = 1/p>1, hence, lim,_0 p"/™ = lim, o0 W =1/1=1
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Theorem 3.30 The sequence (nl/”)zozl is convergent and lim,, nt/n =1.

proof:

e one can simply show that n'/™ > 1 by induction = n'/" —1 >0

e according to the binomial theorem, for all x,y € R and n € N, we have
_ |
(z+9)" =Yoo (R)a" " y*, where (}) = gy

1/n _ 1, for all n > 1, we have

5 (oY o' (e

n! 1/n 2 1 1/n 2
— > " —1) = nn -1 1
"2 S ) =gnin=1)n )

eletx=1,y=n

n=(1+n""-1)"

e an/n_1>0

n—1

— /" —150 = /"

—1

Sequences 3-22



Limit superior and limit inferior

Definition 3.31 Let (x,),., be a bounded sequence. Define, if the limits exist,

limsupx, = lim (sup{zx | k >n}) and liminfz, = lim (inf{zy | & > n}).
n—»00 n—00 n—00 n—00

They are called the limit superior and limit inferior, respectively.

Theorem 3.32 Let (x,,),. ; be a bounded sequence, and let
anp =sup{xg | k >n} and b, =inf{zy |k > n}.

Then:

e The sequence (a,),- is monotone decreasing and bounded.
e The sequence (b,),-; is monotone increasing and bounded.

e We have liminf,,_,oc z, < limsup,,_, . Tn.
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proof:

e we first prove the following lemma:

Lemma 3.33 Let A, BCR, A,B # (), and A, B are bounded. If A C B then we
have inf B < inf A < sup A < sup B.

- AC B = sup B is an upper bound of A = sup A <sup B
— similarly, inf B is an lower bound of A = inf B <inf A
- AB#0) — infA<supA — inf B<infA<supA <supB

e we now show the first two statements in the theorem
— (2n),—, is bounded = there exists some B > 0 such that —B < z,, < B

— foralln € N, we have {x | k >n+1} C{xy | k > n} C {z, | n € N}, according
to lemma 3.33, this implies that

_ngngbn—i—l San—i—l < ap SB:

i.e., (an),—, is bounded monotone decreasing and (b,,),._, is bounded monotone
increasing (= (an),—, and (by,),—, converge)

e according to the previous inequalities, we have b, < a,, foralln e N —
limy, 00 by, < limy, o0 @y, (theorem 3.23), i.e., liminf, oz, < limsup,,_, . Tn
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Example 3.34 We have limsup,, ,., (—1)" =1 and liminf, ., (—1)" = —1.

proof: Vn € N, the set {(—=1)* |k >n)} ={-1,1} = sup{(-1)* |k >n)} =1,
inf{(-1)* |k >n} = -1 = limsup,_,., (—1)" =1 and liminf,_, (—1)" = —1

Example 3.35 We have limsup,,_,, + = liminf, ,o = = 0.

proof: for all n € N, we have sup{1/k | kK >n} =1/k and inf{1/k | k> n} =0,
hence,

1
limsup— = lim — =0 and liminf— = lim 0 =0
n—oo N n—oo k n—00 1, =~ N—00
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Bolzano-Weierstrass theorem

Theorem 3.36 Let (,,).°; be a bounded sequence. Then, there exists subsequences
(@n,)seq and (2, )=, such that

lim z,, =limsupx, and lim z,,, = liminfz,.
i—00 Nn—00 1—00 N—00

proof: let a,, = sup{xy | kK > n}
e a; =sup{zg | k>1} = In; >1suchthata; — 1<z, <a
® ap,+1 =sup{xg | k>n1+1} = Tng >ny st ap, 41 — % < Tpy < Ayt
® Gp 1 =sup{z |k >no+1} = dng > ng s.t. anyt1 — % < Tpg < Apyti1

e repeatedly, we can find a sequence of integers n; < no < --- such that

An; 141 — ; < Zn; < py_y 41

(defining ng = 0)

o (ani71+1)zl is a subsequence of (a,,)°% ;, and limy, e ay, = limsup,, o Tn
= limy, o0 ap, 41 = limsup,_, zn, = lim, o0 x,, = limsup,,_,. Tn

e similarly, we can find a subsequence of (z,),- that converges to liminf,_ . z,
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Theorem 3.37 Bolzano-Weierstrass. Every bounded sequence consisting of real num-
bers has a convergent subsequence.

Theorem 3.38 Let (x,,),-; be a bounded sequence. Then, (z,).-; converges if and
only if liminf, o 2, = limsup,,_, ., Zn.

proof:

e suppose lim,_,-, T, = z, then the subsequences that converge to limsup,,_,., Zn
and liminf,,_,o, =, must converge to = (theorem 3.18)

e suppose limsup,,_, ., ©n = liminf, ,. x, = x, for all n € N, according to the
squeeze theorem,

inf{xg | k>n} <z, <sup{ax |k >n} = lim z, ==
n—oo
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Cauchy sequences

Definition 3.39 A sequence (x,).-, is Cauchy if for all € > 0, there exists an M € N

n=1

such that for all n,k > M, we have |z, — x| < €.

Remark 3.40 A sequence (z,,),- is not Cauchy if there exists some ¢ > 0, such that
for all M € N, there exists some n, k > M, so that |z, — x| > €.

Example 3.41 The sequence (%)20:1 is Cauchy.

proof: let € > 0, choose M € N such that M > 2/¢, then for all n,k > M, we have

2
M

1 1| 1 1
S I G
<+ s

< €
n k

Example 3.42 The sequence ((—1)"), ; is not Cauchy.

proof: let e =1, M € N, n= M, k=M +1, then |(=1)" — (—=1)"| =2>¢
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Theorem 3.43 If the sequence (z,,),- is Cauchy, then (x,),~, is bounded.

proof:
o lete=1, (z,),—, is Cauchy = 3IM € N such that Vn,k > M,

eletk=M — VYn> M,

Ty — x| <1

Tn—xy| <1 = Vn> M,

Tn| < |zpm|+1

e take B = max{|z1|,|z2],...,|xrl|, |xar| + 1}, then |z,| < B foralln e N

00
n=1

Theorem 3.44 If the sequence (x,,)
then (z,,),-, converges.

is Cauchy and a subsequence (z,,);-, converges,

proof: let € > 0
o (zy),°, is Cauchy = 3IM; € N such that Vn,k > M, |z, — zx| < €/2

o let lim; oo xp, = = IMs € N such that Vi > My, |z,, — x| < €/2
o let M = max{M;i, Ms}, then Vk > M, ni > k > My, ni > k > M,, hence,

|z — x| < |z)p — Tpp | + |2, — 2| < €/24€/2 =¢
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Theorem 3.45 Completeness of the real numbers. A sequence of real numbers (z,,),~
is Cauchy if and only if the sequence (z,,),- is convergent.

proof:

e suppose (zp,), is Cauchy = (), is bounded (theorem 3.43) = there
exists convergent subsequence of (z,,),-, (theorem 3.37) = (), is
convergent (theorem 3.44)

e suppose lim,_,oo ,, =z, let € > 0, then IM € N, Vn > M, |z, — x| < €/2; let
k> M, then |z, — x| < |z, — 2|+ |z —2k| <€/2+€/2=¢

Remark 3.46 We say a set is Cauchy-complete, or just complete, if all Cauchy
sequence of elements in the set converges to some point in the set. Theorem 3.45
indicates that R is complete.

Remark 3.47 The set Q is not complete. Since Q does not have the least upper bound
property, then, e.g., sup{z,, | n € N}, sup{zx | K > n}, etc., might not exist in Q.
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4. Series

® series

e Cauchy series

e linearity of series

e absolute convergence

e comparison, ratio, and root tests
e alternating series

® rearrangements

Series

Series

o0

Definition 4.1 Given a sequence (z,,),- ;,

the formal object Y °° | x,, is called a series.

A series converges if the sequence (sy,),-_, defined by
m
8m=zxn=w1+---+xm
n=1

converges. The numbers s, are called partial sums. If the series converges, we write

In this case, we treat > >, x, as a number.

If the sequence (s,,),._, diverges, we say the series is divergent. In this case, > 7 | z,
is simply a formal object and not a number.

e series need not start at n =1

Series

4-1



Example 4.2 The series > | m converges.

proof: the sequence of partial sums (s,,),._; is given by:

00 1 0 1 _
hence, s,, =1 = > n(niT) Converges and > At = 1

Series

Theorem 4.3 If |r| < 1, then > ° 7™ converges and ) >~ (7" = .

1—r

proof:

e the sequence of partial sums (s,,),-_; is given by:

1—

rnv+1

o (e A=) Yt =)
Sm:ZT N 01—7“ 01—7“ N

n=0

1
1—r

e |r| <1 = r"™ — 0 (theorem 3.16) = s, —

1—7r

Remark 4.4 Series of the form Y7, ar™ with o, r € R are called geometric series.

Series

4.3

4-4



o0

Theorem 4.5 Let (z,),-, be a sequence and let M € N. Then, > > z,, converges
if and only if >~>° , x, converges.

proof:
e for all m > M, we have

m M-1 m
D= Tt ) wn
n=1 n=1 n=M

e suppose > > | x, converges, we have

m m M-1 m M-1
lim g T, = lim E Ty — E Tn, | = lim g Tn | — g T,
m—o0 m—00 m—00

n=M n=1 n=1 n=1

n=1

e suppose > >, x;, converges, we have

m m M-1 m M—-1
g Y= i (3 s S g (3] X

n=M n=1

Series 4-5

Cauchy series

Definition 4.6 The series ) >° | x,, is Cauchy if the sequence of partial sums (s;,),-_,
is Cauchy.

Theorem 4.7 The series Y7 | x, is Cauchy if and only if >~ ° | x,, is convergent.

proof: according to theorem 3.45

e suppose > x, is Cauchy = (sy,)o_; is Cauchy = (s, is
convergent = » >, x, is convergent

® suppose > > . x, is convergent = (Sy,)o_; is convergent = (S,,) oy iS
Cauchy = > >° |z, is Cauchy

Series 4-6



Theorem 4.8 The series > ° | x,, is Cauchy if and only if for all € > 0, there exists an

M € N such that for all m > M and k£ > m, we have ‘Zﬁ:mﬂ Tn| < e

proof: let e > 0

e, 9]

e suppose Y xy is Cauchy = (3_" ) - _, is Cauchy = 3IM € N such
that VYm, k > M (assume k > m), we have

m k k
E Tn — g Tl <€ — E Tn| <€

e suppose M € N such that for all &k > m > M, ‘Zﬁ:mﬂ ZTn| < €, then we have

m k k
Syl -] 3wl
n=1 n=1 n=m-+1

Series

Theorem 4.9 If the series Zflozl xy, converges then lim,, o x, = 0.

proof: let € >0, Y >° | x,, converges = > ° x, is Cauchy = 3M, € N such
that V& > m > Mj, we have ‘Zﬁ:mﬂ Zn| < € (theorem 4.8); choose M = My + 1,
then Vm > M, by taking k = m > m — 1 > M, we have

m
>,

n=m—1+1

<e = lim x, =0

‘xm - 0‘ = ‘xm’ =
n—oo

Remark 4.10 The converse of theorem 4.9 does not hold.

Theorem 4.11 If |r| > 1 then the series >~ ™ diverges.

proof: If || > 1, then lim, o, 7™ # 0, according to theorem 4.9, >~>° ™ diverges

Corollary 4.12 The series > 2, ar™ with a, 7 € R converges if and only if |r| < 1.

Series



Theorem 4.13 The harmonic series > | 1 does not converge.

proof: we show that a subsequence of (s;,);-_; is unbounded
e consider the subsequence (syi);~;, given by

2 1 1 1 1 1 1 1
821'22521-1— 5 + §+4_l + g+"'+§ +---+ m‘f""?

n=1

i 2k
1
-1+ Y o

k=1n=2k-141

i ok
1 1 k k—1
>14+> Y Q—k:1+22—k(2 —(2F 14 1)+1)

k=1n=2k-141 k=1
=1+ Z o =1+ Z

o (1+14/2);2, is unbounded = (s5i);2; is unbounded = (s, is
unbounded = > >, % does not converge

Series 4-9

Linearity of series

Theorem 4.14 Let o € R and Y 7, x, and >~ | y, be convergent series. Then the
series Y 7, (axy, + yn) converges and

Z(awn+yn —aan+Zyn

n=1

proof: consider the partial sums of Y >° | (axy, + y,), we have

m m m
Z(amn—l—yn) :aan—i—Zyn

n=1
m m
S = g 3
n= —
= Z(axn+yn —azwn‘f'zyn
n=1

Series 4-10



Absolute convergence

Theorem 4.15 If 2, > 0 for all n € N, then the series Y | x,, converges if and only
if the sequence of partial sums (s;,),._; is bounded.

proof:
® suppose > > | x, converges = (Sy,)._; converges = (S, is bounded

e suppose (Sp,),-_, is bounded, since z,, > 0 for all n € N, we have

m m
Sm = E Ln S E T +xn+1 = Sm+1,
n=1 n=1

i.e., (Sm),o_1 is monotone increasing = (S, ),._; converges =—> > >° 1,
converges

Definition 4.16 The series > - |z, converges absolutely if Y>>, |z, | converges.

Series 4-11

Theorem 4.17 If the series ) 7 | x,, converges absolutely then >>° . x,, converges.

proof:
e we first prove the following claim by induction:

Lemma 4.18 For all z1,...,2, € R, we have [>°7" | x| < >0, |zl

— suppose n = 2, we have the triangle inequality |21 + 22| < |z1| + |22]

— suppose n > 2, and |>_1" | z;| < 3" |x;| holds, we have
n+1 n+1

n n
Dow| <D @] ] <D |wil + @ = ) ||
=1 =1 =1 =1

e > > |z, converges absolutely = ">, |z,| converges = let € > 0,
k k
IM eNst.VE>m>M, |> 0 el =D 0 |2n] <€

<

e hence, for all k > m > M, we have ‘Zﬁ:mﬂ Tyl < Zﬁzmﬂ |z, <e =

o
Y moq Ty CONverges

Remark 4.19 The converse of theorem 4.17 does not hold.

Series 4-12



Comparison test

Theorem 4.20 Comparison test. Suppose 0 < x,, < y,, for all n € N.

o If >°>° |y, converges then Y >, x, converges.

o If >°>° | x, diverges then > >, y, diverges.

proof:
® suppose ) =1 yn converges — (", yn) _, is bounded = 3B >0s.t.
:anlyn < B — VYm € N, we have

m m
0§an§2yn§3

= (3o @y),°_, is bounded = >">°, x, converges (theorem 4.15)

n=1

e suppose > > x, diverges — (D", x );f:l is unbounded (theorem 4.15)
—> VB >0, 3m € N such that | Y, xp| = > | x,, > B, hence, for this m,

m m
Zyn > Z:cn > B
n=1 n=1

= (X Yn)_, is unbounded = >"7°, v, diverges

n:1 yn|

Series 4-13
Theorem 4.21 For p € R, the series > ° | — converges if and only if p > 1.
proof:
e suppose > >, nlp converges, assume p < 1, then we have 0 < = § ﬁ' the series
>, L diverges = >°°° | L diverges (theorem 4.20), Whlch is a contradiction
e suppose p > 1, let sp, =D ", nip
— we first show that s, < som for all m € N: by induction, we have 2" > m for all
meN — szZLn%SZizln—lpzsw
— we now show that som is bounded by 1 + 1_2,%:
2"
Szm = e
n=1 np
S (D) (e )y ! PN
B o» 3P 4p (2m=1 4 1)P (2m)P
m ok 1 m 2k 1
SIED D SIS S DR
k=1n=2k-141 k=1mn=2F-141
4-14

Series



m 2k m
1
_ —p(k—1) ok k—1
<14 ) (2k1)p_1+k§_12 pih=1)(9k _(2k=1 1 1) 4 1)

k=1n=2k—-141

m m—1
=1+ Z 9= (p=1)(k=1) —_ 1 4 Z 9—(p—1k
k=1 k=0

o0 o0 k’
<1+ Z o—(p—Dk _ 1 4 Z (2—(p—1>)
k=0 k=0

1

=1+ 1—2-(-1)°

where the last equality is from the fact that p — 1 > 0, and using the properties of
geometric series (theorem 4.3)

— put together, we have 0 < s,,, < som < 1+ Tl(p_l) — (sm)fno:1 is monotone
increasing and bounded = (s,,), _, converges =—> » >, % converges

Series 4-15

Ratio test

Theorem 4.22 Ratio test. Suppose x,, # 0 for all n and the limit

L= lim Zntll
N—00 |xn‘

exists.

o If L >1then ) °, x, diverges.

o If L <1 then Y 7, x, converges absolutely.

proof:
e suppose L > 1, then dM € N such that Vn > M, % >1 — Vn> M,
|Tpi1] > |2zn] = limy ooy #0 = >°° | @y, diverges (theorem 4.9)
e suppose L < 1, let L<a<1

—~ 3M € N such that ¥n > M, 525l <o = Yn > M, [zp41] < afz,| =

20| < alzn | < 0Plan o < <" May| = Jon| <o Myl V> M

Series 4-16



— consider the partial sums of the series Y > | |x,|, assume m > M, we have
m M—-1 m M—-1 oo
D lwal = 3 Jeul+ D lwal € 3 Jeul + D faal
n=1 n=1 n=M n=1 n=M
M—1 oo M-1 oo
< Z |z, | + Z "Mz | = Z |zn| + |zar] Za”
1 n=M n=1 n=0

n=
M-—1

where the last equality is from the properties of geometric series and 0 < o < 1

. oo . . .
— hence, the sequence of partial sums (3_,"_; |,|), _, is monotone increasing and

bounded =—> > °° | |x,| converges =—> > 7 | x, converges absolutely

Remark 4.23 If L = 1 in theorem 4.22 then the test doesn't apply. For example,

co 1 4 00 1
> ne1 ; diverges, and > % | - converges.

Series 4-17
Example 4.24 The series > % converges absolutely.
proof:
(—1)" 1 1 Lt 2
= < = = lim UL gy g
n24+1| n2+1  n? n—oo | (=1) n—oo (n + 1)*
n241
Example 4.25 The series > - fL—T,L converges absolutely for all x € R.
proof:
l,n—i—l
g1
T LR R L B
Series 4-18



Root test

Theorem 4.26 Root test. Let > ° | x,, be a series and suppose that the limit

L= lim |z,|""
n—o0

exists.

o If L >1then ) 2, x, diverges.

o If L <1 then Y 7, x, converges absolutely.

proof:
e suppose L > 1, then M € N s.t. Vn > M, |xn|1/" >1 = Vn> M,
= limp o0 n #0 = > 7, @, diverges (theorem 4.9)
e suppose L < 1, let L<a<1
— 3M € N such that Vn > M, |z,|"/" < a = Vn > M, |z,| < a”

Tl >1

Series 4-19

— consider the partial sums of the series Y > | |x,|, assume m > M, we have

m M—-1 m M—-1 0o
D lzal =3 lwal+ 3 lzal < 3 lwnl+ 3 el
n=1 n=1 n=M n=1 n=M

M—1 0o M-—1 00
<D wal+ Y et =z + Y oM
n=1 n=M n=1 n=0
M—-1 00
= Z \:En]—f—aMZa”
n=1 n=0
M—-1 M
N ot [n] + 1—a’

where the last equality is from the properties of geometric series and 0 < o < 1

- oo . . -
— hence, the sequence of partial sums (3", |z,|), _, is monotone increasing and
oo o
bounded = ) " | |x,| converges = ), x, converges absolutely

Remark 4.27 Similarly, if L =1 in theorem 4.26 then the test doesn't apply.
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Alternating series

Theorem 4.28 Let (,,),-; be a monotone decreasing sequence with lim,_, 2, = 0.
Then the series "7, (—1)"x,, converges.

proof: consider the partial sums of Y >° | (—1)"z,, given by s, = > """ | (=1)"xy,

e (zy),2, is monotone decreasing and z, -0 = VYn €N, z, > z,,41 >0

e we first show that the subsequence (sa,,),>_; converges, notice that

2m

Som = Z (—1)"xy = —21 + T2 — T3+ — Tom_1 + Tom (4.1)

n=1

— rearranging the terms in (4.1), since z,,+1 < x,, ¥n € N, we have

S2m = (‘T2 - 561) + (604 - 1}3) + -+ ($2m - m2m—1)
> (zo —x1) + (w3 — x2) + -+ + (Tom — Tam—1) + (T2m+2 — Tamy1)

= S2(m+1)

= (S2m),o_, is monotone decreasing

Series 4-21

— rearranging the terms in (4.1) differently, since z,, > z,4+1 > 0, Yn € N, we have
Som = —x1 + (T2 —x3) + (x4 — x5) + - - + (T2m—2 — Tam—1) + Tom > —21

—> (S2m),o_; is bounded below

— put together, we conclude that (S2m)$::1 converges, let so,, —
e we now show that (sy,) °_; also converges to z, let € > 0
- Som — @ == dM; € N such that Ym > M, |s2,, — x| < €/2

- &, > 0 = IM;, € N such that Vm > My, |z,,| < €/2
let M = max{2M; + 1, Ms}, then Ym > M, m > 2M; + 1 and m > M
— if miseven = 3 > My, hence

|sm—w|:‘52.%—x‘ <e€f2<e€
— if mis odd, then m — 1 is even and m — 1 > 2M; — mTAZMl, hence
|sm—w|:]sm_1—x+xm|:‘52.%_1—3;4—:1%’

< ‘52_111771 —x‘ +lzm| <€/2+¢€/2=c¢

put together, we have (s,,)r-_; converges =—> > > (—1)"x, converges

Series 4-22



Corollary 4.29 The series >, # converges but does not converge absolutely.

proof:

e since (%)Zozl is monotone decreasing with limn_wo% = 0, it follows immediately

from theorem 4.28 that ) 7, # converges

. 'S) =" _ oo 1 © 1 1
e since ) 7, ‘ = ‘ = i, and Y~ diverges, we conclude that

Yoy % does not converge absolutely

Series 4-23

Rearrangements

Theorem 4.30 Suppose > ° | x,, converges absolutely and >, z,, = z. Leto: N —
N be a bijective function. Then, the series > >° | T (n) is absolutely convergent and
Sy Ty(n) = @. In other words, absolute convergence implies, if we rearrange the
sequence, the new series will still converge to the same value of the original series.

proof:
o we first show Y 07 |2,(,)| converges, i.e., (34 \xa(n)]):zl is bounded

— >0, |zn| converges => (30" |x,]) . _, is bounded = 3B > 0 such that
Vm €N, Y |en| < B

- VmeN, {1,...,m} is a finite set = Ik € N such that

o({1,...,m}) C{1,....k},

hence,
m k
D lroml =" > lwal <) lea| <B
n=1 ne€o({1,...,m}) n=1

= Vm e N, 3" | [€s(n)| is bounded
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Series

e we now show that > " | 2,¢,,) =z, let € > 0
- >z, =2 => IM, € N such that for all k> m > M, we have

m
E Ty — X
n=1

k

>

n=m-+1

< €/2 and <€/2

— theset {1,..., My} is finite = IM € N, M > M such that

{1,..., My} Co({1,...,M}),

hence, for all m > M, let p = max(c({1,...,m})) > My, we have

o({1,....m) ={1,..., Mo} U{My+1,....p}

— consider the partial sums of Zzozl Ty(z), for all m > M, we have

Z Lon) —
n=1

<

p
Ty, — x| = E T

n:M0+1

>

neo({1,...,m})

Mo
E Ty — T
n=1

Mo
E Tpn — T+
n=1

p

>

n:M0+1

+ <€/2+€/2=c¢

. m 00
= limy, oo anl To(n) =T = Zn:l Lo(n) =T

4-25






5. Continuous functions

e cluster points of sets

e limits of functions and sequential properties
e left and right limits

e continuous functions

e operations that preserves continuity

e extreme value theorem

e intermediate value theorem

e uniform and Lipschitz continuity

Continuous functions 5-1

Cluster points of sets

Definition 5.1 Let S C R. We say that the point ¢ € R is a cluster point of S if for
all 6 > 0, we have (¢ —d,c+ ) NS\ {c} #0, i.e., for all 6 > 0, there exists some
x € S, such that 0 < |z — | < 6.

examples:
e S={1/n|n € N} has a cluster point c=0

e S =(0,1) has a set of cluster points given by [0, 1]

S = Q has a set of cluster points given by R

S = {0} has no cluster points

S = 7Z has no cluster points

Continuous functions 5-2



Theorem 5.2 Let S C R. Then c is a cluster point of S if and only if there exists a
sequence (z,,),-, of elements in S\ {c} such that lim,_, z, = c.

proof:

e suppose c is a cluster point of S, then V§ > 0, 3x € S such that 0 < |z —¢| < ¢
- Vn € N, choose z,, € S such that 0 < |z, — ¢ < £

-1l50 = |z, - =20 = z,—>c¢

e suppose there exists a sequence (z,,),-; with z, € S\ {c} for all n € N such
that z,, = ¢, let >0

- x, — cwith z,, € S\ {¢} = 3IM € N such that Vn > M, 0 < |z,, —¢| < 0

— choose © = ), then we have 0 < |z — ¢/ < & = S has cluster point ¢

Continuous functions 5-3

Limits of functions

Definition 5.3 Let f: S — R be a function and ¢ be a cluster point of S C R. Suppose
there exists an L € R, and for all € > 0, there exists some § > 0 such that forall z € S
and 0 < |z —¢| < 6, we have |f(z) — L| < e. We then say f(z) converges to L as z
goes to ¢, and we write

fle) > L as z—ec

We say L is a limit of f(x) as x goes to ¢, and if L is unique, we write

lim f(z) = L.

Tr—rC

Remark 5.4 The function f: S — R does not converge to L € R as x goes to a cluster
point ¢ of S implies that there exists some € > 0, such that for all § > 0, there exists
some z € S and 0 < |x — ¢| < d, so that |f(x) — L| > e.
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Theorem 5.5 Let f: S — R be a function and ¢ be a cluster point of S C R. If
f(x) = L1 and f(x) — Lo as x — ¢, then Ly = Lo.

proof: let e > 0

e f(x) - Ly asx — ¢ = 361 > 0 such that for all z € S and 0 < |z — ¢| < d1,
|f(z) = L1 <e/2

o f(x) - Ly asx — ¢ = b3 > 0 such that for all z € S and 0 < |z — ¢| < J2,
|f(z) — La| <€/2

e choose 0 = min{dy, d2}, then for all x € S and 0 < |z — ¢| < §, we have
[Ly = Lo| = [Ly = f(z) + f(2) = Lo| < [f(x) = Lo| +[f(2) — Lo <€/2+€/2=¢

— L1 =1Ly

Continuous functions

Example 5.6 Let f(z) = ax +b. Then, for all ¢ € R, we have lim,_,. f(x) = ac+ .

proof: let € > 0, choose § = |a|6+1, then for all z € R and 0 < |z — ¢| < §, we have

|f(z) = (ac+b)| = [(az +b) — (ac + b)| = |al|z — ¢ < |ald =

Example 5.7 Let f: (0,00) — R with f(x) = /x. Then, for all ¢ > 0, we have
lim, . f(z) = /¢

proof: let € > 0, choose § = €,/c, then for all z > 0 and 0 < |z — ¢| < d, we have

) - Vel = 15 - v = | VIV EVO | poe | leod 8o
1 x#0

Example 5.8 Let f(x) = { . Then, lim,_o f(x) =1 (£ f(0)).

2 =0

proof: let € > 0, choose § = 1, then Vx satisfies 0 < |z| < J, we have x #0 — Vz
satisfies 0 < |z| < J, we have |f(z) — 1| =]|1—-1|=0<e¢

Continuous functions



Theorem 5.9 Let f: S — R be a function and ¢ be a cluster point of S C R. Then,
the following statements are equivalent:

e The function f(z) converges to L € R as z goes to ¢, i.e., lim,_,. f(z) = L.

e For all sequences (z,,),—; in S\ {c} such that lim,_, 2, = ¢, we have

lim, o0 f(2n) = L.

proof:
e suppose lim, . f(z) =L, let e > 0
— 36 > 0, such that for all z € S and 0 < |z — ¢| < J, we have |f(z) — L| <€
- Xp — ¢ xp, € S\ {c} = IM €N suchthatVn>M,0< |z, —¢| < =
VYn > M, we have |f(z,) — L| <e, i.e., f(x,) = L
e suppose for all sequences in S\ {c} s.t. z,, — ¢, we have f(z,) — L
— assume lim,_,. f(x) # L = Je > 0 s.t. V6 > 0, there exists some = € S and
0<|z—c| <9, sothat |f(z)—L| > ¢

— choose a sequence (z,,),-, s.t. Vn € N, 2, € S\ {¢}, 0 < |z, —¢| < %, and
|f(zn) — L| > eforalln e N

- however,%—>0 = x, > ¢ = f(zr,) > L = IM €N st Vn>M,
| f(x,,) — L| < €, which is a contradiction

Continuous functions

Theorem 5.10 For all ¢ € R, we have lim,_,. 2> = ¢2.

proof: let (z,,),~; be a sequence in R\ {c} such that z,, — ¢, then according to
theorem 3.24, we have 22 — ¢ = lim,_,. 2> = ¢? (theorem 5.9)

Theorem 5.11 The limit lim,_,¢ sin(1/z) does not exist, but lim,_,¢ zsin(1/x) = 0.

proof:

e we first show that lim,_,o zsin(1/z) = 0: let (z,),-; be a sequence in R\ {0}
such that z,, — 0; since 0 < |z, sin(1/x,)| < |zy| for all n € N, and z,, — 0, we
have |z, sin(1/z,)| - 0 = limy_pzsin(l/x) =0

e we now show that lim,_,osin(1/z) does not exist:

— choose a sequence (z,,).~ | where z,, = ﬁ then we have x,, — 0

— consider the sequence (sin(1/z,)) -, we have
2n—1
sin(1/xz,) = sin <%) = (—1)"*!

— (sin(1/z,)). -, does not converge = lim,_,osin(1/z) does not exist

Continuous functions 5-8
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Sequential properties

Theorem 5.12 Let f,g: S — R be functions and ¢ be a cluster point of S C R.
Suppose f(z) < g(x) for all z € S, and we have lim,_,. f(x) and lim,_,. g(z) both
exist, then lim,_,. f(x) < limy_,. g(x).

proof: let (z,),~, be a sequence in S\ {c} such that z,, — ¢

00
n=1

o lim, . f(x) and lim,_,. g(z) exist = (f(zy)),—; and (g(xy))s—; converges

o let f(zyn) — L1, g(xy) — Lo, since f(x) < g(x) for all z € S, we have L; < Lo,
i.e., limy_. f(z) < limg_. g(z)

similarly, we can prove the following theorems using the properties of sequences:

Theorem 5.13 Let f: S — R be a function and ¢ be a cluster point of S C R.
Suppose the limit lim,_,. f(z) exists, and there exists a,b € R such that a < f(z) <b
for all x € S\ {c}, then a < lim,_,. f(z) <b.
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Theorem 5.14 Let ¢ be a cluster point of S C R, and f,g,h: S — R be functions
such that f(z) < g(x) < h(x) for all z € S\ {c}. Suppose lim,_. f(x) = lim,_,. h(x),
then lim, . g(x) = limy_,. f(z) = limg—. h(x).

Theorem 5.15 Let ¢ be a cluster point of S C R, and f,g: S — R be functions such
that lim,,. f(x) and lim,_,. g(x) both exist, we have:

° limm_w( (ZU + g(x)) = lim, ¢ f(l’) + limg ¢ g(x);

/()
o limy.o(f(2) - g(2)) = limage f(2) - limg—c g(@);
o if lim, ,.g(z) # 0 and g(x) # 0 for all z € S\ {c}, then

)

lim = —
v—e g(x)  limg_e g(z)

Theorem 5.16 Let ¢ be a cluster point of S C R and f: S — R be a function such
that lim,_,. f(z) exists, then we have lim,_,. |f(z)| = | limy—. f(x)|.
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Left and right limits

Definition 5.17 Let S C R and f: S — R be a function.

Suppose c is a cluster point of SN (—o0,c), we say f(x) converges to L as z — ¢, if
for all € > 0, there exists a é > 0 such that forall x € S and ¢ — § < z < ¢, we have
|f(z) — L] < e. We call such a limit the left limit of f at ¢, denoted lim,_,.- f(z).

Suppose ¢ is a cluster point of SN (c,00), we say f(z) converges to L as z — ¢, if
for all € > 0, there exists a é > 0 such that forall z € S and ¢ < z < ¢ + 6§, we have
|f(x) — L| < e. We call such a limit the right limit of f at ¢, denoted lim,_, .+ f(z).

Example 5.18 Consider the function f given by

f(a:):{ 1 >0

0 <0,

we have lim,_,o- f(z) =0 and lim,_,o+ f(x) = 1, even if f(0) is undefined.
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Continuous functions

Definition 5.19 Let S C R and ¢ € S. We say the function f is continuous at c if
for all € > 0, there exists a § > 0 such that for all z € S and |z — ¢| < §, we have

|f(z) = flc)] <e
We say the function f is continuous on the set U for U C S if f is continuous at every
point of U.

Remark 5.20 The function f is not continuous at point ¢ € S if there exists some
e > 0 such that for all § > 0, there exists some x € S and |z — ¢| < 4, so that

[f(z) = flo)] = e
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Example 5.21 The function f(z) = ax + b is continuous on R.

proof: let c € R, € > 0, choose 6 = —5=, then for all z € R and |z — ¢| < J, we have

la[+1"
|[f(x) — f(c)| =|ax +b—ac—0b| = |a||x — ¢| < |ald = |a||C:|_ 7€ <e
Example 5.22 The function f given by
1 z#0
xTr) =
(@) { , T
is not continuous at ¢ = 0.
proof: choose ¢ =1 and let 6 > 0, then z = §/2 satisfies |z| < ¢, but
[f(z) = fO)|=[1-0[=12>¢
Continuous functions 5-13

Theorem 5.23 Let S C R be a set, ¢ € S be a point, and f: S — R be a function.

e If ¢ is not a cluster point of S, then the function f is continuous at c.

e If ¢ is a cluster point of S, then the function f is continuous at c if and only if
lim, . f(z) = f(c).

e The function f is continuous at ¢ if and only if for all sequences (z,,),—; in S
with lim,, o z, = ¢, we have lim,,_,o f(x,) = f(c).

proof: to show the first statement, let € > 0
e cc S and cis not a cluster point of S = 3§ >0s.t. (c—3d,c+0)NS = {c}

e then for all z € S such that |z — ¢| < §, we have x = ¢, and hence,

[f(@) = fle)] = [f(e) = fle)| =0 <e

we now show the second statement:

e suppose f is continuous at ¢, let € > 0
— f is continuous at ¢ == 3§ > 0 such that for all z € S and |z — ¢| <, we have

[f(x) = fo)] <€
—thenVzx € Sst. 0< |z —c| <d, |f(z)— flc)] <e = lim,_. f(x) = f(c)
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e suppose lim,_. f(z) = f(c), let e >0
- f(z) = f(¢)asx — ¢ = 3§ > 0 such that forall z € S and 0 < |z — ¢| < 6, we

have [f(z) — f(c)| <€

— then for all z € S such that |z — ¢| < d: if = ¢, we have

[f(z) = flo)] = [f(c) = fle)| =0 <e
ifx#c, wehave 0 < |z —c| <d = |f(x)— f(c)| <e
— put together, we conclude that the function f is continuous at ¢
we now show the third statement

e suppose f is continuous at ¢, let (x,,),—; be a sequence in S, z, — ¢, let e >0
— f is continuous at ¢ = 3§ > 0 such that for all z € S and |z — ¢| < d, we have
[f(x) = fle)] <e
- &, > ¢ = IM € N such thatVn> M, |z, —c| <0 = Vn>M,
[f(zn) = f()] <€ = (f(@n))ney — f(0)
e suppose for all (z,),—, in S such that z,, — ¢, we have f(zy,) — f(c)
— assume f is not continuous at ¢ = Je > 0, V§ > 0, Iz € S such that |z — ¢| < 0,
but [f(z) — flc)| > €
— choose ,, € S such that Vn € N, 0 < |z, — ¢| < £ but |f(z,) — f(z)| > €
-150 = 2z,-5¢ = f(z,) = fl¢) = IM € N such that Vn > M,
|f(xn) — f(c)] <€ which is a contradiction
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Theorem 5.24 The functions sinx and cos z are continuous functions on R.

proof:
e recall the following properties of sinx and cosx for all z € R:
— sin?(z) + cos?(z) =1 = |sinz| <1 and |cosz| < 1
- |sinz| < |x]
— sin(a + b) = cos(a) sin(b) + sin(a) cos(b)
— sin(a) — sin(b) = 2sin (“T_b) cos (“T‘H’)

e we first show that sin z is continuous, let ¢ € R, let € > 0, choose § = ¢, then for
all z € R such that |z — ¢| < §, we have

|sinx—sinc|:‘231n<x;c)cos(x—2i_c>‘ §2‘sin<w;c)‘§2@:m—6|<e

e we now show that cosz is continuous, let ¢ € R, let (z,,),-, be a sequence with
T, — ¢, then we have z,, + % —Sc+ g and hence,

. . . ™ . ™
lim cosz, = lim sin (xn + —) = sin (c + —) = cosc
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Theorem 5.25 Dirichlet function. The Dirichlet function given by

1 zeQ
{1758

is not continuous on all of R.

proof: let c€e R

e if c € Q, then for all n € N, there exists x,, ¢ Q such that ¢ < z, < ¢+ %;
% —0 = =z, — ¢, however,

lim f(za) = 0# f(c) = 1

n—oo

= (f(xn)),~, does not converge to f(c)

e if c ¢ Q, then for all n € N, there exists x,, € Q such that ¢ < x,, < ¢+ %;
% —0 = =z, — ¢, however,

Jim f(a,) =17 f(c) =0

= (f(xn)),~, does not converge to f(c)

Continuous functions

Operations that preserves continuity
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Theorem 5.26 Let f,g: S — R be functions on S C R and are continuous at ¢ € S.

e The function f + g is continuous at c.
e The function f - g is continuous at c.

o If g(z) # 0 for all x € S, then the function f/g is continuous at c.

proof: we show that the function f + g is continuous at ¢, the other two statements

can be proved similarly; let (z,),., be a sequence in S with z,, — ¢

e f is continuous at ¢ = lim, o f(xn) = f(c)
e g is continuous at ¢ = lim, o g(z,,) = g(c)

e hence, limy, oo (f(xn) + g(zn)) = f(c) +g(c) = f + g is continuous at ¢

Theorem 5.27 Let f: B — R and g: A — B be functions on A;,B C R. If g is

continuous at ¢ € A and f is continuous at g(c) € B, then f o g is continuous at c.

proof: let (z,),2, be a sequence in A and z,, > ¢ = g(x,) — g(c) =
flg(zyn)) = f(g(c)) = fogis continuous at ¢

Continuous functions
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Theorem 5.28 Let f be a polynomial function of the form
f(x) = apa? + - + a1z + aop.

Then, the function f is continuous on R.

proof: let c € R, let (:cn)zozl be a sequence in R and z,, — ¢, then we have

Tim f(w,) = lim (aped + -+ a2y +ag)
=ap lim 2P +--- 4+ a; lim z, + ag
n—oo n—oo

=apc’ + -+ aic+ap = f(c)

Example 5.29 Theorems 5.26 and 5.27 allows us to show that some given function is
continuous without a huge ¢ — ¢ proof, for example:

2

e The function 1/z? is continuous on (0, c0), since 2 is continuous on (0, 00).

e The function (cos(l/x2))2 is continuous on (0, 00), since cos z is continuous on
R, and z2 is continuous on (0, 00).
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Extreme value theorem

Definition 5.30 A function f: S — R is bounded if there exists some B > 0 such
that for all z € S, we have |f(z)| < B.

Theorem 5.31 If the function f: [a,b] — R is continuous then f is bounded.

proof:
e suppose f is unbounded, then VB > 0, 3z € [a, b] such that |f(z)| > B

f(zn)| >n

(xn)poq isin [a,b] = (z,),—, is bounded == there exists a subsequence
(@n;)seq (theorem 3.37) that converges to ¢ € R

e let (x,,),2, be a sequence in [a,b] such that for all n € N,

a<z,<b = a<uz, <b = c€|a,b

oo

[ is continuous on [a,b] = f(xn,;) = f(c) = (f(®n,)),~; is bounded

however, |f(zp,)| > n; = (n;);=; is bounded, which is a contradiction
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Definition 5.32 Let f: S — R be a function. We say the function f achieves an
absolute minimum at ¢ if f(x) > f(c) for all x € S. We say the function f achieves
an absolute maximum at d if f(z) < f(d) for all x € S.

Theorem 5.33 Extreme value theorem. Let f: [a,b] — R be a function on a closed,
bounded interval [a, b]. If the function f is continuous on [a, b], then f achieves absolute
maximum and absolute minimum on [a, b].

proof: we show the case for absolute maximum

e f is continuous on [a,b] = f is bounded = theset £ = {f(z) | x € [a,b]}
is bounded = sup F € R exists

e sup E is the supremum of {f(z) | x € [a,b]} = Vzx € [a,b], f(z) < supF, and,
there exists some sequence (f(z,)), -, with x, € [a,b] such that f(xy,) — sup E

o (z,),. isin [a,b] = there exists a subsequence (z,);-; such that z,, — d
and d € [a,b] = f(xn,) = f(d) (since f is continuous)

o f(xp) »>supFE = f(xn,) >supE = supE = f(d) = there exists a
point d € [a, b] such that f(z) < f(d) for all x € [a, b]
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Remark 5.34 To apply the extreme value theorem, the function f has to be continuous
on a closed, bounded interval.

If the function f: [a,b] — R is not continuous, consider the function given by

1
B 5 x=0o0rx=1
f(m)_{ x z€(0,1),

which neither achieves an absolute maximum nor an absolute minimum on [0, 1].

If the function f: S — R is continuous but S not closed and bounded, consider the

function given by
1 1
f(x):__ ) S:(O7l)a

T 1—=z

which neither achieves an absolute maximum nor an absolute minimum on [0, 1].
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Intermediate value theorem

Theorem 5.35 Let f: [a,b] — R be a continuous function. If f(a) <0 and f(b) > 0,
then there exists some ¢ € (a,b) such that f(c) = 0.

proof: let a; = a, by = b, for all n € N, given a,, and b, define a,+1 and b, as:
® Upi1 = ap, byyr = fba if f(adbe) >
o Qpi1 =2 b, =Dy, if f(F) <0

then the sequences (ay),-; and (b,),-, has the following properties:

o a<ap<apy1 <bpp1 <b, <bforallneN = (an),-, and (b,), -, are
monotone and bounded = (ay,),-; and (b,),-, converge, let a,, — ¢, b, — d

e f(ay) <0, f(by) >0 for all n € N, since f is continuous, ¢,d € [a,b] =
limy, 00 f(an) = f(c) <0 and lim,, o0 f(by) = f(d) >0

bn—n_b—l_an—l_ _ b= _ 1
o bn+1—an+1: 2a == 52 __2_na - bn_an—Qn_—l(b_a)

= limy o0 (bp — an) = limy, 00 2n#,l(b —a) =0 =limy,_0 by, — limy 00 Gy
— lim,, 0o bp = lim,, vnoa, — c=d
put together, we have f(c) <0, f(d) >0, and f(c) = f(d) = f(c) = f(d)=0
= dc € (a,b) such that f(c) =0

Continuous functions 5-23

Theorem 5.36 Bolzano's intermediate value theorem. Let f: [a,b] — R be a contin-
uous function. Suppose y € R such that f(a) <y < f(b) or f(b) < y < f(a), then
there exists a ¢ € (a,b) such that f(c) =y.

proof: we consider the case for f(a) < y < f(b), the other case is similar
e let g: [a,b] — R be a function given by g(x) = f(z) — y, then g is continuous on
[a,b] (theorem 5.26)

o fla) <y < f(b) = gla)=f(a)—y <0, g(b)=f(b)—y>0 = Fc€ (a,b)
such that g(c) = f(c) —y = 0 (theorem 5.35) = Jc € (a, b) such that f(c) =y

Theorem 5.37 Let f: [a,b] — R be a continuous function. Suppose the function f
achieves absolute minimum at ¢ € [a, b], and achieves absolute maximum at d € [a, b].
Then, we have f([a,b]) = [f(c), f(d)], i.e., every value between the absolute minimum
value and the absolute maximum value is achieved.

proof:
e according to theorem 5.33, we have f([a,b]) C [f(c), f(d)]

e hence, f([a,b]) = [f(c), f(d)]
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Remark 5.38 Similarly, theorem 5.36 is false if the function f is not continuous.

Example 5.39 The polynomial given by f(z) = 22°2! 4+ 22920 4+ 9.032 + 1 has at least
one real root.

proof: we have f(0) =1 >0 and f(—1) = —8.03 < 0, hence, by theorem 5.36, there

exists some ¢ € (—1,0) such that f(c¢) =0
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Uniform continuity

Example 5.40 The function f(z) = 1 is continuous on (0, 1).

proof: let ¢ € (0,1) and € > 0, choose § = min {%, %e} then Vx € (0, 1) such that

|z — ¢| < §, we have

o [lz] el <fo—c|<d<§ = —§<|t|]—c = <2
1 1| _ |z—¢| 5 26 2 2
.hence"E_E_W<W<c_2§c_2'%€—€

Remark 5.41 Example 5.40 shows that in the definition of function continuity, the
number & can depend on both the number e and the point c.

Definition 5.42 Let f: S — R be a function. We say the function f is uniformly
continuous on S if for all € > 0, there exists some § > 0 such that for all z,c € S and
|x — ¢| <, we have |f(z) — f(c)] < e.

Remark 5.43 In the definition of uniform continuity, the number § only depends on e.
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Example 5.44 The function f(x) = x? is uniformly continuous on [0, 1].

proof: let € > 0, choose § = §, then for all ,c € [0,1] and |z — ¢[ < §, we have
|z 4 ¢| <2, and hence,

1f(2) = flo)| =22 = =lz+c|lr—c| <|z+cd <26=2-e=c¢

Remark 5.45 Let f: S — R be a function. We say the function f is not uniformly
continuous on S if there exists some € > 0 such that for all § > 0, there exists some
z,c € S and |z —¢| < § so that | f(z) — f(c)| > e.

Example 5.46 The function f(z) = 1 is not uniformly continuous on (0,1).

proof: choose € = 2, let § > 0, choose ¢ = min {4, %} x = §, then we have

e z,cc(0,1) and |x—c|:§§%<5

—c.2 _1 _
=g aT L 227c¢
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Example 5.47 The function given by f(z) = 2= is not uniformly continuous on R.

proof: choose e = 2, let § > 0, choose ¢ = %, T =c+ g, then we have
ez,ceRand |z —c|=3 <4

0|.CL‘2—02|=|I+C||$—C|=(20+g)'%=(%+ ) 5 =24+%>2=¢

[\][S9)
ISR

\J[s)

Theorem 5.48 Let f: [a,b] — R be a function. Then, the function f is continuous on
[a, b] if and only if f is uniformly continuous on [a, b].

proof:

e suppose f is uniformly continuous on [a,b]: let ¢ € [a,b], € > 0, then according to
uniform continuity, 30 > 0 such that for all = € [a,b] and |x — ¢| < , we have

[f(z) = fleo)] <e

e suppose f is continuous on [a, b]
— assume f is not uniformly continuous on [a, b], then Je > 0 such that V§ > 0, there
exists x, ¢ € [a, b] such that |z —¢| < ¢ but |f(z) — f(c)] > €

Continuous functions 5-28



— choose sequences ().~ and (c,), - such that for all n € N, z,,, ¢, € [a,b],
|l’n - Cn’ < %' but |f(xn) - f(cn)| Z €

— since x,, € [a,b] for all n € N, there exists a subsequence (zy,,);~, of (x,) ., such
that z,, — ¢ and ¢ € [a, b] (theorem 3.37)

— take subsequence (¢, )i~ of (cn),., according to the indexes n; of (z,,);—,, then
oo
Cn; € [a,b] for all n € N = there exists a subsequence <cnij) such that
j=1
¢n,, — d and d € [a, 0]

o0 o
— take subsequence (:Jcni]) of (zn,);; according to the indexes n;, of (cnij) :
Jj=1 Jj=1
then z,, — csince z,, = ¢
J
-~ 0< |z, —cCp, | < and 2 =0 = Imj oo |Zn, —cp, | =0 =
ij ij N ni; ] i)
im0 Tp, =limj,00cp, = c=d
J J
— since f is continuous on [a,b] and z,,, — ¢, ¢,, — ¢, we have
J J
J—00 J J—00 J
=  0=[f(c) = f(o)| = lim |f(zn, ) — flen, )| =€
J—00 J J
which is a contradiction
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Lipschitz continuity

Definition 5.49 Let f: S — R be a function. We say the function f is Lipschitz
continuous on S if there exists some K > 0 such that for all z,y € S, we have

[f(z) = fy)]| < K|z —y].

Remark 5.50 Geometrically, the function f is Lipschitz continuous if and only if all
lines intersects the graph of f in at least two distinct points has slope in absolute value
less than or equal to K.

Theorem 5.51 Let f: S — R be a function. If the function f is Lipschitz continuous,
then f is uniformly continuous.

proof: let € > 0
e f is Lipschitz continuous = dK > 0 such that for all x,y € S, we have
[f(z) = f(y)l < K|z —y|
e choose 6 = ¢/(K + 1), then for all z,y € S and |x — y| < J, we have
K

\f(w)—f(y)ISK!Jf—mezKH

e<e
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Example 5.52 The function f(x) = \/x is Lipschitz continuous on [1,00), but is not
Lipschitz continuous on [0, c0).

proof:
e consider the function f: [1,00) — R given by f(z) = \/z, then Va,y € [1, 00):
—rx>1lLy>1 = o+ /y>2

— hence,

_ _ o z—yl 1
|ﬂ@—ﬂ@%ﬁf—¢ﬂ—¢ah@32l |

— f is Lipschitz continuous with K =1/2
e consider the function g: [0,00) — R given by g(z) =/, let K > 0, choose

x:O,y:ﬁ,then

'ﬂﬁ:ywzri:fﬂz%Li%:¢?ﬁ7>ﬂﬁ:K

= |f(z) = f(y)| > K|z —y|
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6. Derivative

definition and basic properties

differentiation rules

Rolle's theorem and mean value theorem

Taylor's theorem

Derivative

Derivative of functions

Definition 6.1 Let I be an interval, let f: I — R be a function, and let ¢ € I. We say
the function f is differentiable at c if the limit

L @) = S
T—C Tr — C
exists. We call L the derivative of f at ¢, and we write f/(c) = L.

If f is differentiable at all ¢ € I, then we say the function f is differentiable, and we
write f’ or % for the function f'(x), x € I.

Example 6.2 Consider the function f(x) = ax + b, then f’(¢) = a for all c € R.

proof: let z,c € R, then we have

limM:hm ax—i—b—(ac—l—b) zlimM:lima:a
T—c T —C r—c xr—cC rx—c I — C xr—C

Derivative
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Example 6.3 Consider the function f(z) = z2, then f/(c) = 2c for all c € R.,

proof: let z,c € R, then we have

— 2 _ 2 —
limM:hmx © —lim (z+ )@ =) = lim(z + ¢) = 2¢
x—c T —c T—e T —C x—c Tr—cC T—c

Theorem 6.4 Suppose the function f: I — R is differentiable at ¢ € I, then f is
continuous at c.

proof: f is differentiable at c € I = the limit lim,_... F(2)=F(9) ayists, hence,

(f (z) = f(c) N

Tr—cC

lim f(z) = lim

Tr—cC Tr—cC

(x— o)+ f<c>) — J(€) -0+ f(e) = 10

Remark 6.5 The converse of theorem 6.4 does not hold.

Derivative

Example 6.6 The function f(x) = |z| is not differentiable at 0.

proof: let (z,),~; be a sequence with x,, = # forallm e N
° Og‘#‘g%and%—)O — x5, — 0

f(mn)—f(O))oo

= , we have

e consider the sequence (
n=1

1
flan) = F(0) _ |zn| _ ‘ n

Tp —0 T (="

f(2)—1(0)

~—g5— does not exist

e lim, , (—1)" does not exist = lim,_,q

Remark 6.7 There exist functions that are continuous but nowhere differentiable.

Derivative
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Differentiation rules

Theorem 6.8 Let I be an interval, let f: I — R and g: I — R be differentiable
functions at c € I.

e Linearity. Let o € R. Define h(x) = af (x) + g(x), then h'(c) = af'(c) + ¢'(c).
e Product rule. Define h(x) = f(x)g(x), then h'(c) = f'(¢)g(c) + f(c)d (c).
e Quotient rule. If g(x) # 0 for all = € I, define h(z) = f(x)/g(z), then

proof: f, g differentiable at ¢ = lim,_,. f(ma):—:f(c)

continuous at ¢ = lim,_. f(x) = f(c¢), limz—. g(x) = g(c)
o if h(z) = af(x)+ g(c), then we have

af(z) +g(x) — af(c) —g(c)

9(z)—9g(c)

xr—c

, limg . exists, and f, g

h(z) — h(c)

lim = lim
x—c T —c r—c T —cC
— o lim f(l‘) - f(C) + lim g(.%’) - g(C) — O{f/(C) —|—g,(C)
r—c T —cC r—c xr—c
Derivative 6-5

lim = lim
o F@)e() — F@)g(e) + F@)g(e) ~ F)g(o)
9O @) — T + @) (o) — gle)
= g() tim T 2O iy ()20 29E ey 4 pengo
o if h(z) = f(z)/g(x), then we have
b —h(e) L f@)/el) ~ fe)/ole) f@)g(0) = F(Og(a)

Tr—cC r — C Tr—cC Tr — C Tr—cC g(:[,')g(c) Tr — C

L @)~ S(edge) + f)o(e) — [@)o(x)
z—c g(z)g(c) Tr—c
L 9@~ )~ f@)e) ~ glc)
i@ r—c
_ [(e)g(c) = f(d)g'(¢)
(9(c))?

Derivative 6-6



Theorem 6.9 Chain rule. Let Iy, I> be two intervals. Let g: I1 — R be differentiable
at c € I1 and f: I — R be differentiable at g(c). Define h: I} - R by h = fog,
then h is differentiable at ¢, and

proof: let d = g(c)

e define the following functions:

fly)—f(d) d g(x)—g(c)
w) =1 L VT g )=y e T7
f'(d) y=d =

then we have

. e fy) = f@)
lim, u(y) = lim, y—d f(d) = u(d)
lim v(z) = lim 9(@) = 9(0) _ g (c) =v(c)
xr—cC xr—cC xr — C ’
i.e., u is continuous at d, v is continuous at ¢
Derivative 6-7

e note that f(y) — f(d) = u(y)(y — d) and g(z) — d = v(x)(x — ¢), we have

h(z) = h(c) = f(g(x)) — f(d) = u(g(z))(9(x) — d) = u(g(z))v(z)(z - c)
e put together, we have

lim h(z) — h(c)

T—C Tr—cC T—C

Derivative 6-8



Rolle’s theorem

Definition 6.10 Let f: S — R with S C R.

The function f is said to have a relative maximum at ¢ € S if there exists some § > 0
such that for all x € S and |z — ¢| < d, we have f(x) < f(c).

The function f is said to have a relative minimum at ¢ € S if there exists some § > 0
such that for all z € S and |z — ¢| < 6, we have f(z) > f(c).

Theorem 6.11 If the function f: [a,b] — R has a relative maximum or minimum at
¢ € (a,b) and f is differentiable at ¢, then f/'(c) = 0.

proof: we show the case for ¢ being a relative maximum point
e c € (a,b) is an relative maximum point = 36 > 0 such that for all z € [a, b]
and |x — ¢| < 6, we have f(z) < f(c¢)
e let (x,,),2, be a sequence with z,, = ¢ — % for all n € N, then we have z,, < ¢,
Tn — ¢, and |z, —c| <dforallne N = f'(c) :limn%mw >0
o let (y,),—, be a sequence with y, = ¢+ % for all n € N, then we have y,, > c,
Yn — ¢, and |y, —c| <dforalln e N = f/(c) :limn_moM <0

Yn—=C

Derivative 6-9

Remark 6.12 In theorem 6.11, the function f does not necessarily have to be defined
on a closed interval, but the point ¢ where the relative extremum is achieved has to be
on the open interval (a,b).

Remark 6.13 Absolute extremum is a special case of relative extremum.

Theorem 6.14 Rolle. Let the function f: [a,b] — R be continuous and differentiable
n (a,b). If f(a) = f(b), then there exists some ¢ € (a,b) such that f'(c) = 0.

proof: let f(a) = f(b) = K; f is continuous on [a,b] = there exists an absolute
maximum point ¢; € [a,b] and an absolute minimum point ¢y € [a, b] (theorem 5.33)

e if c; > K, then ¢ € (a,b) = f'(c1) =0 (theorem 6.11)
o if co < K, then ¢ € (a,b) = f/(c2) =0 (theorem 6.11)

o ifc; =co =K, then K < f(z) < K for all z € [a,b] = f(z) = K for all
x € [a,b] = f'(¢) =0 for all ¢ € (a,b)

Derivative 6-10



Mean value theorem

Theorem 6.15 Mean value theorem. Let the function f: [a,b] — R be continuous and

differentiable on (a,b), then there exists some ¢ € (a,b) such that

f) = fla) = f'(c)(b - a).

proof:
e define g: [a,b] — R with g(z) = f(z) — f(b) + LU=L@(p — )
e since g(a) = g(b) = 0, by theorem 6.14, there exists ¢ € (a, b) such that
@ =0=r@-O=TD ) )= )60

Theorem 6.16 If the function f: I — R is differentiable and f/(z) = 0 for all x € I,

then f is constant.

proof: let a,b € I with a < b, then f is continuous on [a, b] and differentiable on
(a,b) = 3Fc € (a,b) such that f(b) — f(a) = f'(¢)(b—a) =0 (since f/'(z) =0 for
allz € I) = f(b) = f(a)

Derivative

6-11

Theorem 6.17 Let f: I — R be a differentiable function.

e The function f is increasing if and only if f/(x) >0 for all z € I.
e The function f is decreasing if and only if f/(z) <0 for all x € I.

proof: we prove the first statement

e suppose f'(x) >0 forall z € I, let a,b € I with a < b, then f is continuous on
[a, b] and differentiable on (a,b) = 3Jc € (a,b) s.t. f(b) — f(a) = f'(c)(b—a)
(theorem 6.15) and f'(¢) >0 = f(b) — f(a) >0 = f(a) < f(b)

e suppose f is increasing, let ¢ € I, then we can find a sequence (x,), ; with
either z,, < ¢ or x,, > c for all n € N such that z,, — ¢

- ifx, <cforallne N = f(x,) < f(c) for all n € N, and hence
f(x) = f(c) f(@n) = flo)

'(¢) = lim ———~ = lim —~——~2~ >0
f'(c)

T—>cC T —cC n—00 T, —C

- ifx, >cforallne N = f(x,,) > f(c) for all n € N, and hence

F0)— tim T @ _ ) = £(0)

>0

in either case, we have f'(c) >0

Derivative
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Taylor’s theorem

Definition 6.18 We say the function f: I — R is n-times differentiable on J C [ if

", .., ™) exist at every point in J, where f(") denotes the nth derivative of f.

Theorem 6.19 Taylor. Suppose the function f: [a,b] — R is continuous and has n
continuous derivatives on [a,b] such that f("*1) exists on (a,b). Given zg,z € [a,b],

there exists some ¢ € (zg, z) such that

1 F (e n
f(x) = kz_o Hf(k)(ﬂfo)(l’ —z0)" + m(ff — )"
We denote
" (n+1)
P, (x) = Ef(k’)(xo)(l' —20)F and R, (z) = ];nTl()c')(x — 20)" !
= k! !

as the nth order Taylor polynomial and the nth order remainder of f, respectively.

Derivative

proof: let x,z¢ € [a,b] and x # xg (if © = ¢ then any c satisfies the theorem)

(2)—Pn(z)

o let M, ., = ]Ex_xo)nﬂ , then we have

f(z) = Po(z) + My 4 (2 — 20)" !

e note that for all 0 < k < n, we have f*)(z) = p¥ (x0)
o let g(s) = f(5) — Pu(s) — Myy(s — x0)""", then we have

g(xo) = fl(w0) = Pu(m0) — My zy(wo — 20)" " =0
g (x0) = f'(x0) = Pp(w0) = My zy(n+1)(x0 — 20)" =0
g™ (o) = F™ (o) — P (o) — Myny(n+ 1) (zo — z0) = 0

e by theorem 6.15:

g(xg) =g(x) =0 = Iz between zy and x s.t. ¢'(z1) =0
g (x9) =¢(r1) =0 = Jxy between xg and x; s.t. g"’"(x2) =0
g™ V(zg) =g V(x,_1)=0 == 3z, between 2¢ and z,,_; s.t. g™ (x,) =0
g™ (20) = g™ (2,) =0 == 3c between o and z,, s.t. gtV (c) =0

Derivative

6-13
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e note that
dn+1

Tt Moo (5 = 20)" = Mgy (n+ 1)1 and - P D(c) =0

e we have the (n + 1)-times derivative of g at ¢ given by

(n+1) (n+1) M. 1! M f(nH)(c)
0=g"""(c)=f""(c) = Mgz (n+ 1)l = My, = (n+1)!
e hence, we have
f(@) = Pa(®) + Moo (v — xo)m_l
f(n—i—l)(c) il
=P, —
(z) + n+ 1) (z — o)
Derivative o1

Theorem 6.20 Second derivative test. Suppose the function f: (a,b) — R has two
continuous derivatives. If zy € (a,b) such that f/(xo) = 0 and f”(zo) > 0, then f has
a strict relative minimum at z.

proof:

e it is easy to show that f” is continuous and f”(xg) > 0 = there exists some
d > 0 such that for all ¢ € (xg — d, 0 + ), we have f’(¢c) >0

e then for all z € (zg — d,z0 + 0), by theorem 6.19, there exists some ¢y between x
and x( such that

F(2) = flao) + £/ (o) (& — 70) + 3 1" (co)(w — 0)?

e ¢y between z and ©9 = ¢y € (vg — I, 20 +0) = f"(c) > 0, and since
f'(xg) = 0, we have

£(@) = flzo) = 5 " eo)(x = 20)* > 0 = f(2)> f(zo)

Derivative 6-16



7. Riemann integral

e Riemann sum and some useful facts

e Riemann integral of continuous functions
e properties of Riemann integral

e fundamental theorem of calculus

e integration by parts

e change of variables

Riemann integral 7-1

Riemann sum

Definition 7.1 A partition = = {z¢, z1,...,x,} of [a,b] is a finite set such that
a=xpg<x1 <---<xTpp =0.
The norm of z, denoted ||z||, is a number defined as

llz|| = max{x1 — zo, x2 — 1, ..., Tp — Tp—1}-

Definition 7.2 let z be a partition of [a,b]. A tag of z is a finite set { = {&1,...,&,}
such that

a=10<&§ <o <§<we << a1 <6y <y =0

The pair (z,&) is referred to as a tagged partition.

example: (z = IS a tagged partition with norm
ple: (z,§) = ({1,3/2,2,3}, {5/4,7/4,5/2}) i gged partition with
||2H = max{3/2 -1, 2 — 3/2, 3 — 2} =1

Riemann integral 7-2



Definition 7.3 The Riemann sum of f corresponding to (z,¢) is the number

n

Sp(a,&) = f(&) (@i — i),

=1

Remark 7.4 For a continuous function f on [a,b] that is positive, the Riemann sum
S¢(z, &) is an approximate area under the graph of f. As ||z|| — 0, we should expect
these approximate areas to converge to some number, which we interpret as the area
under the graph of f on the interval [a, b].

Riemann integral

Some useful facts

Definition 7.5 We define the set C([a,b]) = {f: [a,b] = R | f is continuous}.

Definition 7.6 Let f € C([a,b]) and 7 > 0, we define the modulus of continuity of
the function f as

wy(t) = sup{|f(z) = fFW)| | |z —y| <7}

Theorem 7.7 For all f € C([a,b]), we have lim,_,ows(7) =0, i.e., for all € > 0, there
exists some ¢ > 0 such that for all 7 < §, we have w(7) < e.

proof: let e > 0
e feC([a,b]) = f is uniformly continuous on [a,b] = 3§ > 0 such that for
all z,y € [a,b] and |z —y| < 4, we have |f(z) — f(y)] < €/2
e let 7 < 4, then for all z,y € [a,b] and |x —y| < 7, we have |z —y| < § =
|f(x) — f(y)| <e€/2forall z,y € [a,b] and |z —y| <7 = €/2 is an upper
bound of the set {|f(z) — f(y)| | [x —y| <7} = wy(7) <e€/2 <€

Riemann integral
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Theorem 7.8 Let f € C([a,b]), then wy(7) has the following properties:

e Forall z,y € [a,b], we have wy(|lz —y|) > | f(z) — f(y)|.
e Monotonicity. If 71 < 7o, then wy(71) < wy (7).

Definition 7.9 Let (z,£) and (2/,¢’) be tagged partitions of [a,b]. We say 2’ is a
refinement of z if z C 2.

Theorem 7.10 Let (z,£) and (2/,£') be tagged partitions of [a,b] such that 2’ is a
refinement of z. If f € C([a,b]), then

|S¢(2,8) = Sp(2!, &) < wellzl) (b - a).

proof: let z = {xo,...,zn}, £ = {&,. . &}, 2/ = {ag, ... 2}, & =1{&,...,¢,}
e fori=1,...,n, Ietyz)—{a:q,:cqﬂ, . ,x;},g(“:{QH,QH,...,&,;} s.t.

xi,lzxq<xq+1<---<x§€:xi

Riemann integral 7-5

e then foralli=1,...,n, we have

(€ (i — im1) — Sp(y@,¢D)]
k k
—re) S @—a) - S FEN @) —ahy)

{=q+1 l=q+1
k

= | > (f(&) = FE))(al — 7)) Z (&) — FEDI() — x)_y)

€:q+1 l=q+1

k

< Z wy(wi — zim)(@g — 25 ) < > we(llal) @) — ) )

l=q+1 f=qg+1
= wy([|z][)(z; — zi-1) (7.1)

— the first inequality is by lemma 4.18
— the second inequality is from &;, &), € [zi—1, %]

— the third inequality is by the second statement of theorem 7.8, and ||z|| > z; — z;—1

Riemann integral 7-6



e put together, we have

n

Sp(z.&) = S, &) = > _(f(&) (@i — zim1) — Spy', ™))

=1

< Z | f(&) (2 — xim1) — Sf(g(“,g(i)ﬂ < wa(HZ”)(l’z‘ — 1)
= wf(HfL“H)( —a),

where the last inequality is by plugging in (7.1)

Theorem 7.11 Let (z,§) and (2/,£’) be any two tagged partitions of [a,b] and f €
C([a, b)), then

[Sp(z,€) = Sp(a, ) < (wy(llzl)) + wr(2'])) (b = a).

proof: let 2/ = x Uz’ and £” be a tag of 2, then by theorem 7.10, we have

Sy, ) = Sy, &) < |9¢(2,§) — Sp(a”, &) + 1S5 (2",€") = Sy, &)
< (wy(llzl)) +wy([12])(b - a)

Riemann integral

Riemann integral of continuous functions

Theorem 7.12 Let f € C([a, b]), then there exists a unique number denoted fab f(x) dz
with the following property: For all sequences of tagged partitions ((gmé(’")))m . such
that lim, o ||2()|| = 0, we have

A, S / flo

proof: uniqueness follows immediately from uniqueness of limits of sequences of real
numbers, we only need to show the existence

o let ((g(r),g(r)))oo , be a sequence of tagged partitions with lim, Hg(’")H =0,

r=

we first show that (Sf(g(r),g(r))fo is a Cauchy sequence; let € > 0

— by theorem 7.7, 36 > 0 such that for all 7 < 6, wy(7) < m

- [y -0 = IM eNst. Vr,s > M, |[y"] <06, [y <6 = Vr,s > M,
we have w; ([ly"]) < sy, wi(lly1) < sp=ay

Riemann integral



— hence, for all r,s > M, by theorem 7.11, we have
1Sy, ") = Sp(y™, ¢
€ €

s«wwymn+wﬂw@mxwﬂw<<%6_®+dw_aﬁ<vﬂw:e

let L = lim, o0 Sy (g(r),g(r)) (which exists by theorem 3.45)
o let ((g(”),g(’”)))oo , be any sequence of partitions with lim, . ||z("| = 0, we
now show that lim,_, Sf(g(r),é(’")) =L

— since ||z — 0, ||g(’")|| — 0, by theorem 7.7, we have
Tim (wr (2 ]) +wr(ly@1D) (0 —a) =0

- Sy, (") = L = |95y, (")~ LI =0
— by theorem 7.11, we have

0 <[Sp(x™, €M) = L] < |57z, £7) = Sp(y, <)+ 1S¢ (7, ") — LI
< (s (21 +wy(ly™ D) (0 = a) + 185 (y™, () - L|

— im0 [y (2, €M) — L] = 0 (theorem 3.21)

Riemann integral 7-9

Remark 7.13 Let f € C([a,b]). We sometimes write

b b
[ t@an= [ s
By convention, we also define

/aaf:O and /baf:—/abf.

Riemann integral 7-10



Properties of Riemann integral

Theorem 7.14 Linearity. Let f,g € C([a,b]) and a € R, then

/ab<af+g)=a/abf+/abg

proof: let <(£(r)’§(r))>oo ! be a sequence of tagged partitions such that ||§(7")H — 0,

then we have

b
/ (af +9) = lim Sapig(z®, )

= lim (aS;(z"),£7) + Sy, £))
(r) ¢(r)
- Jim 5y(e¢ >+rangoS< )
=« / f+ / g
Riemann integral 7-11

Theorem 7.15 Additivity. Let f € C([a,b]) and a < ¢ < b, then we have
b c b
I RA A

o let ((@”,g”)) be a sequence of tagged partitions of [a, c] with ||g(7")|| -0

r=1

proof:

let ((g(’"),n(r)))zl be a sequence of tagged partitions of [¢, b] with [|z(")| — 0

then (( 5(’"))>oo with (") = y( " U2 and 5 g(r) UQ(T) is a sequence
of tagged partitions of [a, b]
ly™l =0 and |27 =0 = [l < [ly™ ] +[|27]| = 0

hence, we have

/ f=lim S¢(z z(") f )—Tl'i)IgO(Sf(g(T),g(r))+Sf(§(r)aﬂ(r)))

T—00
(r) (r r)
= Jim 570, + i 50 = 1+ [
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Theorem 7.16 Let f,g € C([a,b]) and f(z) < g(z) for all x € [a,b], then we have

/abfé/abg-

oo
proof: let ((g(r),é(r))) be a sequence of tagged partitions with ||z(")| — 0, then

r=1
n(r) n(m)
Sp(a™, €)= 3" e @ = al”) <3 o) @ = 27)) = Sy(a,€0)
=1 =1

= lim, 00 Sf(i(r)aé(r)) < limy o0 Sg(g(r)vé(r)) - f;f < ffg

Corollary 7.17 Let f € C([a,b]), then ‘fff‘ < f; | f].

proof: +f(z) < |f(z)] = [ +f==["f < [’|f] (theorem 7.16)

Riemann integral 7-13

Theorem 7.18 Let f € C([a,b]), and

my =inf{f(e) |z € [a,b]}, My =sup{f(z)] € [ab]}.
Then, we have

b
mib-a) < [ F< M-

proof: let ((g(r),é(r)))oo be a sequence of tagged partitions with ||z(")|| — 0, then

r=1
n(r) n(r)
Sy, €)= 3" fEe) @ —2) = S mpal” = 2) = myb - a)
=1 =1
n(m) n(m)
Sy, €0y =3 FEM) @ — 2D <3 My — 2i7)) = My(b - a)
=1 1=1

= my(b—a) <lim,_oo Sp(z, M) < My(b—a)

Riemann integral 7-14



Fundamental theorem of calculus

Theorem 7.19 Fundamental theorem of calculus. Let f € C([a,b]).

e If F': [a,b] — R is differentiable and F’ = f, then

b
/ f=F() - Fla).

e The function G(x) = [ f is differentiable on [a, b] with

proof:
o let (z (’")) be a sequence of partitions with ||z(")|| — 0, by theorem 6.15, there

e [z (T)] i=1,...,n("), such that

Ti_

exist tags §(’") with £i

F@") = ) = FIE) @ - inﬁ) = fEM) @ — 27

71—

Riemann integral 7-15

hence, for the sequence of tagged partitions ((g(’"),g(r)))oo ) we have

(™ ()

2, ¢ Z FEN @ 2" =3 Fa") - F(e{”)) = F(b) - F(a)
=1

— [P f =1lim, o0 Sp(z(), M) = F(b) — F(a)
e we only need to show that G is differentiable and G’ = f, i.e., let ¢ € [a, b], we

need to prove that lim,_.. % = lim,_ .. % = f(c); let e >0

— f continuous on [a,b] = 3§ > 0 such that for all ¢ € [a,b] and |t — ¢| < 6, we
have |f(t) — f(c)| < €/2
— suppose z € (¢,c+ ), then for all t € [¢, z], we have |f(t) — f(c)| < €/2, hence,

Li-l) —f(C)‘ A (OL —f(c)'

| ([ s a- [ )| - m_c/c(f(t)—f(c))dt
<o [ vo-selas 2 [ fas S0 = <

(the first inequality is by corollary 7.17)
Riemann integral 7-16



— suppose z € (¢ — §,¢), using similar argument, we have as — f(e)| <€
— put together, we conclude that for all z € [a,b] and 0 < |z — ¢| < §, we have
faf_faf—f(c)<€
x—c
G o G x o (&
T—cC Tr—_c T—cC Tr—c
Riemann integral 7-17

Integration by parts

Theorem 7.20 Integration by parts. Suppose f,g € C([a,b]), f',¢" € C([a,b]), then

b b
/ f'g = (F(B)g(b) — F(a)g(a)) - / 1d.

proof: let F' € C([a,b]) with F'(z) = f(x)g(x), by theorem 6.8, we have

F'(x) = f'(x)g(z) + f(x)g'(z),

and hence,
/ @) do+ / F@)d () de = / (/' (@)g(2) + f()g(2)) da
/a F'(z) da = F(b) - F(a) = f(b)g(t) — f(a)g(a)
— [, f'g = (f(B)g(b) = f(a)g(a)) = [, fo'

Riemann integral 7-18



Change of variables

Theorem 7.21 Change of variables. Let f € C([c,d]) and ¢: [a,b] — [c,d] be contin-
uously differentiable with ¢(a) = ¢ and ¢(b) = d. Then, we have

/cdf(u) du = /abf(go(x))gp’(gc) dz.

proof:
e let F': [a,b] — R be a function with F’ = f, then we have

d
[t du=F@) - Flo
e by theorem 6.9, we have

(Fop)(z)=F(o(x)¢' (z) = fe(x)¢ (2),

and hence,

b d
/ fle(@)¢(x) de = F(p(b) = F(p(a)) = F(d) = F(c) = / f(u) du
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8. Sequences of functions

® power series

e pointwise and uniform convergence

interchange of limits

Weierstrass M-test

e properties of power series

Sequences of functions

Power series

Definition 8.1 A power series about 7y € R is a series of the form

Z am(z — x0)™.

m=0

Definition 8.2 Let >~ am(z — x0)™ be a power series, if the limit

R = lim |am|1/m
m—o0

exists, we define the radius of convergence p as

) 1/R R>0
7Y «« R=0.

Sequences of functions

8-1

8-2



Theorem 8.3 Let > ° am(z — xp)™ be a power series and R = lim, ||/ ™

exists. If R = 0, the series converges absolutely for all z € R. If R > 0, the series
converges absolutely if |z — x| < p and diverges if |z — xg| > p.

proof: consider the root test (theorem 4.26), we have

L= lim |am(z—z0)™"™ L/m

= R|z — z9|
m—0o0

= |z —xo| Im |an,]
m—0o0

e suppose R =0, thenwe have L=0<1forallz e R = >~ am(z — z0)"
converges absolutely for all z € R

e suppose R >0
—iflz—xo|<p = L<Rp=1 = >~ _jam(x —z0)" converges absolutely

—ifle—xo|>p = L>Rp=1 = >~ jam(x — )" diverges

Sequences of functions

Remark 8.4 Let > °_ an(z — o)™ be a power series with radius of convergence p.
Define f: (z¢g — p,xo + p) — R such that

f@) =Y am(z —z0)™,
m=0

then, the function f is the limit of a sequence of functions (f,),-,, given by

fl@) = lim fa(z), fale)= am(®— o)™
m=0

n—o0

Example 8.5 Consider the geometric series ">~ ,z"™ (which is a power series with
am =1, xg = 0), we have f: (—1,1) — R given by

fla) = === "= lm fu(x), falw)=) 2™
m=0 m=0

Sequences of functions



Example 8.6 Exponential function. Consider the power series with a,, = % xo =0,

we have the exponential function f(z): R — R, given by

fa) = o) = 3 T = lm fule), falr) = 30 T
m=0 m=0

Remark 8.7 Based on remark 8.4, we may ask several questions.

(1) Is the function f continuous?

(2) If (1) is true, is f differentiable, and does [’ = lim, o f},?
(3) If (1) is true, does [ f = limy, o0 [* fn?

Sequences of functions 8-5

Pointwise convergence

Definition 8.8 Let (f,,),., with f,: S — R for all n € N be a sequence of functions,
and let f: S — R be a function. We say that (f,,);—, converges pointwise (or just

n=1
converges) to f if for all z € S, we have lim,,_, fr(z) = f(z).

Example 8.9 Let f,(z) = 2" be defined on [0, 1], then we have the sequence of

0 ze€l0,1
functions (f,),—, converges pointwise to f(z) = { ) v [1 ) :
xr =

proof: 1

o ifz€[0,1): limy002™ =0 0.8

o ifz=1: limy 0o 1" =1 = 06

= 04

Remark 8.10 A sequence of continuous 0.2 4 72 25 10/ 10
functions may not converge pointwise to a 0 :

continuous function. 0 02 04 06 08 1
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Example 8.11 Let f,(z): [0,1] — R be defined by

An’x T e [O,%}
fo() =< 4n —4n’z x € [% %]
0 T € [%, 1} ,

then (f,,).-; converges pointwise to f(z) =0 (z € [0,1]).

proof: if x =0, we have lim,,_, f(0) = 0; if z € (0, 1], then M € [0, 1] such that
Yn > M, % < x, and hence,

fn n 1_f1 7fM 1 )070?07"' = nh_{glofn(x)zo
16 32
O =
2 =
0 0
0 11 011 0L 1 1 1
1 2 84 8 16
X T T X
8-7

Sequences of functions

Uniform convergence

Definition 8.12 Let (f,,), -, with f,: S — R for all n € N be a sequence of functions,
and let f: S — R be a function. We say that (f,,),-, converges uniformly to f if
for all € > 0, there exists some M € N such that for all n > M and x € S, we have

[fu(z) = f(2)] <e

Theorem 8.13 Let f: S — R, f,: S — R for all n € N be functions. If the sequence
of functions (fy);-, converges uniformly to f, then (f,);~ converges pointwise to f.

proof: let ce€ S, e >0
® (fn)o2 converges uniformly to f = 3IM € N such that for all n > M and

z el [falz) - f2)] <e
() — fle)| < e = (fn)ney converges pointwise to f

Remark 8.14 Let f: S — R, f,: S — R for all n € N be functions. The sequence
(fn)pe; does not converge to f uniformly if there exists some € > 0 such that for all
M € N, there exist some n > M and some x € S, so that |f,(z) — f(x)| > €.
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0 z€][0,1)

Theorem 8.15 Let f,,(x) = 2™, n € N, and let f(z) = { ) )
T =

e The sequence (fy,),-, converges uniformly to f on [0,b] for all 0 < b < 1.
e The sequence (fy),., does not converges to f uniformly on [0, 1].

proof:

o lete>0,b€e(0,1), thend” -0 = IM € N such thatVn > M, " < e —
Vn > M and z € [0, b], we have

|fn(z) — f(x)]|=2" <b" <e
e choose € = 1/2, then VM € N, choose n = M, x = (1/2)1/1\4 < 1, we have

[fu(z) = flz)|=a™ =1/2> ¢

Sequences of functions 8-9

Interchange of limits

Example 8.16 In general, limits cannot be interchanged. For example,

lm tim —7%  — hmo=0  lm tm —F — hm1—1.
n—ook—oo n/k+1 n—oo k—oon—oon/k+1 koo

Remark 8.17 Based on example 8.16, we may ask the following questions.

o If f,: S — R with f,, continuous for all n € N and (f,),-; converges to f
uniformly or pointwise, then is f continuous?

o If f,: [a,b] — R with f, differentiable for all n € N, and (f,),—; converges to f,
(f1)o; converges to g uniformly or pointwise, then is f differentiable and does

ff=g7?

o If fr:[a,b) > R, neN, f:[a,b] = R, with f,, and f continuous, and (f,)o>,
converges to f uniformly or pointwise, then does f; f=lim, s f; fn?
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Remark 8.18 If convergence is only pointwise, the answer is no for all questions in
remark 8.17.

o Let f,(z) =x™ on [0,1], n € N. Example 8.9 shows that (f,),—, converges
pointwise to a noncontinuous function.

o Let fu(x) = % on [0, 1], then (fy),2; converges to f(x) = 0 pointwise on
0 zel0,1
[0,1] and (f,),~, converges pointwise to g given by g(z) = { ) v [1 ) :
xr =

but /(1) =0 # g(1) = 1.

e}

4n?y T

M

[

o Let f,:[0,1] = R be given by fu(z) = ¢ 4n—4n?z z €|

)

] , then

3

3=

1

2n>
0 T e [%, 1}

(fn)or, converges to f(x) = 0 pointwise on [0, 1] (example 8.11), but

1 1 1 1
/f:O%lim fon=lm (z-—-2n)=1.
0 0 2 n

n—oo n—oo

Sequences of functions 8-11

Theorem 8.19 If f,: S — R is continuous for all n € N, f: S — R, and (f,),,
converges to f uniformly, then f is continuous.

proof: letce S, e >0

e f, continuous on S, c € S = 36 > 0 such that for all z € S and |x — ¢| < §,
we have |f,(x) — fn(c)] < €/3

e f, — f uniformly = dM € N such that for all n > M and x € S, we have

|f(z) — fal2)] <€/3

e hence, for all x € S and |z — | < §, we have

[f(@) = F() = [f(2) = fau(@) + far () = fa(e) + faa(e) = f(€)]
< [f(@) = far ()| + [far(2) = far ()] + | far(e) = f(e)]
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Theorem 8.20 If f,,: [a,b] — R is continuous for all n € N, f: [a,b] — R, and
(fn)poy converges to f uniformly, then f:f = limy, 00 fab fn-

proof: let ¢ > 0
e by theorem 8.19, we know that f is continuous on [a, b]

® (fn)po converges uniformly to f :> dM € N such that for all n > M and
z € [a,b], we have | f,(z) — f(z)| < 7%

e hence, for all n > M, we have

fn

-]

|/|fn f|</abf =,

where the first inequality is by corollary 7.17

Remark 8.21 Notationally, theorem 8.20 says that

sz/hmn—g&bm

Sequences of functions 8-13

Theorem 8.22 If f,: [a,b] — R is continuously differentiable, f: [a,b] — R,
g: [a,b] - R, and

o (fn)o2 | converges to f pointwise,

e (f)2, converges to g uniformly,

then f is continuously differentiable and [’ = g.

proof: let x € [a, b]
e by theorem 8.19, we know that g is continuous on |[a, b]
e by theorem 7.19, we have

n—o0

[ ti= = @ = g [ gi= i o) - i sale)

o fn— f pointwise = lim,_,o0 frn(z) — lim, o0 fr(a) = f(x) — f(a)
o f,— g uniformly = lim,o [ f}, = [ g (theorem 8.20)
e put together, we have

éxngu»—fm>=:-(éﬂ0'= (2) = (@)
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Weierstrass M-test

Theorem 8.23 Weierstrass M-test. Let fr.: S — R for all kK € N. Suppose there exists
M;. > 0, k € N, such that

(a) |fx(x)| < My forall x € S,
(b) >"p2, My converges.
Then, we have the following conclusion.

(1) The series > po; fu(x) converges absolutely for all z € S.

(2) Let f(x) = > 42, fu(z) for all z € S, then the series (3, fi) -, converges to
f uniformly on S.

proof:

(1) [fu(z)] < My, D52 My converges = 3 72, | fr(2)| converges (theorem 4.20)
= > 12, fx(x) converges absolutely

Sequences of functions 8-15

(2) let e > 0; > 72| My, converges = IM € N s.t. Vn > M, we have

ZMk: ZMk—ZMk <€
k=n+1 k=1 k=1
then, for all n > M and z € S, we have
Y fl@) =) fu@)|=| D @< D @< D) My <e
k=1 k=1 k=n-+1 k=n-+1 k=n-+1
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Properties of power series

Theorem 8.24 Let > 2 ap(z — 20)" be a power series with radius of convergence
p € (0,00], then for all 7 € (0, p), the series 3> ax(z — x0)" converges uniformly on
[xo — 7,20 + 7).

proof:
e note that we have |z — xzo| < r for all x € [xg — r,x0 + 7]
o let fr = ax(x — xo)k, choose Mj, = |ay|r¥, k € N, then Vz € [xg — 7,z + 7],

[fe(@)| = lag(z — 20)*| = |ag||e — zo|" < |ag|r™ = M
e consider the root test (theorem 4.26) for Y7, My, we have
. 1/k . k 1/k . 1/k T/p p < 00
L= lim M,'" = lim (|ak|r > = lim |ag|/"r =
k—o0 k—o00 k—o0 0 p = 00

since r € (0,p), we have L <1 = > 72, M}, converges absolutely

e put together, by theorem 8.23, we have (3 o fi)or | = D p_oar(z — z0)"
converges uniformly on [xg — r, x9 + 7]

Sequences of functions 8-17

Theorem 8.25 Let °°  ax(z — 20)" be a power series with radius of convergence
p € (0,00], then we have the following conclusion.

e For all ¢ € (zg — p, o + p), the function given by the series Y7 ax(z — 20)¥ is
differentiable at ¢, and

d o
e < ap(x — xo)k>
k=0

r=c k=0 Tr=c
e For all a,b such that zg —p <a < b < xzg+ p,
b o b
/ Zak(x — 20)* da = Z/ ap(z — x0)" dx
¢ k=0 k=0"¢
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e convergence properties of topology
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Metric spaces

Definition 9.1 Let A and B be sets. The Cartesian product is the set of tuples defined

as
Ax B={(z,y) |z € A, ye B}.

examples:
o {a,b} x{c,d} ={(a,¢),(a,d), (b,c), (b,d)}

e the set R? = R x R is the Cartesian plane

is a subset of the Cartesian plane bounded by a

o the set [0,1]* = [0,1] x [0,1] is
(0,1), (1,0), and (1,1)

square with vertices (0,0),

Remark 9.2 To denote an element in the set R", we write z = (z1,...,2,) € R",
or simply x € R", where the subscripts ¢ = 1,...,n denote the ith entry of the tuple
(z1,...,2,) that describes z.

We also simply write 0 € R"™ to mean the point (0,0,...0) € R".
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Definition 9.3 Let X be a set, and let d: X x X — R be a function such that for all
x,y,z € X, we have

d(z,y) > (nonnegativity)
d(z,y) = |f and only if z =y,

d(z,y) = d(y,x), and (symmetry)
d(z,z) < d(x,y) + d(y, 2). (triangle inequality)

Then the pair (X, d) is called a metric space. The function d is called the metric or
the distance function. Sometimes we just write X as the metric space if the metric is
clear from context.

Example 9.4 The real numbers R is a metric space with the metric d(z,y) = |x — y|.

proof:

e the first three properties follows immediately from the properties of the absolute
value (theorem 2.25)

e to show the triangle inequality, let x,y, 2 € R, then we have
dz,z) = |z —z[=le—y+y -z <|lz—yl+ly—z[ = d(z,y) + d(z, 2)

Metric spaces 9-3

Definition 9.5 Let (X, d) be a metric space. A set S C X is said to be bounded if
there exists a point p € X and some number B € R such that

d(p,z) < B forallx € S.

We say (X, d) is bounded if X is a bounded set.
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Cauchy-Schwarz inequality

Theorem 9.6 Cauchy-Schwarz inequality. Suppose x = (z1,...,z,) € R", y =

(y1,---,9yn) € R", then
n 2 .
=1 i=1 i=1

proof
n n n n
<D (wyy—xy)’ =) (afyl - 2wayagy + oty
i=1 j=1 =1 j=1
n n n n n n

(S () () (2] - (S ) { S
i—1 - i—1 =1 i—1 =1
" 2

Metric spaces

Theorem 9.7 The function f: R" x R" — R given by

flxy) = \/(961 —y1)? 4 (T — ) = Z(wi — i)

is a metric for R™.

proof: we show that f satisfies the triangle inequality, by theorem 9.6, we have

n

(f(z,2))" = Z (@i — 2)° = Z (@ — yi +vi — )"

=1 =1

=5 @) +2Z —z)+ > (i —2)°
=1 =1

< Z iyi)2+2JZ(xiyi)2Z(yiZi)2+2(yizi)2
=1 i=1 =1 =1

\JZ +JZ _Zl ) Z(f(x,y)+f(y,z))2

1=1
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n-dimensional Euclidean space

Definition 9.8 The n-dimensional Euclidean space is the metric space (R",d) with
the metric d defined by

(331' - yi)z- (9-1)

dz.y) = /@01 —y0)” + -+ (@0 —y)? =

n
1=

Remark 9.9 For n = 1, the n-dimensional Euclidean space reduces to the real numbers
and the metric given by (9.1) agrees with the standard metric for the set of real numbers
d(z,y) = |z — y| in example 9.4.

Metric spaces

Open and closed sets

Definition 9.10 Let (X, d) be a metric space, x € X, and § > 0. Define the open ball
and closed ball, of radius § around x as

B(a,8) = {y € X | d(x,y) <8} and C(x,0) = {y € X | d(z,y) < 6},

respectively.

Example 9.11 Consider the metric space R, for x € R and § > 0, we have

B(z,0) =(x —d,x+9) and C(x,0)=[z— 6z + 4.

Example 9.12 Consider the metric space R?2, for x € R? and § > 0, we have

B(x,0) = {y € R* | (z1 — y1)” + (22 — y2)” < &%},

Metric spaces

9-7
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Definition 9.13 Let (X, d) be a metric space. A subset V' C X is open if forall z € V,
there exists some ¢ > 0 such that B(z,0) C V. A subset E C X is closed if the
complement E¢ = X \ E is open.

examples:
e (0,00) C R is open; [0,00) C R is closed
e [0,1) C R is neither open nor closed

e the singleton {z} with x € X is closed

Theorem 9.14 Let (X, d) be a metric space.

(1) The sets () and X are open.

(2) If Vi,...,Vy are subsets of X, then ﬂle V; is open, i.e., a finite intersection of
open sets is open.

(3) Let {V; C X | i € I} be a collection of open subsets of X, where [ is an arbitrary
index set, then Uie]‘/;' is open, i.e., a union of open sets is open.

proof:
e the sets () and X are obviously open

Metric spaces 9-9

. Ietxeﬂ?lei, thenx € Vi,...,V}
- Vi,..., Vi are open = 3d1,...,0, > 0s.t. B(x,01) CVq,...,B(z,0,) C Vi
— choose § = min{d;,...,d0x}, then B(z,9) C Vi,...,Vp = B(x,§) C ﬂle Vi

o let v € |J;c; Vi, then 3V, € {V; | i € I} such that z € V},
— Vi isopen = 3 > 0 such that B(x,6) C Vi C U, Vi

Theorem 9.15 Let (X, d) be a metric space.

(1) The sets () and X are closed.

(3) Let {V; C X |i € I} be a collection of closed subsets of X, where I is an arbitrary
index set, then mie] V; is closed, i.e., an intersection of closed sets is closed.

(2) If Vi,...,V are subsets of X, then Ule V; is closed, i.e., a finite union of closed
sets is closed.

Remark 9.16 Note that in theorem 9.14, the statement (2) is not true for an arbitrary
intersection. For example, (2 ;(—1/n,1/n) = {0}, which is not open in R.

Similarly, in theorem 9.15, the statement (3) is not true for an arbitrary intersection.
For example, | J> ;[1/n,00) = (0, 00), which is not closed in R.
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Theorem 9.17 Let (X, d) be a metric space, z € X, and § > 0. Then B(z,0) is open
and C(z,0) is closed.

proof: we show that B(z,0d) is open; let z € B(x,J), then d(z,z) <
e choose € =6 —d(x, 2), let B(z,¢) ={y € X | d(y,2) < €} be an open ball

e let y € B(z,¢), we have d(y, z) < ¢, and hence
d(z,y) <d(xz,2)+d(z,y) <d(z,z) +e=d(x,2) + 0 —d(x,2) =6

— y € B(z,0) = B(z,¢) C B(x,0)

Metric spaces 9-11

Closure and boundary

Definition 9.18 Let (X, d) be a metric space and A C X. The closure of A is the set
clA= ﬂ{E C X | Eisclosed and A C E},

i.e., cl A is the intersection of all closed sets that contain A.

Definition 9.19 Let (X, d) be a metric space and A C X. The interior of A is the set
int A={x € A| B(z,0) C A for some § > 0}.
The boundary of A is the set

bd A=clA)\ int A.

example: consider A = (0,1] and X = R, then we have c1 4 = [0, 1], int A = (0, 1),
and bd A = {0,1}
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Remark 9.20 Notationally, in some textbooks, the closure, interior, and boundary of
some set A are denoted as

A=clA, A°=intA, and 0A=DbdA,

respectively.

Theorem 9.21 Let (X, d) be a metric space and A C X.

e The closure cl A is closed and A C cl A.
o If Ais closed, then cl1 A = A.

proof: let clA=({EF C X | Eis closed and A C E}

e the first statement follows directly from the definition of closure and theorem 9.15

o if Aisclosed, then Ac {EC X |FEisclosedand ACFE} — clACA =
A=clA

Metric spaces 9-13

Theorem 9.22 Let (X, d) be a metric space and A C X, then = € cl A if and only if
for all 6 > 0, we have B(z,0) N A # 0.

proof: we show the following claim: = ¢ cl A if and only if there exists some § > 0
such that B(z,6)NA =10
e suppose = ¢ cl A, then z € (cl A)°
— clAisclosed = (clA)®isopen = 36 > 0s.t. B(z,0) C (clA)° C A° —
B(z,0)NnA=10

e suppose 30 > 0 such that B(z,0) N A =10, let z € X
- B(x,0) is open = (B(z,6))  is closed
C B,)NA=0 — AC (B(2,6)° — clAC (B(x,5))
- z € B(x,§) = x ¢ (B(z,0))°

— put together, we have x ¢ cl A
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Theorem 9.23 Let (X, d) be a metric space and A C X, then int A is open and bd A
is closed.

proof:
o letzcintA
-z €intA = 36 > 0 such that B(z,§) C A
— let z € B(x,¢); B(z,d) open = Je > 0 such that B(z,¢) C B(z,0) CA =
z€int A = B(z,0) Cint A = int A is open
e int Aopen — (int A)° closed — bd A =clA\intA=clAN (int A) is
closed (theorem 9.15)

Theorem 9.24 Let (X, d) be a metric space and A C X, then x € bd A if and only if
for all § > 0, we have the sets B(z,0) N A and B(x,d) N A° are both nonempty.

proof:
e suppose x € bd A, let § > 0

- z€bdA = z € clA, and hence, by theorem 9.22, we have B(z,d) N A # ()
— assume B(z,d) N A° =), then we have B(z,0) C A = z € int A, which is a
contradiction

Metric spaces 9-15

e suppose B(z,0) N A # () and B(x,d) N A° # () for all § > 0, assume x ¢ bd A
- x¢bdA = z¢clAorxzecint A

- ifzx ¢ clA = Fdg > 0 such that B(x,d9) N A =0, which is a contradiction

- ifx€eint A = 3y > 0 such that B(z,d)) C A = B(x,d9) N A° =0, which is
a contradiction

Theorem 9.25 Let (X, d) be a metric space and A C X, then bd A = cl AN cl(A°).

proof: let x € bd A, § >0
e by theorem 9.24, we have B(z,d) N A and B(x,d) N A nonempty

e by theorem 9.22, B(z,0)NA# () — z€clAand B(z,0)NA°#0) —
x € cl A°

e hence, we have bd A = cl AN cl(A°)
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Sequences in metric spaces

Definition 9.26 A sequence in a metric space (X,d) is a function z: N — X. To

denote a sequence we write (z,,),-, where z, is the nth element in the sequence.

A sequence (z,,),. is bounded if there exists a point p € X and B € R such that
d(p,x,) < B for all n € N.

Let (n;);-, be a strictly increasing sequence of natural numbers, then the sequence

(@n,)seq is called a subsequence of (), ;.

o0 H

Definition 9.27 A sequence (z,),.; in a metric space (X,d) is said to converge to
a point p € X if for all € > 0, there exists some M € N such that for all n > M, we
have d(z,,p) < €.

The point p is called a limit of (z,,),- ;. If the limit p is unique, we write

lim z, = p.
n—0o0

A sequence that converges is said to be convergent, and otherwise is divergent.
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Theorem 9.28 A convergent sequence in a metric space has a unique limit.

proof: let z,y € X such that z,, - z and x,, —> y; let ¢ >0
e r, >x —> JM; € N such that Vn > M, d(z,,z) < €/2

e r, —y = JM;y € N such that Vn > My, d(x,,y) < €/2

e hence, for all n > M, we have

d(a,y) < d(wn, @) +d(@a,y) < 5+ 5 =€

— d(z,y) =0 = z=y

Theorem 9.29 A convergent sequence in a metric space is bounded.

proof: suppose z,, > p € X
e lete >0, 1z, —>p = IM € N such that Vn > M, d(z,,p) <€

e choose B = max{d(z1,p),...,d(xp,p), €}, then for all n € N, d(z,,p) < B
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Theorem 9.30 A sequence (x,,),- | in a metric space (X, d) converges to p € X if and
only if there exists a sequence (a,,), -, of real numbers such that for all n € N, we have

d(n,p) <a, and lim a, =0.

n—oo

proof:
® suppose T, — P
-z, —>p = Ye>0,IM € Nst.Vn>M, d(z,,p) <e = d(z,,p) =0

— choose a,, = d(x,,,p) for all n € N, then we have d(z,,p) < a, and a,, = 0

e suppose a, — 0 with a, € R and d(z,,p) < a,, let ¢ >0
- 0<d(zn,p) <ap, an, >0 = d(z,,p) — 0 (theorem 3.21)

- d(xn,p) > 0 = 3IM € N such that Vn > M, d(z,,p) <€ = x, > D
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Theorem 9.31 Let (,),-; be a sequence in a metric space (X, d). If (z,,),-, converges
to p € X, then all subsequences of (x,,),- , converges to p.

proof: let € > 0
e let z, — p, then M € N such that Vn > M, d(x,,p) < €

o let (xy,);-, be a subsequence of (x,),> |, then we have n; > i

e hence, for all i > M, we have n; > M = Vi > M, d(zp,,p) <€
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Convergence in Euclidean space

Theorem 9.32 Let (z,,)°", be a sequence in R¥, where z,, € R for all n € N. Then

(2p)p—; converges if and only if (2,,;) - | converges for all i =1,... k, i.e.,
lim x, = (lim Tnil, -, lim xnk)
n—00 n—oo n—oo

proof:

e suppose =, — p € R, let € > 0
- &, - p = IM € N such that Vn > M, d(z,,p) < €

— hence, Vn > M, we have

k
2 2 2 .
"Enap anz z <6 :(ﬁn,i—pi) <€, i=1,...,k
=1
= |zn, —pi|<eforalli=1,....k = z,,;, = pforalli=1,...,k
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e suppose z,; = p; foralli=1,... k lete>0,p=(p1,...,pk)
- ZTpi —pi,t=1,....,k = JMy,..., M} € N such that Vn > M;, we have
|Q§n7i—pi‘<6/\/E,i:1,...,k

— choose M = max{Mj,..., My}, then ¥n > M, we have

k

A(ws.0) = zfjx <2 (&) - i%: _

=1

—— Ty — P
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Convergence properties of topology

Theorem 9.33 Let (X, d) be a metric space and (z,),.; be a sequence in X, then
(@n)ooy converges to p € X if and only if for all open sets U C X with p € U, there
exists some M € N such that for all n > M, we have z,, € U.

proof:
e suppose x, — p, let U C X be open and p € U
— U is an open set contains p = 36 > 0 such that B(p,0) C U

-y, —>p = IMeNst.Vn>M,dx,,p)<d = VYn>M, x, € B(p,J)
— Yn>M, z,cU

e suppose for all open sets U C X with p € U, there exists some M € N such that
rn, €U foralln> M; lete >0
— choose U = B(p,¢€), then 3M € N such that Vn > M, x,, € B(p,€)

— hence, Yn > M, d(z,,p) <€ = x, > p
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Theorem 9.34 Let (X, d) be a metric space, E C X be a closed set, and (z,,),-, be
a sequence in E that converges to some p € X, then we have p € F.

00
n=1

e p¢ F — peE°

proof: assume (x,) in E converges to p butp ¢ E

e I is closed = FE¥€ is open, then by theorem 9.33, M & N such that Vn > M,
T, € B¢ = VYn > M, x, ¢ E, which is a contradiction

Theorem 9.35 Let (X, d) be a metric space and A C X, then p € cl A if and only if

there exists a sequence (x,,),., of elements in A such that lim,_, z, = p.

proof:
e suppose p € cl A, then by theorem 9.22, we have B(p,d) N A # () for all § >0
— choose (z,,);., such that z,, € A and d(z,,,p) < & foralln € N

- 0<d(zn,p)<+and 1 -0 = d(z,,p) >0 = =z, — p (theorem 9.30)

e suppose (z,,).-; in Aand z, — p, let § >0
-y, —>p = IM eNst.Vn>M,dx,,p)<d = VYn>M, x, € B(p,J)

— then, since x,, € A, we have B(p,0)NA# () = p € cl A (theorem 9.22)

Metric spaces 9-24



Cauchy sequences and completeness

Definition 9.36 Let (X, d) be a metric space. A sequence (z,).— in X is Cauchy if for

n=1"

all € > 0, there exists some M € N such that for all n,k > M, we have d(z,, z)) < €.

Theorem 9.37 A convergent sequence in a metric space is Cauchy.

proof: let x,, — p, € > 0, then IM € N such that Vn,k > M, d(z,,p) < €/2 and
d(zg,p) < €/2, and hence Vn,k > M, we have

d(xn, xr) < d(zpn,p) + d(zk,p) < €/2+€/2=c¢

Definition 9.38 We say a metric space (X, d) is complete or Cauchy-complete if all
Cauchy sequences in X converges to some point in X.
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Theorem 9.39 The Euclidean space R is a complete metric space.

proof: let (z,,)>°, be a Cauchy sequence with x,, € R¥ for all n € N; let € > 0
o (zy);°, is Cauchy = 3IM € N such that Ym,n > M, d(z,, —x,) < €
e hence, for all m,n > M, we have

k

(A(@m, ) =D (@i — Tni)* < € = |Tmi— il <€ i=1,...,k
=1

—> the sequence of real numbers (z,;)°", is Cauchy for all i =1,...,k

n=1

e by theorem 3.45, we conclude that (x,;) . ; converges forall i =1,... .,k

e then, by theorem 9.32, we conclude that the sequence (z,,),-, converges
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