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1. Basic set theory

• sets

• mathematical induction

• functions

• cardinality
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Sets

Definition 1.1 A set is a collection of objects called elements or members. A set with
no objects is called the empty set and is denoted by ∅ (or sometimes by {}).

notation:

• a ∈ S means that ‘a is an element in S’

• a /∈ S means that ‘a is not an element in S’

• ∀ means ‘for all’

• ∃ means ‘there exists’

• ∃! means ‘there exists a unique’

• =⇒ means ‘implies’

• ⇐⇒ means ‘if and only if’
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Definition 1.2

• A set A is a subset of a set B if x ∈ A implies x ∈ B, denoted as A ⊆ B.

• Two sets A and B are equal if A ⊆ B and B ⊆ A, denoted as A = B.

• A set A is a proper subset of B if A ⊆ B and A ̸= B, denoted as A ⊊ B.

set building notation: we write

{x ∈ A | P (x)} or {x | P (x)}

to mean ‘all x ∈ A that satisfies property P (x)’

examples:

• N = {1, 2, 3, 4, . . .}: the set of natural numbers

• Z = {0, 1,−1, 2,−2, 3,−3, . . .}: the set of integers

• Q = {m/n | m,n ∈ Z, n ̸= 0}: the set of rational numbers

• R: the set of real numbers

it follows that N ⊆ Z ⊆ Q ⊆ R
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Definition 1.3 Given sets A and B:

• The union of A and B is the set A ∪B = {x | x ∈ A or x ∈ B}.
• The intersection of A and B is the set A ∩B = {x | x ∈ A and x ∈ B}.
• The set difference of A and B is the set A \B = {x ∈ A | x /∈ B}.
• The complement of A is the set Ac = {x | x /∈ A}.
• A and B are disjoint if A ∩B = ∅.

Theorem 1.4 De Morgan’s Laws. If A,B,C are sets, then

• (B ∪ C)c = Bc ∩ Cc;

• (B ∩ C)c = Bc ∪ Cc;

• A \ (B ∪ C) = A \B ∩A \ C;

• A \ (B ∩ C) = A \B ∪A \ C.
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we prove the first statement:

• let B,C be sets, we need to show that

(B ∪ C)c ⊆ Bc ∩ Cc and Bc ∩ Cc ⊆ (B ∪ C)c

• x ∈ (B ∪ C)c =⇒ x /∈ B ∪ C =⇒ x /∈ B and x /∈ C

=⇒ x ∈ Bc and x ∈ Cc =⇒ x ∈ Bc ∩ Cc =⇒ (B ∪ C)c ⊆ Bc ∩ Cc

• x ∈ Bc ∩ Cc =⇒ x ∈ Bc and x ∈ Cc =⇒ x /∈ B and x /∈ C

=⇒ x /∈ B ∪ C =⇒ x ∈ (B ∪ C)c =⇒ Bc ∩ Cc ⊆ (B ∪ C)c
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Mathematical induction

Axiom 1.5 Well ordering property. If the set S ⊆ N is nonempty, then there exists
some x ∈ S such that x ≤ y for all y ∈ S, i.e., the set S always has a least element.

Theorem 1.6 Induction. Let P (n) be a statement depending on n ∈ N. Assume that
we have:

1. Base case. The statement P (1) is true.

2. Inductive step. If P (m) is true then P (m+ 1) is true.

Then, P (n) is true for all n ∈ N.

proof:

• suppose S ̸= ∅, then S has a least element m ∈ S

• since P (1) is true, we have m ̸= 1, i.e., m > 1

• since m is a least element, we have m− 1 /∈ S =⇒ P (m− 1) is true

• this implies that P (m) is true =⇒ m /∈ S, which is a contradiction

• hence, S = ∅, i.e., P (n) is true for all n ∈ N
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Example 1.7 For all c ∈ R, c ̸= 1, and for all n ∈ N,

1 + c+ c2 + · · ·+ cn =
1− cn+1

1− c
.

proof:

• the base case (n = 1): the left hand side of the equation is 1 + c; the right hand

side is 1−c2

1−c = (1+c)(1−c)
1−c = 1 + c, which equals to the left hand side

• the inductive step: assume that the equation is true for k ∈ N, i.e.,

1 + c+ c2 + · · ·+ ck =
1− ck+1

1− c
,

we have

1 + c+ c2 + · · ·+ ck + ck+1 =
1− ck+1

1− c
+ ck+1

=
1− ck+1 + ck+1 − c(k+1)+1

1− c
=

1− c(k+1)+1

1− c
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Example 1.8 Bernoulli’s inequality. For all c ≥ −1, (1 + c)n ≥ 1 + nc for all n ∈ N.

proof:

• for the base case (n = 1), we have (1 + c)1 ≥ 1 + 1 · c

• the inductive step: suppose m ∈ N, m > 1 and (1 + c)m ≥ 1 +mc, then

(1 + c)m+1 ≥ (1 +mc)(1 + c) = 1 + (m+ 1)c+mc2 ≥ 1 + (m+ 1)c
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Functions

Definition 1.9 If A and B are sets, a function f : A → B is a mapping that assigns
each x ∈ A to a unique element in B denoted f(x).

Definition 1.10 Consider a function f : A → B. Define the image (or direct image) of
a subset C ⊆ A as

f(C) = {f(x) ∈ B | x ∈ C}.
Define the inverse image of a subset D ⊆ B as

f−1(D) = {x ∈ A | f(x) ∈ D}.

examples:

• f : {1, 2, 3, 4} → {a, b} where f(1) = f(2) = a, f(3) = f(4) = b, we have
f({1, 2}) = {a}, f−1({b}) = {3, 4}

• f : R → R where f(x) = sin(πx), we have f([0, 1/2]) = [0, 1], f−1({0}) = Z
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Definition 1.11 Let f : A → B be a function.

• The function f is injective or one-to-one if f(x1) = f(x2) implies x1 = x2.

• The function f is surjective or onto if f(A) = B.

• The function f is bijective if f is both surjective and injective. In this case, the
function f−1 : B → A is the inverse function of f , which assigns each y ∈ B to
the unique x ∈ A such that f(x) = y.

• if the function f is a bijection, then f(f−1(x)) = x

• example: for the bijection f : R → R given by f(x) = x3, we have f−1(x) = 3
√
x

Definition 1.12 Consider f : A → B and g : B → C. The composition of the functions
f and g is the function g ◦ f : A → C defined as

(g ◦ f)(x) = g(f(x)).

• example: if f(x) = x3 and g(y) = sin(y), then (g ◦ f)(x) = sin(x3)
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Cardinality

Definition 1.13 We state that the two sets A and B have the same cardinality if there
exists a bijection f : A → B.

notation:

• |A| denotes the cardinality of the set A

• |A| = |B| if the sets A and B have the same cardinality

• |A| = n if |A| = |{1, . . . , n}|

• |A| ≤ |B| if there exists an injection f : A → B

• |A| < |B| if |A| ≤ |B| and |A| ≠ |B|
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Theorem 1.14

• If |A| = |B|, then |B| = |A|.
• If |A| = |B|, and |B| = |C|, then |A| = |C|.

proof:

• show that the inverse function f−1 : B → A of f : A → B is a bijection

• show that the composition g ◦ f : A → C of functions f : A → B and g : B → C
is a bijection

Theorem 1.15 Cantor-Schröder-Bernstein. If |A| ≤ |B| and |B| ≤ |A| then |A| = |B|.

Definition 1.16 The set A is countably finite if |A| = |N|. Specifically, the set A
is finite if |A| = n ∈ N. The set A is countable if A is finite or countably infinite.
Otherwise, we say A is uncountable.
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Example 1.17 The set of even natural numbers and the set of odd natural numbers
have the same cardinality as N, i.e., |{2n | n ∈ N}| = |{2n− 1 | n ∈ N}| = |N|.

proof: consider the bijection f : N → {2n | n ∈ N} given by f(n) = 2n and
g : N → {2n− 1 | n ∈ N} given by g(n) = 2n− 1

Example 1.18 The set of all integers has the same cardinality as N, i.e., |Z| = |N|.

proof: consider the bijection f : Z → N given by

f(n) =

{
2n n ≥ 0

−(2n+ 1) n < 0
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Definition 1.19 The powerset of a set A, denoted by P(A), is the set of all subsets
of A, i.e., P(A) = {B | B ⊆ A}.

• for a finite set A of cardinality n, the cardinality of P(A) is 2n

examples:

• A = ∅ then P(A) = {∅}
• A = {1} then P(A) = {∅, {1}}
• A = {1, 2} then P(A) = {∅, {1}, {2}, {1, 2}}

Theorem 1.20 Cantor. If A is a set, then |A| < | P(A)|.

• therefore, |N| < | P(N)| < | P(P(N))| < · · · , i.e., there are infinite number of
infinite sets

proof:
we first show that |A| ≤ | P(A)|

• consider the function f : A → P(A) given by f(x) = {x}
• the function f is a injection since

f(x1) = f(x2) =⇒ {x1} = {x2} =⇒ x1 = x2

Basic set theory 1-14



we now show that |A| ≠ | P(A)| by contradiction

• suppose |A| = | P(A)|, then there is a surjection g : A → P(A)

• consider the set B ⊆ A given by

B = {x ∈ A | x /∈ g(x)} ∈ P(A)

• since g is surjective and B ∈ P(A), there exists a b ∈ A such that g(b) = B

• there are two cases

1. b ∈ B =⇒ b /∈ g(b) =⇒ b /∈ B

2. b /∈ B =⇒ b /∈ g(b) =⇒ b ∈ B

where in either case we obtain a contradiction

• hence, g is not surjective =⇒ |A| ≠ | P(A)|

Corollary 1.21 For all n ∈ N ∪ {0}, n < 2n.
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2. Real numbers

• ordered sets

• least upper bound property

• fields

• real numbers

• archimedian property

• using supremum and infimum

• absolute value

• triangle inequality

• uncountabality of the real numbers
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Ordered sets

Definition 2.1 An ordered set is a set S with a relation < called an ‘ordering’ such
that:

1. Trichotomy. For all x, y ∈ S, either x < y, x = y, or x > y.

2. Transitivity. If x, y, z ∈ S have x < y and y < z, then x < z.

examples:

• Z is an ordered set with ordering m > n ⇐⇒ m− n ∈ N

• Q is an ordered set with ordering p > q ⇐⇒ p− q = m/n for some m,n ∈ N

• Q×Q is an ordered set with dictionary ordering (q, r) > (s, t) ⇐⇒ q > s, or
q = s and r > t

• the set P(N) with ordering defined by A ≺ B if A ⊆ B is not an ordered set
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Least upper bound property

Definition 2.2 Let S be an ordered set and let E ⊆ S, then:

• If there exists some b ∈ S such that x ≤ b for all x ∈ E, then E is bounded
above and b is an upper bound of E.

• If there exists some c ∈ S such that x ≥ c for all x ∈ E, then E is bounded
below and c is a lower bound of E.

• If there exists an upper bound b0 of E such that b0 ≤ b for all upper bounds b of
E, then b0 is the least upper bound or the supremum of E, written as

b0 = supE.

• If there exists a lower bound c0 of E such that c0 ≥ c for all lower bounds c of E,
then c0 is the greatest lower bound or the infimum of E, written as

c0 = inf E.
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examples:

• S = Z and E = {−2,−1, 0, 1, 2}, then inf E = −2 and supE = 2

• S = Q and E = {q ∈ Q | 0 ≤ q < 1}, then inf E = 0 and supE = 1 /∈ E, i.e.,
the supremum or infimum need not be in E

• S = Z and E = N, then inf E = 1 but supE does not exist

Definition 2.3 Least upper bound property. An ordered set S has the least upper bound
property if every E ⊆ S which is nonempty and bounded above has a supremum in S.

example: −N = {−1,−2,−3, . . .}, to show this (informally), suppose E ⊆ −N is
bounded above, then −E ⊆ N is bounded below and according to the well ordering
principle, −E has a least element x ∈ −E, and thus −x = supE

Real numbers 2-4



Theorem 2.4 If x ∈ Q and

x = sup{q ∈ Q | q > 0, q2 < 2},

then x ≥ 1 and x2 = 2.

proof: let E = {q ∈ Q | q > 0, q2 < 2}
• x ≥ 1 since 1 ∈ E =⇒ supE ≥ 1

• we show x2 ≥ 2 by contradiction: suppose x2 < 2, let h = min{1
2 ,

2−x2

2(2x+1)}
– since x ≥ 1 and x2 < 2, we have 0 < h ≤ 1/2 < 1

– h < 1 =⇒ (x+ h)
2
= x2 + 2hx+ h2 < x2 + 2hx+ h

– since h ≤ 2−x2

2(2x+1) , we have

(x+ h)
2
< x2 + (2x+ 1)h ≤ x2 +

1

2
(2− x2) < x2 + 2− x2 = 2 =⇒ x+ h ∈ E

– h > 0 =⇒ x+ h > x, but x+ h ∈ E =⇒ x is not an upper bound for E, i.e.,
x ̸= supE, which is a contradiction
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• we now show x2 ≯ 2 by contradiction: suppose x2 > 2, let h = x2−2
2x

– since x2 > 2 and x ≥ 1, we have h > 0

– h > 0 =⇒ (x− h)
2
= x2 − 2hx+ h2 > x2 − 2hx = x2 − (x2 − 2) = 2

– let q ∈ E, then q2 < 2 < (x− h)
2, hence

(x− h)
2 − q2 = ((x− h) + q)((x− h)− q) > 0 =⇒ (x− h)− q > 0,

i.e., x− h > q for all q ∈ E =⇒ x− h is an upper bound for E

– h > 0 =⇒ x > x− h =⇒ x ̸= supE, which is a contradiction

• therefore, x2 = 2
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Theorem 2.5 The set E = {q ∈ Q | q > 0, q2 < 2} does not have a supremum in Q.

proof (by contradiction): suppose there exists some x ∈ Q such that x = supE

• by theorem 2.4, we have x ≥ 1 and x2 = 2

• in particular, x > 1 since if x = 1 =⇒ x2 = 1 ̸= 2

• x ∈ Q =⇒ there exist m,n ∈ N (m > n) such that x = m/n, i.e., m = nx ∈ N

• let S = {k ∈ N | kx ∈ N} ⊆ N, then S ̸= ∅ since n ∈ S

• by the well ordering property, there is a least element k0 ∈ S

• let k1 = k0(x− 1) = k0x− k0 ∈ Z, in particular, k1 ∈ N since x > 1 =⇒ k1 > 0

• x2 = 2 =⇒ x < 2 as otherwise x2 ≥ 4, hence

k1 = k0(x− 1) < k0(2− 1) = k0 =⇒ k1 /∈ S

• k1 = k0(x− 1) =⇒ k1x = k0x
2 − k0x, since x2 = 2, we have

k1x = 2k0 − k0x = k0 − k0(x− 1) = k0 − k1 ∈ N =⇒ k1 ∈ S,

which is a contradiction
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Fields

Definition 2.6 A set F is a field if it has two operations: addition (+) and multiplication
(·) with the following properties.

(A1) If x, y ∈ F then x+ y ∈ F .

(A2) Commutativity. For all x, y ∈ F , x+ y = y + x.

(A3) Associativity. For all x, y, z ∈ F , (x+ y) + z = x+ (y + z).

(A4) There exists an element 0 ∈ F such that 0 + x = x = x+ 0 for all x ∈ F .

(A5) For all x ∈ F , there exists a y ∈ F such that x+ y = 0, denoted by y = −x.

(M1) If x, y ∈ F then x · y ∈ F .

(M2) Commutativity. For all x, y ∈ F , x · y = y · x.
(M3) Associativity. For all x, y, z ∈ F , (x · y) · z = x · (y · z).
(M4) There exists an element 1 ∈ F such that 1 · x = x = x · 1 for all x ∈ F .

(M5) For all x ∈ F \ {0}, there exists an x−1 ∈ F such that x · x−1 = 1.

(D) Distributativity. For all x, y, z ∈ F , (x+ y) · z = x · z + y · z.
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examples:

• Q is a field

• Z is not a field since it fails (M5)

• Z2 = {0, 1} where 1 + 1 = 0 (mod 2) is a field

• Z3 = {0, 1, 2} with c = a+ b (mod 3), i.e.,

2 + 1 = 3 = 0 and 2 · 2 = 4 = 3 + 1 = 1,

is a field

Theorem 2.7 If x ∈ F where F is a field then 0x = 0.

proof: xx = (x+ 0)x = xx+ 0x =⇒ 0x = 0
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Definition 2.8 A field F is an ordered field if F is also an ordered set with ordering
< and satisfies:

1. For all x, y, z ∈ F , x < y =⇒ x+ z < y + z.

2. If x > 0 and y > 0 then xy > 0.

If x > 0 we say x is positive, and if x ≥ 0 we say x is nonnegative.

examples:

• Q is an ordered field

• Z2 = {0, 1} where 1 + 1 = 0 is not a ordered field
(if 0 > 1 =⇒ 0+1 > 1+1 =⇒ 1 > 0; if 1 > 0 =⇒ 1+1 > 1+0 =⇒ 0 > 1)
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Theorem 2.9 Let F be an ordered field and x, y, z, w ∈ F , then:

• If x > 0 then −x < 0 (and vice versa).

• If x > 0 and y < z then xy < xz.

• If x < 0 and y < z then xy > xz.

• If x ̸= 0 then x2 > 0.

• If 0 < x < y then 0 < 1/y < 1/x.

• If 0 < x < y then x2 < y2.

• If x ≤ y and z ≤ w then x+ z ≤ y + w.

Theorem 2.10 Let x, y ∈ F where F is an ordered field. If x > 0 and y < 0 or x < 0
and y > 0, then xy < 0.

proof:

• x > 0, y < 0 =⇒ x > 0, −y > 0 =⇒ −xy > 0 =⇒ xy < 0

• x < 0, y > 0 =⇒ −x > 0, y > 0 =⇒ −xy > 0 =⇒ xy < 0
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Theorem 2.11 Greatest lower bound. Let F be an ordered field with the least upper
bound property. If A ⊆ F is nonempty and bounded below, then inf A exists in F .

proof: let B = {−x | x ∈ A}
• A ⊆ F bounded below =⇒ ∃a ∈ F , ∀x ∈ A, a ≤ x =⇒ ∃a ∈ F , ∀x ∈ A,
−a ≥ −x =⇒ ∃a ∈ F , ∀x ∈ B, −a ≥ x =⇒ B ⊆ F has an upper bound −a
(this also shows that if a is a lower bound of A then −a is an upper bound of B)

• F has the least upper bound property =⇒ supB ∈ F

• let c = supB, then c ≥ x, ∀x ∈ B =⇒ −c ≤ −x, ∀x ∈ B =⇒ −c ≤ x,
∀x ∈ A =⇒ −c ∈ F is an lower bound of A

• we also have c ≤ −a with a being a lower bound of A =⇒ −c ≥ a =⇒ −c ∈ F
is the greatest lower bound of A, i.e., −c = inf A ∈ F
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Real nubmers

Theorem 2.12 There exists a “unique” ordered field, labeled R, such that Q ⊆ R and
R has the least upper bound property.

• one can construct R using Dedekind cuts or as equivalence classes of Cauchy
sequences.

Theorem 2.13 There exists a unique r ∈ R such that r ≥ 1 and r2 = 2, i.e.,
√
2 ∈ R

but
√
2 /∈ Q.

proof: let E = {x ∈ R | x > 0, x2 < 2} ⊆ R

• we have x < 2 for all x ∈ E (since if x ≥ 2 =⇒ x2 ≥ 4) =⇒ E is bounded
above =⇒ supE exists in R

• let r = supE, using the same proof for theorem 2.4 we have r ≥ 1 and r2 = 2

• to show the uniqueness, suppose r̃ ≥ 1, r̃2 = 2, then

r2 − r̃2 = 0 =⇒ (r + r̃)(r − r̃) = 0 =⇒ r − r̃ = 0 =⇒ r = r̃

(since r ≥ 1, r̃ ≥ 1 =⇒ r + r̃ > 0)
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Theorem 2.14 If x ∈ R satisfies x < ϵ for all ϵ ∈ R, ϵ > 0, then x ≤ 0.

proof by contradiction:

• suppose x > 0 satisfies x ≤ ϵ for all ϵ > 0

• x > 0 =⇒ 2x > x > 0 =⇒ x > x/2 > 0

• take ϵ = x/2 we have x > ϵ > 0, which is a contradiction
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Archimedian property

Theorem 2.15 Archimedian property. If x, y ∈ R and x > 0, then there exists an
n ∈ N such that nx > y.

proof by contradiction:

• suppose nx ≤ y for all n ∈ N =⇒ ∀n ∈ N, n ≤ y/x =⇒ N is bounded above
by y/x =⇒ there exists supN ∈ R

• let a = supN =⇒ a− 1 < a is not an upper bound of N =⇒ ∃m ∈ N,
a− 1 < m =⇒ a < m+ 1 ∈ N =⇒ a is not an upper bound of N, which is a
contradiction

Theorem 2.16 Density of Q. If x, y ∈ R and x < y then there exists some r ∈ Q such
that x < r < y.

proof:

• first suppose 0 ≤ x < y, by the Archimedian property, we have

n(y − x) > 1 =⇒ ny > nx+ 1

for some n ∈ N
Real numbers 2-15

• let S = {k ∈ N | k > nx} ⊆ N, by Archimedian property, there exists some
p ∈ N such that p > nx =⇒ S ̸= ∅

• by the well ordering property, there is a least element m ∈ S such that m > nx

• m ∈ N =⇒ m ≥ 1

• if m = 1, then m− 1 = 0 =⇒ nx ≥ m− 1 = 0 since x ≥ 0

• if m > 1, then m− 1 ∈ N but m− 1 /∈ S since m > m− 1 is the least element
=⇒ nx ≥ m− 1 =⇒ m ≤ nx+ 1 < ny

• hence, we have
nx < m < ny =⇒ x < m/n < y

for some m,n ∈ N, i.e., there exists an r = m/n ∈ Q such that x < r < y

• now suppose x < 0, if x < 0 < y then simply take r = 0; if x < y ≤ 0, we have
0 ≤ −y < −x, thus there exists some r̃ ∈ Q such that

−y < r̃ < −x =⇒ x < −r̃ < y

(by the first case), i.e., we have x < r < y by taking r = −r̃
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Theorem 2.17 Suppose S ⊆ R is nonempty and bounded above. Then, x = supS if
and only if:

1. x is an upper bound of S.

2. For all ϵ > 0, there exists some y ∈ S such that x− ϵ < y ≤ x.

proof:

• first suppose x = supS

– obviously, x is an upper bound of S

– for all ϵ > 0, we have x > x− ϵ =⇒ x− ϵ is not an upper bound of S, i.e., there
exists some y ∈ S such that x− ϵ < y ≤ x

• now suppose x is an upper bound of S, and satisfies x− ϵ < y ≤ x for all ϵ > 0
and for some y ∈ S, we only need to show that for all z that is an upper bound of
S, we have x ≤ z

– assume there exists an upper bound z of S smaller than x, i.e., y ≤ z < x for all
y ∈ S

– take ϵ = x− z > 0 (since x > z) =⇒ x ≥ y > x− ϵ = x− x+ z = z =⇒ y > z
for some y ∈ S, i.e., z is not an upper bound of S, which is a contradiction
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Theorem 2.18 Let S = {1− 1
n | n ∈ N}, then supS = 1.

proof:

• if n ∈ N, then 1− 1
n < 1 =⇒ 1 is an upper bound of S

• let ϵ > 0, then by the Archimedian property, for some n ∈ N, we have

nϵ > 1 =⇒ ϵ >
1

n
=⇒ −ϵ < − 1

n
=⇒ 1− ϵ < 1− 1

n
≤ 1

by theorem 2.17, we have supS = 1

Remark 2.19 We have similar property as theorem 2.17 for infimum. Suppose S ⊆ R
is nonempty and bounded below, then x = inf S if and only if:

• x is a lower bound of S.

• For all ϵ > 0, there exists some y ∈ S such that x ≤ y < x+ ϵ.
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Using supremum and infimum

Definition 2.20 For x ∈ R and A ⊆ R, define

x+A = {x+ a | a ∈ A}, xA = {xa | a ∈ A}.

Theorem 2.21 Let A ⊆ R be nonempty, we have:

• If x ∈ R and A is bounded above, then sup(x+A) = x+ supA.

• If x > 0 and A is bounded above, then sup(xA) = x supA.

proof:

• suppose x ∈ R and A is bounded above:
– for all a ∈ A, we have a ≤ supA =⇒ x+ a ≤ x+ supA, i.e., the set x+A is

bounded by x+ supA

– let ϵ > 0, for some b ∈ A, we have

supA− ϵ < b ≤ supA =⇒ (x+ supA)− ϵ < x+ b ≤ x+ supA,

i.e., sup(x+A) = x+ supA
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• suppose x > 0 and A is bounded above:

– for all a ∈ A, a ≤ supA =⇒ xa ≤ x supA, i.e., the set xA is bounded by x supA
– let ϵ > 0 =⇒ ϵ/x > 0, for some b ∈ A, we have

supA− ϵ/x < b ≤ supA =⇒ x supA− ϵ < xb ≤ x supA,

i.e., sup(xA) = x supA

Remark 2.22 Similarly, we can also show that:

• If x ∈ R and A is bounded below, then inf(x+A) = x+ inf A.

• If x > 0 and A is bounded below, then inf(xA) = x inf A.

• If x < 0 and A is bounded below, then sup(xA) = x inf A.

• If x < 0 and A is bounded above, then inf(xA) = x supA.

Theorem 2.23 Let A,B ⊆ R where x ≤ y for all x ∈ A, y ∈ B, then supA ≤ inf B.

proof: for all x ∈ A, y ∈ B, x ≤ y =⇒ B is bounded below by x =⇒ x ≤ inf B
=⇒ A is bounded above by inf B =⇒ supA ≤ inf B
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Absolute value

Definition 2.24 If x ∈ R, we define the absolute value of x as

|x| =
{

x x ≥ 0

−x x < 0.

Theorem 2.25

• |x| ≥ 0, and, |x| = 0 if and only if x = 0.

• | − x| = |x| for all x ∈ R.

• |xy| = |x||y| for all x, y ∈ R.

• |x|2 = x2 for all x ∈ R.

• |x| ≤ y if and only if −y ≤ x ≤ y.

• −|x| ≤ x ≤ |x| for all x ∈ R.
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Triangle inequality

Theorem 2.26 Triangle inequality. For all x, y ∈ R,

|x+ y| ≤ |x|+ |y|.

proof: let x, y ∈ R

• x+ y ≤ |x|+ |y|

• −x+−y ≤ | − x|+ | − y| = |x|+ |y| =⇒ −(|x|+ |y|) ≤ x+ y

• hence, we have

−(|x|+ |y|) ≤ x+ y ≤ |x|+ |y| =⇒ |x+ y| ≤ |x|+ |y|

Corollary 2.27 Reverse triangle inequality. For all x, y ∈ R,

∣∣|x| − |y|
∣∣ ≤ |x− y|.
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Uncountabality of the real numbers

Definition 2.28 Let x ∈ (0, 1] and let d−i ∈ {0, 1, . . . , 9}. We say that x is represented
by the digits {d−i | i ∈ N}, i.e., x = 0.d−1d−2 · · · , if

x = sup{10−1d−1 + 10−2d−2 + · · ·+ 10−nd−n | n ∈ N}.

example: 0.2500 · · · = sup{ 2
10 ,

2
10 + 5

100 ,
2
10 + 5

100 + 0
1000 , . . .} = sup{1

5 ,
1
4} = 1

4

Theorem 2.29

• For all set of digits {d−i | i ∈ N}, there exists a unique x ∈ [0, 1] such that
x = 0.d−1d−2 · · · .

• For all x ∈ (0, 1], there exists a unique sequence of digits d−i such that
x = 0.d−1d−2 · · · and

0.d−1d−2 · · · d−n < x ≤ 0.d−1d−2 · · · d−n + 10−n, for all n ∈ N. (2.1)

• the second part indicates that the digital representation of 1/2 is 0.4999 · · ·
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Theorem 2.30 Cantor. The set (0, 1] is uncountable.

proof (by contradiction):

• assume (0, 1] is countable, then there exists a bijection x : N → (0, 1], let

x(n) = 0.d
(n)
−1d

(n)
−2 · · · , n ∈ N,

where d
(n)
−i denotes the ith decimal of the real number x(n) ∈ (0, 1], and let

e−i =

{
1 d

(i)
−i ̸= 1

2 d
(i)
−i = 1

(2.2)

• let y = 0.e−1e−2 · · · , since all e−i are nonzero, e−1, e−2, . . . satisfies (2.1);
according to theorem 2.29, we have 0.e−1e−2 · · · being the unique decimal
representation of y

• again according to theorem 2.29 and all e−i are nonzero, we have y ∈ (0, 1] =⇒
∃m ∈ N, y = x(m) = 0.d

(m)
−1 d

(m)
−2 · · · = 0.e−1e−2 · · · , however, we have

e−m ̸= d
(m)
−m since (2.2), i.e., for all m ∈ N, x(m) ̸= y, which is a contradiction

Corollary 2.31 The set of real numbers R is uncountable.
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3. Sequences

• sequences and limits

• monotone sequences and subsequences

• inequalities and operations involving limits

• limit superior and limit inferior

• Bolzano-Weierstrass theorem

• Cauchy sequences
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Sequences and limits

Definition 3.1 A sequence (of real numbers) is a function x : N → R. To denote a
sequence we write (xn)

∞
n=1, where xn is the nth element in the sequence.

• sequence need not start at n = 1, e.g., the sequence x : {n ∈ Z | n ≥ m} → R is
denoted (xn)

∞
n=m

Definition 3.2 A sequence (xn)
∞
n=1 is bounded if there exists some B ≥ 0 such that

|xn| ≤ B for all n ∈ N.

examples:

• the sequence
(
1
n

)∞
n=1

is bounded since 1
n ≤ 1 for all n

• the sequence (n)∞n=1 is not bounded since for all B ≥ 0 there exists some n ≥ B
according to the Archimedian property
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Definition 3.3 A sequence (xn)
∞
n=1 is said to converge to x ∈ R if for all ϵ > 0, there

exists an M ∈ N such that for all n ≥ M , we have |xn − x| < ϵ.

The number x is called a limit of the sequence. If the limit x is unique, we write

x = lim
n→∞

xn.

A sequence that converges is said to be convergent, and otherwise is divergent.

Remark 3.4 A sequence (xn)
∞
n=1 is divergent if for all x ∈ R, there exists some ϵ > 0,

such that for all M ∈ N, there exists an n ≥ M , so that |xn − x| ≥ ϵ.

Theorem 3.5 Let x, y ∈ R. If for all ϵ > 0, |x− y| < ϵ, then x = y.

proof: assume x ̸= y =⇒ |x− y| > 0; take ϵ = 1
2 |x− y| =⇒ |x− y| < 1

2 |x− y|
=⇒ |x− y| < 0, which is a contradiction

Theorem 3.6 If (xn)
∞
n=1 converges to x and y, then x = y, i.e., a convergent sequence

has a unique limit.

Sequences 3-3

proof: let ϵ > 0

• (xn)
∞
n=1 converges to x =⇒ ∃M1 ∈ N, ∀n ≥ M1, |xn − x| < ϵ/2

• (xn)
∞
n=1 converges to y =⇒ ∃M2 ∈ N, ∀n ≥ M2, |xn − y| < ϵ/2

• let M = M1 +M2, then M ≥ M1 and M ≥ M2, then we have

|xM − x| < ϵ/2 and |xM − y| < ϵ/2,

hence,

|x− y| = |(x− xM ) + (xM − y)|
≤ |x− xM |+ |y − xM |
< ϵ/2 + ϵ/2

= ϵ

• according to theorem 3.5, we have x = y

Remark 3.7 Sometimes we write ‘xn → x as n → ∞’ to mean x = limn→∞ xn. We
may also avoid the ‘as n → ∞’ part if the limiting process is clear from the context.
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Example 3.8 Given the sequence (xn)
∞
n=1 with xn = c ∈ R for all n ∈ N, we have

limn→∞ xn = c.

proof: let ϵ > 0, M = 1, then for all n ≥ M , we have |xn − c| = |c− c| = 0 < ϵ

Example 3.9 The sequence
(
1
n

)∞
n=1

converges to x = 0, i.e., limn→∞ 1
n = 0.

proof: let ϵ > 0, choose an M ∈ N such that M > 1/ϵ (such an M exists according
to the Archimedian property), then for all n ≥ M , we have

∣∣ 1
n − 0

∣∣ =
∣∣ 1
n

∣∣ ≤ 1
M < ϵ

Example 3.10 The sequence
(

1
n2+2n+100

)∞
n=1

converges to x = 0.

proof: let ϵ > 0 choose M ∈ N such that M ≥ ϵ−1/2, then for all n ≥ M , we have

∣∣∣∣
1

n2 + 2n+ 100
− 0

∣∣∣∣ =
1

n2 + 2n+ 100
≤ 1

2n
≤ 1

2M
< ϵ
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Example 3.11 The sequence (xn)
∞
n=1 where xn = (−1)n is divergent.

proof: let x ∈ R, M ∈ N, then

|xM − xM+1| =
∣∣∣(−1)M − (−1)M+1

∣∣∣ = 2

=⇒ 2 = |(xM − x) + (x− xM+1)| ≤ |xM − x|+ |xM+1 − x|
=⇒ |xM − x| ≥ 1 or |xM+1 − x| ≥ 1,

i.e., let ϵ = 1, n = M , we have either |xn − x| ≥ ϵ or |xn+1 − x| ≥ ϵ

Theorem 3.12 If (xn)
∞
n=1 is convergent, then (xn)

∞
n=1 is bounded.

proof:

• suppose (xn)
∞
n=1 converges to x, let ϵ = 1, then there exists some M ∈ N such

that for all n ≥ M , |xn − x| < 1 =⇒ xn < |x|+ 1

• let B = max{|x1|, |x2|, . . . , |xM |, |x|+ 1}, since xn ≤ |xn| for all n ∈ N, n ≤ M ,
and xn < |x|+ 1 for all n ≥ M , we have B ≥ |xn| for all n ∈ N
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Monotone sequences

Definition 3.13

• A sequence (xn)
∞
n=1 is monotone increasing if xn ≤ xn+1 for all n ∈ N.

• A sequence (xn)
∞
n=1 is monotone decreasing if xn ≥ xn+1 for all n ∈ N.

• If (xn)
∞
n=1 is either monotone increasing or monotone decreasing, we say the

sequence (xn)
∞
n=1 is monotone (or monotonic).

examples:

• the sequence
(
1
n

)∞
n=1

is monotone decreasing

• the sequence
(
− 1

n

)∞
n=1

is monotone increasing

• the sequence ((−1)n)∞n=1 is not monotone
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Theorem 3.14 A monotone sequence (xn)
∞
n=1 converges if and only if it is bounded.

• If the sequence (xn)
∞
n=1 is monotone increasing and bounded, then

lim
n→∞

xn = sup{xn | n ∈ N}.

• If the sequence (xn)
∞
n=1 is monotone decreasing and bounded, then

lim
n→∞

xn = inf{xn | n ∈ N}.

proof: we prove for monotone increasing sequences, the other case is similar

• suppose (xn)
∞
n=1 is convergent, according to theorem 3.12, it is bounded

• suppose (xn)
∞
n=1 is monotone increasing and bounded

– (xn)
∞
n=1 is monotone increasing =⇒ xn ≤ xn+1 for all n ∈ N

– (xn)
∞
n=1 is bounded =⇒ the set {xn | n ∈ N} has supremum x = sup{xn | n ∈ N}

– let ϵ > 0, according to theorem 2.17, there exists some M ∈ N such that
x− ϵ < xM ≤ x, then for all n ≥ M , we have

x− ϵ < xM ≤ xn ≤ x < x+ ϵ =⇒ |xn − x| < ϵ
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Example

recall the following lemma from example 1.8 for the proof of the next theorem:

Lemma 3.15 Bernoulli’s inequality. If x ≥ −1 then (x+ 1)n ≥ 1 + nx for all n ∈ N.

Theorem 3.16 If c ∈ (0, 1) then the sequence (cn)∞n=1 converges and limn→∞ cn = 0.
If c > 1, the sequence (cn)∞n=1 does not converge.

proof:

• if c > 1, we show that the sequence (cn)∞n=1 is unbounded (and hence does not
converge):

– let B ≥ 0, then there exists some n ∈ N, n > B
c−1 such that

cn = ((c− 1) + 1)
n ≥ 1 + n(c− 1) > n(c− 1) > B

(the first inequality is because of lemma 3.15)
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• if c ∈ (0, 1), we first show that (cn)∞n=1 is monotone decreasing and bounded (and
hence, convergent), i.e., show that cn+1 ≤ cn ≤ c for all n ∈ N by induction:

– suppose n = 1 =⇒ c2 ≤ c ≤ c, the first inequality holds since 0 < c < 1

– suppose n > 1, and cn+1 ≤ cn ≤ c, then we have cn+2 ≤ cn+1 ≤ cn ≤ c

let limn→∞ cn = L, we now show that L = 0

– let ϵ > 0, then there exists some M ∈ N such that for all n ≥ M such that

|cn − L| < 1

2
(1− c)ϵ

– hence, we have

(1− c)|L| = |L− cL|
= |(L− cM+1) + (cM+1 − cL)|
≤ |L− cM+1|+ c|cM − L|
< |L− cM+1|+ |cM − L|

<
1

2
(1− c)ϵ+

1

2
(1− c)ϵ

= (1− c)ϵ,

i.e., |L| < ϵ for all ϵ > 0 (according to theorem 2.14) =⇒ |L| ≤ 0 =⇒ L = 0
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Subsequences

Definition 3.17 Let (xn)
∞
n=1 be a sequence and (ni)

∞
i=1 be a strictly increasing sequence

of natural numbers. The sequence (xni)
∞
i=1 is called a subsequence of (xn)

∞
n=1.

example: consider the sequence (xn)
∞
n=1 = (n)∞n=1, i.e., 1, 2, 3, 4, . . .

• the following are subsequences of (xn)
∞
n=1:

– 1, 3, 5, 7, 9, 11, . . ., described with (xni
)
∞
i=1 = (x2i−1)

∞
i=1

– 2, 4, 6, 8, 10, 12, . . ., described with (xni
)
∞
i=1 = (x2i)

∞
i=1

– 2, 3, 5, 7, 11, 13, . . ., described with (xni)
∞
i=1 where ni are primes

• the following are not subsequences of (xn)
∞
n=1:

– 1, 1, 1, 1, 1, 1, . . .

– 1, 1, 3, 3, 5, 5, . . .
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Theorem 3.18 If limn→∞ xn = x, then all subsequences of (xn)
∞
n=1 converge to x.

proof:

• let (xni)
∞
i=1 be a subsequence of (xn)

∞
n=1

• let ϵ > 0, then there exists some M0 ∈ N such that |xn − x| < ϵ for all n ≥ M0

• let M = M0, then for all i ≥ M , since ni ≥ i ≥ M = M0, we have

|xni − x| < ϵ

Remark 3.19 Theorem 3.18 implies that the sequence ((−1)n)∞n=1 is divergent.
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Inequalities involving limits

Theorem 3.20 The sequence (xn)
∞
n=1 converges with limn→∞ xn = x if and only if

the sequence (|xn − x|)∞n=1 converges with limn→∞ |xn − x| = 0.

proof: let ϵ > 0

• suppose limn→∞ xn = x, then ∃M0 ∈ N such that ∀n ≥ M0, |xn − x| < ϵ; let
M = M0, then ∀n ≥ M = M0, |xn − x− 0| = |xn − x| < ϵ

• suppose limn→∞ |xn − x| = 0, then ∃M ∈ N, ∀n ≥ M , |xn − x− 0| < ϵ, i.e.,
|xn − x| < ϵ

Theorem 3.21 Squeeze theorem. Let (an)
∞
n=1, (bn)

∞
n=1, and (xn)

∞
n=1 be sequences

such that
an ≤ xn ≤ bn

for all n ∈ N. Suppose that (an)
∞
n=1 and (bn)

∞
n=1 converge and

lim
n→∞

an = x = lim
n→∞

bn.

Then (xn)
∞
n=1 converges and limn→∞ xn = x.
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proof: let ϵ > 0

• an → x =⇒ ∃M1 ∈ N such that ∀n ≥ M1, |an − x| < ϵ

• bn → x =⇒ ∃M2 ∈ N such that ∀n ≥ M2, |bn − x| < ϵ

• an ≤ xn ≤ bn =⇒ an − x ≤ xn − x ≤ bn − x

• take M = max{M1,M2}, then ∀n ≥ M , we have

−ϵ < an − x ≤ xn − x ≤ bn − x < ϵ =⇒ |xn − x| < ϵ

Example 3.22 The sequence
(

n2

n2+n+1

)∞
n=1

converges with limn→∞ n2

n2+n+1
= 1.

proof:

• let ϵ > 0, we have

0 ≤
∣∣∣∣

n2

n2 + n+ 1
− 1

∣∣∣∣ =
∣∣∣∣

n+ 1

n2 + n+ 1

∣∣∣∣ ≤
n+ 1

n2 + n
=

1

n

• 0 → 0 and 1
n → 0 =⇒

∣∣∣ n2

n2+n+1
− 1
∣∣∣→ 0 =⇒ n2

n2+n+1
→ 1
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Theorem 3.23 Let (xn)
∞
n=1 and (yn)

∞
n=1 be sequences.

• If (xn)
∞
n=1 and (yn)

∞
n=1 converge and xn ≤ yn for all n ∈ N, then we have

limn→∞ xn ≤ limn→∞ yn.

• If (xn)
∞
n=1 converges and a ≤ xn ≤ b for all n ∈ N, then a ≤ limn→∞ xn ≤ b.

proof: we show the first statement since the second statement can then be proved by
considering sequences (yn)

∞
n=1 and (zn)

∞
n=1 where yn = a ≤ xn ≤ b = zn

• let limn→∞ xn = x and limn→∞ yn = y, suppose x > y

• x > y =⇒ x− y > 0, let ϵ = x−y
2 > 0

• xn → x =⇒ ∃M1 ∈ N s.t. ∀n ≥ M1, |xn − x| < x−y
2

• yn → y =⇒ ∃M2 ∈ N s.t. ∀n ≥ M2, |yn − y| < x−y
2

• let M = max{M1,M2}, we have xM − x > −x−y
2 and yM − y < x−y

2 , hence,

xM > x− x− y

2
=

x+ y

2
= y +

x− y

2
> yM ,

which contradicts to xn ≤ yn for all n ∈ N
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Operations involving limits

Theorem 3.24 Suppose limn→∞ xn = x and limn→∞ yn = y.

• The sequence (xn + yn)
∞
n=1 is convergent and limn→∞(xn + yn) = x+ y.

• For all c ∈ R, the sequence (cxn)
∞
n=1 is convergent and limn→∞ cxn = cx.

• The sequence (xnyn)
∞
n=1 is convergent and limn→∞ xnyn = xy.

• If yn ̸= 0 for all n ∈ N and y ̸= 0, then the sequence
(
xn
yn

)∞
n=1

is convergent and

limn→∞ xn
yn

= x
y .

proof:

• to show xn → x, yn → y =⇒ xn + yn → x+ y, let ϵ > 0

– xn → x =⇒ ∃M1 ∈ N such that ∀n ≥ M1, |xn − x| < ϵ/2

– yn → y =⇒ ∃M2 ∈ N such that ∀n ≥ M2, |yn − y| < ϵ/2

– let M = max{M1,M2}, then for all n ≥ M , we have

|(xn + yn)− (x+ y)| ≤ |xn − x|+ |yn − y| < ϵ/2 + ϵ/2 = ϵ
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• to show xn → x =⇒ cxn → cx, let ϵ > 0

– xn → x =⇒ ∃M ∈ N such that ∀n ≥ M , |xn − x| < 1
|c|+1ϵ

– then for all n ≥ M , we have |cxn − cx| = |c||xn − x| < |c|
|c|+1ϵ < ϵ

• we show that xn → x, yn → y =⇒ xnyn → xy:

– xn → x =⇒ |xn − x| → 0

– yn → y =⇒ |yn − y| → 0, and (yn)
∞
n=1 is bounded, i.e., ∃B ≥ 0, |yn| ≤ B

– hence, we have

0 ≤ |xnyn − xy| = |xnyn + xyn − xyn − xy|
= |(xn − x)yn + (yn − y)x|
≤ |xn − x||yn|+ |yn − y||x|
≤ |xn − x|B + |yn − y||x|

– according to the previous statements, |xn − x| → 0 =⇒ |xn − x|B → 0,
|yn − y| → 0 =⇒ |yn − y||x| → 0, then |xn − x|B + |yn − y||x| → 0

– hence, according to theorem 3.21, |xnyn − xy| → 0
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• to prove xn → x, yn → y (yn ̸= 0 for all n ∈ N, y ̸= 0) =⇒ xn
yn

→ x
y , we first

show that there exists some b > 0 such that |yn| ≥ b:

– let ϵ = |y|
2 , then yn → y =⇒ ∃M ∈ N s.t. ∀n ≥ M , |yn − y| < |y|

2

– then for all n ≥ M , we have

|y|
2

> |yn − y| ≥ ||yn| − |y|| =⇒ |yn| >
|y|
2

(the second inequality is from the reverse triangle inequality)

– take b = min{|y1|, . . . , |yM |, |y|/2}, we have |yn| ≥ b for all n ∈ N

we then show that
(

1
yn

)∞
n=1

converges with limn→∞ 1
yn

= 1
y : note that

0 ≤
∣∣∣∣
1

yn
− 1

y

∣∣∣∣ =
∣∣∣∣
yn − y

yny

∣∣∣∣ =
|yn − y|
|yn||y|

≤ |yn − y|
b|y| ,

and yn → y =⇒ |yn−y|
b|y| → 0, hence,

∣∣∣ 1
yn

− 1
y

∣∣∣→ 0, i.e., 1
yn

→ 1
y

put together, xn → x and 1
yn

→ 1
y =⇒ xn

yn
→ x

y
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Theorem 3.25 If (xn)
∞
n=1 is a convergent sequence with limn→∞ xn = x, and xn ≥ 0

for all n ∈ N, then the sequence
(√

xn
)∞
n=1

is convergent and limn→∞
√
xn =

√
x.

proof:

• suppose x = 0, let ϵ > 0, then we have xn → 0 =⇒ ∃M ∈ N s.t. ∀n ≥ M ,
|xn − 0| = |xn| < ϵ2 =⇒ ∀n ≥ M , |√xn −√

x| = |√xn| <
√
ϵ2 < ϵ

• suppose x > 0, we have

0 ≤ |√xn −√
x| =

∣∣∣∣
(
√
xn −√

x)(
√
xn +

√
x)√

xn +
√
x

∣∣∣∣ =
|xn − x|√
xn +

√
x
≤ |xn − x|√

x
,

hence, xn → x =⇒ |xn − x| → 0 =⇒ |xn−x|√
x

→ 0 =⇒ |√xn −√
x| → 0

Remark 3.26 Suppose the sequence (xn)
∞
n=1 is convergent and limn→∞ xn = x. One

can prove that limn→∞ xkn = xk by induction. Moreover, if xn ≥ 0 for all n ∈ N, one
can also prove that limn→∞ k

√
xn = k

√
x.
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Theorem 3.27 If (xn)
∞
n=1 is convergent and limn→∞ xn = x, then (|xn|)∞n=1 is conver-

gent and limn→∞ |xn| = |x|.

proof: let ϵ > 0

• xn → x =⇒ ∃M ∈ N such that ∀n ≥ M , |xn − x| < ϵ

• by reverse triangle inequality, for all n ≥ M , we have

||xn| − |x|| ≤ |xn − x| < ϵ

Sequences 3-20



Some special sequences

Theorem 3.28 If p > 0 then limn→∞ n−p = 0.

proof: let ϵ > 0, choose M ∈ N such that M > (1/ϵ)1/p, then for all n ≥ M ,
|n−p − 0| = 1/np ≤ 1/Mp < ϵ

Theorem 3.29 If p > 0 then limn→∞ p1/n = 1.

proof:

• if p = 1, limn→∞ p1/n = limn→∞ 11/n = 1

• suppose p > 1

– p > 1 =⇒ p1/n > 11/n = 1 =⇒ p1/n − 1 > 0

– according to the Bernoulli’s inequality (example 1.8), we have

(
1 + (p1/n − 1)

)n
≥ 1 + n(p1/n − 1) =⇒ p− 1

n
≥ p1/n − 1 > 0

– p−1
n → 0 =⇒ p1/n − 1 → 0 =⇒ p1/n → 1

• if 0 < p < 1 =⇒ 1/p > 1, hence, limn→∞ p1/n = limn→∞ 1

(1/p)1/n
= 1/1 = 1
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Theorem 3.30 The sequence
(
n1/n

)∞
n=1

is convergent and limn→∞ n1/n = 1.

proof:

• one can simply show that n1/n ≥ 1 by induction =⇒ n1/n − 1 > 0

• according to the binomial theorem, for all x, y ∈ R and n ∈ N, we have
(x+ y)n =

∑n
k=0

(
n
k

)
xn−kyk, where

(
n
k

)
= n!

k!(n−k)!

• let x = 1, y = n1/n − 1, for all n > 1, we have

n = (1 + n1/n − 1)
n
=

n∑

k=0

(
n

k

)
(n1/n − 1)

k ≥
(
n

2

)
(n1/n − 1)

2

=⇒ n ≥ n!

2!(n− 2)!
(n1/n − 1)

2
=

1

2
n(n− 1)(n1/n − 1)

2

=⇒
√

2

n− 1
≥ n1/n − 1 > 0

=⇒ n1/n − 1 → 0 =⇒ n1/n → 1
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Limit superior and limit inferior

Definition 3.31 Let (xn)
∞
n=1 be a bounded sequence. Define, if the limits exist,

lim sup
n→∞

xn = lim
n→∞

(sup{xk | k ≥ n}) and lim inf
n→∞

xn = lim
n→∞

(inf{xk | k ≥ n}).

They are called the limit superior and limit inferior, respectively.

Theorem 3.32 Let (xn)
∞
n=1 be a bounded sequence, and let

an = sup{xk | k ≥ n} and bn = inf{xk | k ≥ n}.

Then:

• The sequence (an)
∞
n=1 is monotone decreasing and bounded.

• The sequence (bn)
∞
n=1 is monotone increasing and bounded.

• We have lim infn→∞ xn ≤ lim supn→∞ xn.
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proof:

• we first prove the following lemma:

Lemma 3.33 Let A,B ⊆ R, A,B ̸= ∅, and A,B are bounded. If A ⊆ B then we
have inf B ≤ inf A ≤ supA ≤ supB.

– A ⊆ B =⇒ supB is an upper bound of A =⇒ supA ≤ supB

– similarly, inf B is an lower bound of A =⇒ inf B ≤ inf A

– A,B ̸= ∅ =⇒ inf A ≤ supA =⇒ inf B ≤ inf A ≤ supA ≤ supB

• we now show the first two statements in the theorem

– (xn)
∞
n=1 is bounded =⇒ there exists some B ≥ 0 such that −B ≤ xn ≤ B

– for all n ∈ N, we have {xk | k ≥ n+ 1} ⊆ {xk | k ≥ n} ⊆ {xn | n ∈ N}, according
to lemma 3.33, this implies that

−B ≤ bn ≤ bn+1 ≤ an+1 ≤ an ≤ B,

i.e., (an)
∞
n=1 is bounded monotone decreasing and (bn)

∞
n=1 is bounded monotone

increasing ( =⇒ (an)
∞
n=1 and (bn)

∞
n=1 converge)

• according to the previous inequalities, we have bn ≤ an for all n ∈ N =⇒
limn→∞ bn ≤ limn→∞ an (theorem 3.23), i.e., lim infn→∞ xn ≤ lim supn→∞ xn
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Example 3.34 We have lim supn→∞ (−1)n = 1 and lim infn→∞ (−1)n = −1.

proof: ∀n ∈ N, the set {(−1)k | k ≥ n} = {−1, 1} =⇒ sup{(−1)k | k ≥ n} = 1,
inf{(−1)k | k ≥ n} = −1 =⇒ lim supn→∞ (−1)n = 1 and lim infn→∞ (−1)n = −1

Example 3.35 We have lim supn→∞
1
n = lim infn→∞ 1

n = 0.

proof: for all n ∈ N, we have sup{1/k | k ≥ n} = 1/k and inf{1/k | k ≥ n} = 0,
hence,

lim sup
n→∞

1

n
= lim

n→∞
1

k
= 0 and lim inf

n→∞
1

n
= lim

n→∞
0 = 0
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Bolzano-Weierstrass theorem

Theorem 3.36 Let (xn)
∞
n=1 be a bounded sequence. Then, there exists subsequences

(xni)
∞
i=1 and (xmi)

∞
i=1 such that

lim
i→∞

xni = lim sup
n→∞

xn and lim
i→∞

xmi = lim inf
n→∞

xn.

proof: let an = sup{xk | k ≥ n}
• a1 = sup{xk | k ≥ 1} =⇒ ∃n1 ≥ 1 such that a1 − 1 < xn1 ≤ a1

• an1+1 = sup{xk | k ≥ n1 + 1} =⇒ ∃n2 > n1 s.t. an1+1 − 1
2 < xn2 ≤ an1+1

• an2+1 = sup{xk | k ≥ n2 + 1} =⇒ ∃n3 > n1 s.t. an2+1 − 1
3 < xn3 ≤ an2+1

• repeatedly, we can find a sequence of integers n1 < n2 < · · · such that

ani−1+1 −
1

i
< xni ≤ ani−1+1

(defining n0 = 0)

•
(
ani−1+1

)∞
i=1

is a subsequence of (an)
∞
n=1, and limn→∞ an = lim supn→∞ xn

=⇒ limn→∞ ani−1+1 = lim supn→∞ xn =⇒ limn→∞ xni = lim supn→∞ xn

• similarly, we can find a subsequence of (xn)
∞
n=1 that converges to lim infn→∞ xn
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Theorem 3.37 Bolzano-Weierstrass. Every bounded sequence consisting of real num-
bers has a convergent subsequence.

Theorem 3.38 Let (xn)
∞
n=1 be a bounded sequence. Then, (xn)

∞
n=1 converges if and

only if lim infn→∞ xn = lim supn→∞ xn.

proof:

• suppose limn→∞ xn = x, then the subsequences that converge to lim supn→∞ xn
and lim infn→∞ xn must converge to x (theorem 3.18)

• suppose lim supn→∞ xn = lim infn→∞ xn = x, for all n ∈ N, according to the
squeeze theorem,

inf{xk | k ≥ n} ≤ xn ≤ sup{xk | k ≥ n} =⇒ lim
n→∞

xn = x
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Cauchy sequences

Definition 3.39 A sequence (xn)
∞
n=1 is Cauchy if for all ϵ > 0, there exists an M ∈ N

such that for all n, k ≥ M , we have |xn − xk| < ϵ.

Remark 3.40 A sequence (xn)
∞
n=1 is not Cauchy if there exists some ϵ > 0, such that

for all M ∈ N, there exists some n, k ≥ M , so that |xn − xk| ≥ ϵ.

Example 3.41 The sequence
(
1
n

)∞
n=1

is Cauchy.

proof: let ϵ > 0, choose M ∈ N such that M > 2/ϵ, then for all n, k ≥ M , we have

∣∣∣∣
1

n
− 1

k

∣∣∣∣ ≤
1

n
+

1

k
≤ 2

M
< ϵ

Example 3.42 The sequence ((−1)n)∞n=1 is not Cauchy.

proof: let ϵ = 1, M ∈ N, n = M , k = M + 1, then
∣∣∣(−1)n − (−1)k

∣∣∣ = 2 ≥ ϵ
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Theorem 3.43 If the sequence (xn)
∞
n=1 is Cauchy, then (xn)

∞
n=1 is bounded.

proof:

• let ϵ = 1, (xn)
∞
n=1 is Cauchy =⇒ ∃M ∈ N such that ∀n, k ≥ M , |xn − xk| < 1

• let k = M =⇒ ∀n ≥ M , |xn − xM | < 1 =⇒ ∀n ≥ M , |xn| < |xM |+ 1

• take B = max{|x1|, |x2|, . . . , |xM |, |xM |+ 1}, then |xn| ≤ B for all n ∈ N

Theorem 3.44 If the sequence (xn)
∞
n=1 is Cauchy and a subsequence (xni)

∞
i=1 converges,

then (xn)
∞
n=1 converges.

proof: let ϵ > 0

• (xn)
∞
n=1 is Cauchy =⇒ ∃M1 ∈ N such that ∀n, k ≥ M1, |xn − xk| < ϵ/2

• let limi→∞ xni = x =⇒ ∃M2 ∈ N such that ∀i ≥ M2, |xni − x| < ϵ/2

• let M = max{M1,M2}, then ∀k ≥ M , nk ≥ k ≥ M1, nk ≥ k ≥ M2, hence,

|xk − x| ≤ |xk − xnk
|+ |xnk

− x| < ϵ/2 + ϵ/2 = ϵ
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Theorem 3.45 Completeness of the real numbers. A sequence of real numbers (xn)
∞
n=1

is Cauchy if and only if the sequence (xn)
∞
n=1 is convergent.

proof:

• suppose (xn)
∞
n=1 is Cauchy =⇒ (xn)

∞
n=1 is bounded (theorem 3.43) =⇒ there

exists convergent subsequence of (xn)
∞
n=1 (theorem 3.37) =⇒ (xn)

∞
n=1 is

convergent (theorem 3.44)

• suppose limn→∞ xn = x, let ϵ > 0, then ∃M ∈ N, ∀n ≥ M , |xn − x| < ϵ/2; let
k ≥ M , then |xn − xk| ≤ |xn − x|+ |x− xk| < ϵ/2 + ϵ/2 = ϵ

Remark 3.46 We say a set is Cauchy-complete, or just complete, if all Cauchy
sequence of elements in the set converges to some point in the set. Theorem 3.45
indicates that R is complete.

Remark 3.47 The set Q is not complete. Since Q does not have the least upper bound
property, then, e.g., sup{xn | n ∈ N}, sup{xk | k ≥ n}, etc., might not exist in Q.
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4. Series

• series

• Cauchy series

• linearity of series

• absolute convergence

• comparison, ratio, and root tests

• alternating series

• rearrangements

Series 4-1

Series

Definition 4.1 Given a sequence (xn)
∞
n=1, the formal object

∑∞
n=1 xn is called a series.

A series converges if the sequence (sm)∞m=1 defined by

sm =
m∑

n=1

xn = x1 + · · ·+ xm

converges. The numbers sm are called partial sums. If the series converges, we write

∞∑

n=1

xn = lim
m→∞

sm.

In this case, we treat
∑∞

n=1 xn as a number.

If the sequence (sm)∞m=1 diverges, we say the series is divergent. In this case,
∑∞

n=1 xn
is simply a formal object and not a number.

• series need not start at n = 1
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Example 4.2 The series
∑∞

n=1
1

n(n+1) converges.

proof: the sequence of partial sums (sm)∞m=1 is given by:

sm =

m∑

n=1

1

n(n+ 1)

=
m∑

n=1

1

n
− 1

n+ 1

= 1− 1

2
+

1

2
− 1

3
+

1

3
− 1

4
+ · · ·+ 1

m
− 1

m+ 1

= 1− 1

m+ 1
,

hence, sm → 1 =⇒ ∑∞
n=1

1
n(n+1) converges and

∑∞
n=1

1
n(n+1) = 1

Series 4-3

Theorem 4.3 If |r| < 1, then
∑∞

n=0 r
n converges and

∑∞
n=0 r

n = 1
1−r .

proof:

• the sequence of partial sums (sm)∞m=1 is given by:

sm =
m∑

n=0

rn =
(
∑m

n=0 r
n) (1− r)

1− r
=

∑m
n=0(r

n − rn+1)

1− r
=

1− rm+1

1− r

• |r| < 1 =⇒ rn → 0 (theorem 3.16) =⇒ sm → 1
1−r

Remark 4.4 Series of the form
∑∞

n=0 αr
n with α, r ∈ R are called geometric series.
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Theorem 4.5 Let (xn)
∞
n=1 be a sequence and let M ∈ N. Then,

∑∞
n=1 xn converges

if and only if
∑∞

n=M xn converges.

proof:

• for all m ≥ M , we have

m∑

n=1

xn =
M−1∑

n=1

xn +
m∑

n=M

xn

• suppose
∑∞

n=1 xn converges, we have

lim
m→∞

m∑

n=M

xn = lim
m→∞

(
m∑

n=1

xn −
M−1∑

n=1

xn

)
= lim

m→∞

(
m∑

n=1

xn

)
−

M−1∑

n=1

xn

• suppose
∑∞

n=M xn converges, we have

lim
m→∞

m∑

n=1

xn = lim
m→∞

(
m∑

n=M

xn +
M−1∑

n=1

xn

)
= lim

m→∞

(
m∑

n=M

xn

)
+

M−1∑

n=1

xn
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Cauchy series

Definition 4.6 The series
∑∞

n=1 xn is Cauchy if the sequence of partial sums (sm)∞m=1

is Cauchy.

Theorem 4.7 The series
∑∞

n=1 xn is Cauchy if and only if
∑∞

n=1 xn is convergent.

proof: according to theorem 3.45

• suppose
∑∞

n=1 xn is Cauchy =⇒ (sm)∞m=1 is Cauchy =⇒ (sm)∞m=1 is
convergent =⇒ ∑∞

n=1 xn is convergent

• suppose
∑∞

n=1 xn is convergent =⇒ (sm)∞m=1 is convergent =⇒ (sm)∞m=1 is
Cauchy =⇒ ∑∞

n=1 xn is Cauchy
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Theorem 4.8 The series
∑∞

n=1 xn is Cauchy if and only if for all ϵ > 0, there exists an

M ∈ N such that for all m ≥ M and k > m, we have
∣∣∣
∑k

n=m+1 xn

∣∣∣ < ϵ.

proof: let ϵ > 0

• suppose
∑∞

n=1 xn is Cauchy =⇒ (
∑m

n=1 xn)
∞
m=1 is Cauchy =⇒ ∃M ∈ N such

that ∀m, k ≥ M (assume k > m), we have

∣∣∣∣∣
m∑

n=1

xn −
k∑

n=1

xn

∣∣∣∣∣ < ϵ =⇒
∣∣∣∣∣

k∑

n=m+1

xn

∣∣∣∣∣ < ϵ

• suppose ∃M ∈ N such that for all k > m ≥ M ,
∣∣∣
∑k

n=m+1 xn

∣∣∣ < ϵ, then we have

∣∣∣∣∣
m∑

n=1

xn −
k∑

n=1

xn

∣∣∣∣∣ =
∣∣∣∣∣

k∑

n=m+1

xn

∣∣∣∣∣ < ϵ,

i.e., (
∑m

n=1 xn)
∞
m=1 is Cauchy =⇒ ∑∞

n=1 xn is Cauchy
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Theorem 4.9 If the series
∑∞

n=1 xn converges then limn→∞ xn = 0.

proof: let ϵ > 0,
∑∞

n=1 xn converges =⇒ ∑∞
n=1 xn is Cauchy =⇒ ∃M0 ∈ N such

that ∀k > m ≥ M0, we have
∣∣∣
∑k

n=m+1 xn

∣∣∣ < ϵ (theorem 4.8); choose M = M0 + 1,

then ∀m ≥ M , by taking k = m > m− 1 ≥ M0, we have

|xm − 0| = |xm| =
∣∣∣∣∣

m∑

n=m−1+1

xn

∣∣∣∣∣ < ϵ =⇒ lim
n→∞

xn = 0

Remark 4.10 The converse of theorem 4.9 does not hold.

Theorem 4.11 If |r| ≥ 1 then the series
∑∞

n=0 r
n diverges.

proof: If |r| ≥ 1, then limn→∞ rn ̸= 0, according to theorem 4.9,
∑∞

n=0 r
n diverges

Corollary 4.12 The series
∑∞

n=0 αr
n with α, r ∈ R converges if and only if |r| < 1.

Series 4-8



Theorem 4.13 The harmonic series
∑∞

n=1
1
n does not converge.

proof: we show that a subsequence of (sm)∞m=1 is unbounded

• consider the subsequence (s2i)
∞
i=1, given by

s2i =

2i∑

n=1

1

n
= 1 +

(
1

2

)
+

(
1

3
+

1

4

)
+

(
1

5
+ · · ·+ 1

8

)
+ · · ·+

(
1

2i−1 + 1
+ · · ·+ 1

2i

)

= 1 +

i∑

k=1

2k∑

n=2k−1+1

1

n

≥ 1 +

i∑

k=1

2k∑

n=2k−1+1

1

2k
= 1 +

i∑

k=1

1

2k
(2k − (2k−1 + 1) + 1)

= 1 +

i∑

k=1

2k−1

2k
= 1 +

i∑

k=1

1

2
= 1 +

i

2

• (1 + i/2)∞i=1 is unbounded =⇒ (s2i)
∞
i=1 is unbounded =⇒ (sm)∞m=1 is

unbounded =⇒ ∑∞
n=1

1
n does not converge
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Linearity of series

Theorem 4.14 Let α ∈ R and
∑∞

n=1 xn and
∑∞

n=1 yn be convergent series. Then the
series

∑∞
n=1(αxn + yn) converges and

∞∑

n=1

(αxn + yn) = α

∞∑

n=1

xn +

∞∑

n=1

yn.

proof: consider the partial sums of
∑∞

n=1(αxn + yn), we have

m∑

n=1

(αxn + yn) = α

m∑

n=1

xn +

m∑

n=1

yn

=⇒ lim
m→∞

m∑

n=1

(αxn + yn) = α lim
m→∞

m∑

n=1

xn + lim
m→∞

m∑

n=1

yn

=⇒
∞∑

n=1

(αxn + yn) = α

∞∑

n=1

xn +

∞∑

n=1

yn
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Absolute convergence

Theorem 4.15 If xn ≥ 0 for all n ∈ N, then the series
∑∞

n=1 xn converges if and only
if the sequence of partial sums (sm)∞m=1 is bounded.

proof:

• suppose
∑∞

n=1 xn converges =⇒ (sm)∞m=1 converges =⇒ (sm)∞m=1 is bounded

• suppose (sm)∞m=1 is bounded, since xn ≥ 0 for all n ∈ N, we have

sm =

m∑

n=1

xn ≤
m∑

n=1

xn + xn+1 = sm+1,

i.e., (sm)∞m=1 is monotone increasing =⇒ (sm)∞m=1 converges =⇒ ∑∞
n=1 xn

converges

Definition 4.16 The series
∑∞

n=1 xn converges absolutely if
∑∞

n=1 |xn| converges.

Series 4-11

Theorem 4.17 If the series
∑∞

n=1 xn converges absolutely then
∑∞

n=1 xn converges.

proof:

• we first prove the following claim by induction:

Lemma 4.18 For all x1, . . . , xn ∈ R, we have |∑n
i=1 xi| ≤

∑n
i=1 |xi|.

– suppose n = 2, we have the triangle inequality |x1 + x2| ≤ |x1|+ |x2|
– suppose n > 2, and |∑n

i=1 xi| ≤
∑n

i=1 |xi| holds, we have
∣∣∣∣∣
n+1∑

i=1

xi

∣∣∣∣∣ ≤
∣∣∣∣∣

n∑

i=1

xi

∣∣∣∣∣+ |xn+1| ≤
n∑

i=1

|xi|+ |xn+1| =
n+1∑

i=1

|xi|

•
∑∞

n=1 xn converges absolutely =⇒ ∑∞
n=1 |xn| converges =⇒ let ϵ > 0,

∃M ∈ N s.t. ∀k > m ≥ M , |∑k
n=m+1 |xn|| =

∑k
n=m+1 |xn| < ϵ

• hence, for all k > m ≥ M , we have
∣∣∣
∑k

n=m+1 xn

∣∣∣ ≤
∑k

n=m+1 |xn| < ϵ =⇒∑∞
n=1 xn converges

Remark 4.19 The converse of theorem 4.17 does not hold.

Series 4-12



Comparison test

Theorem 4.20 Comparison test. Suppose 0 ≤ xn ≤ yn for all n ∈ N.

• If
∑∞

n=1 yn converges then
∑∞

n=1 xn converges.

• If
∑∞

n=1 xn diverges then
∑∞

n=1 yn diverges.

proof:

• suppose
∑∞

n=1 yn converges =⇒ (
∑m

n=1 yn)
∞
m=1 is bounded =⇒ ∃B ≥ 0 s.t.

∀m ∈ N, |∑m
n=1 yn| =

∑m
n=1 yn ≤ B =⇒ ∀m ∈ N, we have

0 ≤
m∑

n=1

xn ≤
m∑

n=1

yn ≤ B

=⇒ (
∑m

n=1 xn)
∞
m=1 is bounded =⇒ ∑∞

n=1 xn converges (theorem 4.15)
• suppose

∑∞
n=1 xn diverges =⇒ (

∑m
n=1 xn)

∞
m=1 is unbounded (theorem 4.15)

=⇒ ∀B ≥ 0, ∃m ∈ N such that |∑m
n=1 xn| =

∑m
n=1 xn > B, hence, for this m,

m∑

n=1

yn ≥
m∑

n=1

xn > B

=⇒ (
∑m

n=1 yn)
∞
m=1 is unbounded =⇒ ∑∞

n=1 yn diverges
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Theorem 4.21 For p ∈ R, the series
∑∞

n=1
1
np converges if and only if p > 1.

proof:

• suppose
∑∞

n=1
1
np converges, assume p ≤ 1, then we have 0 < 1

n ≤ 1
np ; the series∑∞

n=1
1
n diverges =⇒ ∑∞

n=1
1
np diverges (theorem 4.20), which is a contradiction

• suppose p > 1, let sm =
∑m

n=1
1
np

– we first show that sm ≤ s2m for all m ∈ N: by induction, we have 2m > m for all

m ∈ N =⇒ sm =
∑m

n=1
1
np ≤∑2m

n=1
1
np = s2m

– we now show that s2m is bounded by 1 + 1
1−2−(p−1) :

s2m =

2m∑

n=1

1

np

= 1 +

(
1

2p

)
+

(
1

3p
+

1

4p

)
+ · · ·+

(
1

(2m−1 + 1)
p + · · ·+ 1

(2m)
p

)

= 1 +

m∑

k=1

2k∑

n=2k−1+1

1

np
≤ 1 +

m∑

k=1

2k∑

n=2k−1+1

1

(2k−1 + 1)
p
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≤ 1 +

m∑

k=1

2k∑

n=2k−1+1

1

(2k−1)
p = 1 +

m∑

k=1

2−p(k−1)(2k − (2k−1 + 1) + 1)

= 1 +

m∑

k=1

2−(p−1)(k−1) = 1 +

m−1∑

k=0

2−(p−1)k

≤ 1 +

∞∑

k=0

2−(p−1)k = 1 +

∞∑

k=0

(
2−(p−1)

)k

= 1 +
1

1− 2−(p−1)
,

where the last equality is from the fact that p− 1 > 0, and using the properties of
geometric series (theorem 4.3)

– put together, we have 0 < sm ≤ s2m ≤ 1 + 1
1−2−(p−1) =⇒ (sm)

∞
m=1 is monotone

increasing and bounded =⇒ (sm)
∞
m=1 converges =⇒ ∑∞

n=1
1
np converges
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Ratio test

Theorem 4.22 Ratio test. Suppose xn ̸= 0 for all n and the limit

L = lim
n→∞

|xn+1|
|xn|

exists.

• If L > 1 then
∑∞

n=1 xn diverges.

• If L < 1 then
∑∞

n=1 xn converges absolutely.

proof:

• suppose L > 1, then ∃M ∈ N such that ∀n ≥ M , |xn+1|
|xn| ≥ 1 =⇒ ∀n ≥ M ,

|xn+1| ≥ |xn| =⇒ limn→∞ xn ̸= 0 =⇒ ∑∞
n=1 xn diverges (theorem 4.9)

• suppose L < 1, let L < α < 1

– ∃M ∈ N such that ∀n ≥ M , |xn+1|
|xn| ≤ α =⇒ ∀n ≥ M , |xn+1| ≤ α|xn| =⇒

|xn| ≤ α|xn−1| ≤ α2|xn−2| ≤ · · · ≤ αn−M |xM | =⇒ |xn| ≤ αn−M |xM |, ∀n ≥ M
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– consider the partial sums of the series
∑∞

n=1 |xn|, assume m > M , we have

m∑

n=1

|xn| =
M−1∑

n=1

|xn|+
m∑

n=M

|xn| ≤
M−1∑

n=1

|xn|+
∞∑

n=M

|xn|

≤
M−1∑

n=1

|xn|+
∞∑

n=M

αn−M |xM | =
M−1∑

n=1

|xn|+ |xM |
∞∑

n=0

αn

=

M−1∑

n=1

|xn|+
|xM |
1− α

,

where the last equality is from the properties of geometric series and 0 < α < 1

– hence, the sequence of partial sums (
∑m

n=1 |xn|)∞m=1
is monotone increasing and

bounded =⇒ ∑∞
n=1 |xn| converges =⇒ ∑∞

n=1 xn converges absolutely

Remark 4.23 If L = 1 in theorem 4.22 then the test doesn’t apply. For example,∑∞
n=1

1
n diverges, and

∑∞
n=1

1
n2 converges.

Series 4-17

Example 4.24 The series
∑∞

n=1
(−1)n

n2+1
converges absolutely.

proof:

∣∣∣∣
(−1)n

n2 + 1

∣∣∣∣ =
1

n2 + 1
<

1

n2
=⇒ lim

n→∞

∣∣∣ (−1)n+1

(n+1)2+1

∣∣∣
∣∣∣ (−1)n

n2+1

∣∣∣
< lim

n→∞
n2

(n+ 1)2
= 1

Example 4.25 The series
∑∞

n=0
xn

n! converges absolutely for all x ∈ R.

proof:

lim
n→∞

∣∣∣ xn+1

(n+1)!

∣∣∣
∣∣xn

n!

∣∣ = lim
n→∞

|x|
n+ 1

= 0 < 1
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Root test

Theorem 4.26 Root test. Let
∑∞

n=1 xn be a series and suppose that the limit

L = lim
n→∞

|xn|1/n

exists.

• If L > 1 then
∑∞

n=1 xn diverges.

• If L < 1 then
∑∞

n=1 xn converges absolutely.

proof:

• suppose L > 1, then ∃M ∈ N s.t. ∀n ≥ M , |xn|1/n ≥ 1 =⇒ ∀n ≥ M , |xn| ≥ 1
=⇒ limn→∞ xn ̸= 0 =⇒ ∑∞

n=1 xn diverges (theorem 4.9)

• suppose L < 1, let L < α < 1

– ∃M ∈ N such that ∀n ≥ M , |xn|1/n ≤ α =⇒ ∀n ≥ M , |xn| ≤ αn

Series 4-19

– consider the partial sums of the series
∑∞

n=1 |xn|, assume m > M , we have

m∑

n=1

|xn| =
M−1∑

n=1

|xn|+
m∑

n=M

|xn| ≤
M−1∑

n=1

|xn|+
∞∑

n=M

|xn|

≤
M−1∑

n=1

|xn|+
∞∑

n=M

αn =

M−1∑

n=1

|xn|+
∞∑

n=0

αM+n

=

M−1∑

n=1

|xn|+ αM
∞∑

n=0

αn

=

M−1∑

n=1

|xn|+
αM

1− α
,

where the last equality is from the properties of geometric series and 0 < α < 1

– hence, the sequence of partial sums (
∑m

n=1 |xn|)∞m=1
is monotone increasing and

bounded =⇒ ∑∞
n=1 |xn| converges =⇒ ∑∞

n=1 xn converges absolutely

Remark 4.27 Similarly, if L = 1 in theorem 4.26 then the test doesn’t apply.

Series 4-20



Alternating series

Theorem 4.28 Let (xn)
∞
n=1 be a monotone decreasing sequence with limn→∞ xn = 0.

Then the series
∑∞

n=1 (−1)nxn converges.

proof: consider the partial sums of
∑∞

n=1 (−1)nxn, given by sm =
∑m

n=1 (−1)nxn

• (xn)
∞
n=1 is monotone decreasing and xn → 0 =⇒ ∀n ∈ N, xn ≥ xn+1 ≥ 0

• we first show that the subsequence (s2m)∞m=1 converges, notice that

s2m =
2m∑

n=1

(−1)nxn = −x1 + x2 − x3 + · · · − x2m−1 + x2m (4.1)

– rearranging the terms in (4.1), since xn+1 ≤ xn, ∀n ∈ N, we have

s2m = (x2 − x1) + (x4 − x3) + · · ·+ (x2m − x2m−1)

≥ (x2 − x1) + (x3 − x2) + · · ·+ (x2m − x2m−1) + (x2m+2 − x2m+1)

= s2(m+1)

=⇒ (s2m)
∞
m=1 is monotone decreasing

Series 4-21

– rearranging the terms in (4.1) differently, since xn ≥ xn+1 ≥ 0, ∀n ∈ N, we have

s2m = −x1 + (x2 − x3) + (x4 − x5) + · · ·+ (x2m−2 − x2m−1) + x2m ≥ −x1

=⇒ (s2m)
∞
m=1 is bounded below

– put together, we conclude that (s2m)
∞
m=1 converges, let s2m → x

• we now show that (sm)∞m=1 also converges to x, let ϵ > 0

– s2m → x =⇒ ∃M1 ∈ N such that ∀m ≥ M1, |s2m − x| < ϵ/2

– xn → 0 =⇒ ∃M2 ∈ N such that ∀m ≥ M2, |xm| < ϵ/2

let M = max{2M1 + 1,M2}, then ∀m ≥ M , m ≥ 2M1 + 1 and m ≥ M2

– if m is even =⇒ m
2 > M1, hence

|sm − x| =
∣∣s2·m2 − x

∣∣ < ϵ/2 < ϵ

– if m is odd, then m− 1 is even and m− 1 ≥ 2M1 =⇒ m−1
2 ≥ M1, hence

|sm − x| = |sm−1 − x+ xm| =
∣∣∣s2·m−1

2
− x+ xm

∣∣∣

≤
∣∣∣s2·m−1

2
− x
∣∣∣+ |xm| < ϵ/2 + ϵ/2 = ϵ

put together, we have (sm)∞m=1 converges =⇒ ∑∞
n=1 (−1)nxn converges
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Corollary 4.29 The series
∑∞

n=1
(−1)n

n converges but does not converge absolutely.

proof:

• since
(
1
n

)∞
n=1

is monotone decreasing with limn→∞ 1
n = 0, it follows immediately

from theorem 4.28 that
∑∞

n=1
(−1)n

n converges

• since
∑∞

n=1

∣∣∣ (−1)n

n

∣∣∣ =
∑∞

n=1
1
n , and

∑∞
n=1

1
n diverges, we conclude that

∑∞
n=1

(−1)n

n does not converge absolutely
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Rearrangements

Theorem 4.30 Suppose
∑∞

n=1 xn converges absolutely and
∑∞

n=1 xn = x. Let σ : N →
N be a bijective function. Then, the series

∑∞
n=1 xσ(n) is absolutely convergent and∑∞

n=1 xσ(n) = x. In other words, absolute convergence implies, if we rearrange the
sequence, the new series will still converge to the same value of the original series.

proof:

• we first show
∑∞

n=1 |xσ(n)| converges, i.e.,
(∑m

n=1 |xσ(n)|
)∞
m=1

is bounded

–
∑∞

n=1 |xn| converges =⇒ (
∑m

n=1 |xn|)∞m=1
is bounded =⇒ ∃B ≥ 0 such that

∀m ∈ N,
∑m

n=1 |xn| ≤ B

– ∀m ∈ N, {1, . . . ,m} is a finite set =⇒ ∃k ∈ N such that

σ({1, . . . ,m}) ⊆ {1, . . . , k},

hence,
m∑

n=1

|xσ(n)| =
∑

n∈σ({1,...,m})
|xn| ≤

k∑

n=1

|xn| ≤ B

=⇒ ∀m ∈ N,
∑m

n=1 |xσ(n)| is bounded
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• we now show that
∑∞

n=1 xσ(n) = x, let ϵ > 0

–
∑∞

n=1 xn = x =⇒ ∃M0 ∈ N such that for all k > m ≥ M0, we have

∣∣∣∣∣
m∑

n=1

xn − x

∣∣∣∣∣ < ϵ/2 and

∣∣∣∣∣
k∑

n=m+1

xn

∣∣∣∣∣ < ϵ/2

– the set {1, . . . ,M0} is finite =⇒ ∃M ∈ N, M > M0 such that

{1, . . . ,M0} ⊆ σ({1, . . . ,M}),

hence, for all m ≥ M , let p = max(σ({1, . . . ,m})) > M0, we have

σ({1, . . . ,m}) = {1, . . . ,M0} ∪ {M0 + 1, . . . , p}

– consider the partial sums of
∑∞

n=1 xσ(x), for all m ≥ M , we have

∣∣∣∣∣
m∑

n=1

xσ(n) − x

∣∣∣∣∣ =

∣∣∣∣∣∣
∑

n∈σ({1,...,m})
xn − x

∣∣∣∣∣∣
=

∣∣∣∣∣
M0∑

n=1

xn − x+

p∑

n=M0+1

xn

∣∣∣∣∣

≤
∣∣∣∣∣
M0∑

n=1

xn − x

∣∣∣∣∣+
∣∣∣∣∣

p∑

n=M0+1

xn

∣∣∣∣∣ < ϵ/2 + ϵ/2 = ϵ

=⇒ limm→∞
∑m

n=1 xσ(n) = x =⇒ ∑∞
n=1 xσ(n) = x
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5. Continuous functions

• cluster points of sets

• limits of functions and sequential properties

• left and right limits

• continuous functions

• operations that preserves continuity

• extreme value theorem

• intermediate value theorem

• uniform and Lipschitz continuity

Continuous functions 5-1

Cluster points of sets

Definition 5.1 Let S ⊆ R. We say that the point c ∈ R is a cluster point of S if for
all δ > 0, we have (c − δ, c + δ) ∩ S \ {c} ̸= ∅, i.e., for all δ > 0, there exists some
x ∈ S, such that 0 < |x− c| < δ.

examples:

• S = {1/n | n ∈ N} has a cluster point c = 0

• S = (0, 1) has a set of cluster points given by [0, 1]

• S = Q has a set of cluster points given by R

• S = {0} has no cluster points

• S = Z has no cluster points
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Theorem 5.2 Let S ⊆ R. Then c is a cluster point of S if and only if there exists a
sequence (xn)

∞
n=1 of elements in S \ {c} such that limn→∞ xn = c.

proof:

• suppose c is a cluster point of S, then ∀δ > 0, ∃x ∈ S such that 0 < |x− c| < δ

– ∀n ∈ N, choose xn ∈ S such that 0 < |xn − c| < 1
n

– 1
n → 0 =⇒ |xn − c| → 0 =⇒ xn → c

• suppose there exists a sequence (xn)
∞
n=1 with xn ∈ S \ {c} for all n ∈ N such

that xn → c, let δ > 0

– xn → c with xn ∈ S \ {c} =⇒ ∃M ∈ N such that ∀n ≥ M , 0 < |xn − c| < δ

– choose x = xM , then we have 0 < |x− c| < δ =⇒ S has cluster point c

Continuous functions 5-3

Limits of functions

Definition 5.3 Let f : S → R be a function and c be a cluster point of S ⊆ R. Suppose
there exists an L ∈ R, and for all ϵ > 0, there exists some δ > 0 such that for all x ∈ S
and 0 < |x− c| < δ, we have |f(x)− L| < ϵ. We then say f(x) converges to L as x
goes to c, and we write

f(x) → L as x → c.

We say L is a limit of f(x) as x goes to c, and if L is unique, we write

lim
x→c

f(x) = L.

Remark 5.4 The function f : S → R does not converge to L ∈ R as x goes to a cluster
point c of S implies that there exists some ϵ > 0, such that for all δ > 0, there exists
some x ∈ S and 0 < |x− c| < δ, so that |f(x)− L| ≥ ϵ.
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Theorem 5.5 Let f : S → R be a function and c be a cluster point of S ⊆ R. If
f(x) → L1 and f(x) → L2 as x → c, then L1 = L2.

proof: let ϵ > 0

• f(x) → L1 as x → c =⇒ ∃δ1 > 0 such that for all x ∈ S and 0 < |x− c| < δ1,
|f(x)− L1| < ϵ/2

• f(x) → L2 as x → c =⇒ ∃δ2 > 0 such that for all x ∈ S and 0 < |x− c| < δ2,
|f(x)− L2| < ϵ/2

• choose δ = min{δ1, δ2}, then for all x ∈ S and 0 < |x− c| < δ, we have

|L1 −L2| = |L1 − f(x) + f(x)−L2| ≤ |f(x)−L1|+ |f(x)−L2| < ϵ/2+ ϵ/2 = ϵ

=⇒ L1 = L2
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Example 5.6 Let f(x) = ax+ b. Then, for all c ∈ R, we have limx→c f(x) = ac+ b.

proof: let ϵ > 0, choose δ = ϵ
|a|+1 , then for all x ∈ R and 0 < |x− c| < δ, we have

|f(x)− (ac+ b)| = |(ax+ b)− (ac+ b)| = |a||x− c| < |a|δ =
|a|

|a|+ 1
ϵ ≤ ϵ

Example 5.7 Let f : (0,∞) → R with f(x) =
√
x. Then, for all c > 0, we have

limx→c f(x) =
√
c.

proof: let ϵ > 0, choose δ = ϵ
√
c, then for all x > 0 and 0 < |x− c| < δ, we have

|f(x)−√
c| = |√x−√

c| =
∣∣∣∣
(
√
x−√

c)(
√
x+

√
c)√

x+
√
c

∣∣∣∣ =
∣∣∣∣

x− c√
x+

√
c

∣∣∣∣ ≤
|x− c|√

c
<

δ√
c
< ϵ

Example 5.8 Let f(x) =

{
1 x ̸= 0

2 x = 0
. Then, limx→0 f(x) = 1 ( ̸= f(0)).

proof: let ϵ > 0, choose δ = 1, then ∀x satisfies 0 < |x| < δ, we have x ̸= 0 =⇒ ∀x
satisfies 0 < |x| < δ, we have |f(x)− 1| = |1− 1| = 0 < ϵ
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Theorem 5.9 Let f : S → R be a function and c be a cluster point of S ⊆ R. Then,
the following statements are equivalent:

• The function f(x) converges to L ∈ R as x goes to c, i.e., limx→c f(x) = L.

• For all sequences (xn)
∞
n=1 in S \ {c} such that limn→∞ xn = c, we have

limn→∞ f(xn) = L.

proof:

• suppose limx→c f(x) = L, let ϵ > 0

– ∃δ > 0, such that for all x ∈ S and 0 < |x− c| < δ, we have |f(x)− L| < ϵ

– xn → c, xn ∈ S \ {c} =⇒ ∃M ∈ N such that ∀n ≥ M , 0 < |xn − c| < δ =⇒
∀n ≥ M , we have |f(xn)− L| < ϵ, i.e., f(xn) → L

• suppose for all sequences in S \ {c} s.t. xn → c, we have f(xn) → L

– assume limx→c f(x) ̸= L =⇒ ∃ϵ > 0 s.t. ∀δ > 0, there exists some x ∈ S and
0 < |x− c| < δ, so that |f(x)− L| ≥ ϵ

– choose a sequence (xn)
∞
n=1 s.t. ∀n ∈ N, xn ∈ S \ {c}, 0 < |xn − c| < 1

n , and
|f(xn)− L| ≥ ϵ for all n ∈ N

– however, 1
n → 0 =⇒ xn → c =⇒ f(xn) → L =⇒ ∃M ∈ N s.t. ∀n ≥ M ,

|f(xn)− L| < ϵ, which is a contradiction
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Theorem 5.10 For all c ∈ R, we have limx→c x
2 = c2.

proof: let (xn)
∞
n=1 be a sequence in R \ {c} such that xn → c, then according to

theorem 3.24, we have x2n → c2 =⇒ limx→c x
2 = c2 (theorem 5.9)

Theorem 5.11 The limit limx→0 sin(1/x) does not exist, but limx→0 x sin(1/x) = 0.

proof:

• we first show that limx→0 x sin(1/x) = 0: let (xn)
∞
n=1 be a sequence in R \ {0}

such that xn → 0; since 0 ≤ |xn sin(1/xn)| ≤ |xn| for all n ∈ N, and xn → 0, we
have |xn sin(1/xn)| → 0 =⇒ limx→0 x sin(1/x) = 0

• we now show that limx→0 sin(1/x) does not exist:

– choose a sequence (xn)
∞
n=1 where xn = 2

(2n−1)π , then we have xn → 0

– consider the sequence (sin(1/xn))
∞
n=1, we have

sin(1/xn) = sin

(
(2n− 1)π

2

)
= (−1)

n+1

=⇒ (sin(1/xn))
∞
n=1 does not converge =⇒ limx→0 sin(1/x) does not exist
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Sequential properties

Theorem 5.12 Let f, g : S → R be functions and c be a cluster point of S ⊆ R.
Suppose f(x) ≤ g(x) for all x ∈ S, and we have limx→c f(x) and limx→c g(x) both
exist, then limx→c f(x) ≤ limx→c g(x).

proof: let (xn)
∞
n=1 be a sequence in S \ {c} such that xn → c

• limx→c f(x) and limx→c g(x) exist =⇒ (f(xn))
∞
n=1 and (g(xn))

∞
n=1 converges

• let f(xn) → L1, g(xn) → L2, since f(x) ≤ g(x) for all x ∈ S, we have L1 ≤ L2,
i.e., limx→c f(x) ≤ limx→c g(x)

similarly, we can prove the following theorems using the properties of sequences:

Theorem 5.13 Let f : S → R be a function and c be a cluster point of S ⊆ R.
Suppose the limit limx→c f(x) exists, and there exists a, b ∈ R such that a ≤ f(x) ≤ b
for all x ∈ S \ {c}, then a ≤ limx→c f(x) ≤ b.
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Theorem 5.14 Let c be a cluster point of S ⊆ R, and f, g, h : S → R be functions
such that f(x) ≤ g(x) ≤ h(x) for all x ∈ S \{c}. Suppose limx→c f(x) = limx→c h(x),
then limx→c g(x) = limx→c f(x) = limx→c h(x).

Theorem 5.15 Let c be a cluster point of S ⊆ R, and f, g : S → R be functions such
that limx→c f(x) and limx→c g(x) both exist, we have:

• limx→c(f(x) + g(x)) = limx→c f(x) + limx→c g(x);

• limx→c(f(x) · g(x)) = limx→c f(x) · limx→c g(x);

• if limx→c g(x) ̸= 0 and g(x) ̸= 0 for all x ∈ S \ {c}, then

lim
x→c

f(x)

g(x)
=

limx→c f(x)

limx→c g(x)
;

Theorem 5.16 Let c be a cluster point of S ⊆ R and f : S → R be a function such
that limx→c f(x) exists, then we have limx→c |f(x)| = | limx→c f(x)|.
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Left and right limits

Definition 5.17 Let S ⊆ R and f : S → R be a function.

Suppose c is a cluster point of S ∩ (−∞, c), we say f(x) converges to L as x → c−, if
for all ϵ > 0, there exists a δ > 0 such that for all x ∈ S and c − δ < x < c, we have
|f(x)− L| < ϵ. We call such a limit the left limit of f at c, denoted limx→c− f(x).

Suppose c is a cluster point of S ∩ (c,∞), we say f(x) converges to L as x → c+, if
for all ϵ > 0, there exists a δ > 0 such that for all x ∈ S and c < x < c + δ, we have
|f(x)− L| < ϵ. We call such a limit the right limit of f at c, denoted limx→c+ f(x).

Example 5.18 Consider the function f given by

f(x) =

{
1 x > 0

0 x < 0,

we have limx→0− f(x) = 0 and limx→0+ f(x) = 1, even if f(0) is undefined.
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Continuous functions

Definition 5.19 Let S ⊆ R and c ∈ S. We say the function f is continuous at c if
for all ϵ > 0, there exists a δ > 0 such that for all x ∈ S and |x − c| < δ, we have
|f(x)− f(c)| < ϵ.

We say the function f is continuous on the set U for U ⊆ S if f is continuous at every
point of U .

Remark 5.20 The function f is not continuous at point c ∈ S if there exists some
ϵ > 0 such that for all δ > 0, there exists some x ∈ S and |x − c| < δ, so that
|f(x)− f(c)| ≥ ϵ.
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Example 5.21 The function f(x) = ax+ b is continuous on R.

proof: let c ∈ R, ϵ > 0, choose δ = ϵ
|a|+1 , then for all x ∈ R and |x− c| < δ, we have

|f(x)− f(c)| = |ax+ b− ac− b| = |a||x− c| < |a|δ =
|a|

|a|+ 1
ϵ ≤ ϵ

Example 5.22 The function f given by

f(x) =

{
1 x ̸= 0

2 x = 0

is not continuous at c = 0.

proof: choose ϵ = 1 and let δ > 0, then x = δ/2 satisfies |x| < δ, but

|f(x)− f(0)| = |1− 0| = 1 ≥ ϵ

Continuous functions 5-13

Theorem 5.23 Let S ⊆ R be a set, c ∈ S be a point, and f : S → R be a function.

• If c is not a cluster point of S, then the function f is continuous at c.

• If c is a cluster point of S, then the function f is continuous at c if and only if
limx→c f(x) = f(c).

• The function f is continuous at c if and only if for all sequences (xn)
∞
n=1 in S

with limn→∞ xn = c, we have limn→∞ f(xn) = f(c).

proof: to show the first statement, let ϵ > 0

• c ∈ S and c is not a cluster point of S =⇒ ∃δ > 0 s.t. (c− δ, c+ δ) ∩ S = {c}
• then for all x ∈ S such that |x− c| < δ, we have x = c, and hence,

|f(x)− f(c)| = |f(c)− f(c)| = 0 < ϵ

we now show the second statement:

• suppose f is continuous at c, let ϵ > 0

– f is continuous at c =⇒ ∃δ > 0 such that for all x ∈ S and |x− c| < δ, we have
|f(x)− f(c)| < ϵ

– then ∀x ∈ S s.t. 0 < |x− c| < δ, |f(x)− f(c)| < ϵ =⇒ limx→c f(x) = f(c)
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• suppose limx→c f(x) = f(c), let ϵ > 0

– f(x) → f(c) as x → c =⇒ ∃δ > 0 such that for all x ∈ S and 0 < |x− c| < δ, we
have |f(x)− f(c)| < ϵ

– then for all x ∈ S such that |x− c| < δ: if x = c, we have

|f(x)− f(c)| = |f(c)− f(c)| = 0 < ϵ

if x ̸= c, we have 0 < |x− c| < δ =⇒ |f(x)− f(c)| < ϵ
– put together, we conclude that the function f is continuous at c

we now show the third statement

• suppose f is continuous at c, let (xn)
∞
n=1 be a sequence in S, xn → c, let ϵ > 0

– f is continuous at c =⇒ ∃δ > 0 such that for all x ∈ S and |x− c| < δ, we have
|f(x)− f(c)| < ϵ

– xn → c =⇒ ∃M ∈ N such that ∀n ≥ M , |xn − c| < δ =⇒ ∀n ≥ M ,
|f(xn)− f(c)| < ϵ =⇒ (f(xn))

∞
n=1 → f(c)

• suppose for all (xn)
∞
n=1 in S such that xn → c, we have f(xn) → f(c)

– assume f is not continuous at c =⇒ ∃ϵ > 0, ∀δ > 0, ∃x ∈ S such that |x− c| < δ,
but |f(x)− f(c)| ≥ ϵ

– choose xn ∈ S such that ∀n ∈ N, 0 ≤ |xn − c| < 1
n but |f(xn)− f(x)| ≥ ϵ

– 1
n → 0 =⇒ xn → c =⇒ f(xn) → f(c) =⇒ ∃M ∈ N such that ∀n ≥ M ,
|f(xn)− f(c)| < ϵ, which is a contradiction
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Theorem 5.24 The functions sinx and cosx are continuous functions on R.

proof:

• recall the following properties of sinx and cosx for all x ∈ R:

– sin2(x) + cos2(x) = 1 =⇒ | sinx| ≤ 1 and | cosx| ≤ 1

– | sinx| ≤ |x|
– sin(a+ b) = cos(a) sin(b) + sin(a) cos(b)

– sin(a)− sin(b) = 2 sin
(
a−b
2

)
cos
(
a+b
2

)

• we first show that sinx is continuous, let c ∈ R, let ϵ > 0, choose δ = ϵ, then for
all x ∈ R such that |x− c| < δ, we have

| sinx− sin c| =
∣∣∣2 sin

(x− c

2

)
cos

(x+ c

2

)∣∣∣ ≤ 2
∣∣∣sin

(x− c

2

)∣∣∣ ≤ 2
|x− c|

2
= |x− c| < ϵ

• we now show that cosx is continuous, let c ∈ R, let (xn)
∞
n=1 be a sequence with

xn → c, then we have xn + π
2 → c+ π

2 , and hence,

lim
n→∞

cosxn = lim
n→∞

sin
(
xn +

π

2

)
= sin

(
c+

π

2

)
= cos c
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Theorem 5.25 Dirichlet function. The Dirichlet function given by

f(x) =

{
1 x ∈ Q

0 x /∈ Q

is not continuous on all of R.

proof: let c ∈ R

• if c ∈ Q, then for all n ∈ N, there exists xn /∈ Q such that c < xn < c+ 1
n ;

1
n → 0 =⇒ xn → c, however,

lim
n→∞

f(xn) = 0 ̸= f(c) = 1

=⇒ (f(xn))
∞
n=1 does not converge to f(c)

• if c /∈ Q, then for all n ∈ N, there exists xn ∈ Q such that c < xn < c+ 1
n ;

1
n → 0 =⇒ xn → c, however,

lim
n→∞

f(xn) = 1 ̸= f(c) = 0

=⇒ (f(xn))
∞
n=1 does not converge to f(c)
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Operations that preserves continuity

Theorem 5.26 Let f, g : S → R be functions on S ⊆ R and are continuous at c ∈ S.

• The function f + g is continuous at c.

• The function f · g is continuous at c.

• If g(x) ̸= 0 for all x ∈ S, then the function f/g is continuous at c.

proof: we show that the function f + g is continuous at c, the other two statements
can be proved similarly; let (xn)

∞
n=1 be a sequence in S with xn → c

• f is continuous at c =⇒ limn→∞ f(xn) = f(c)

• g is continuous at c =⇒ limn→∞ g(xn) = g(c)

• hence, limn→∞(f(xn) + g(xn)) = f(c) + g(c) =⇒ f + g is continuous at c

Theorem 5.27 Let f : B → R and g : A → B be functions on A,B ⊆ R. If g is
continuous at c ∈ A and f is continuous at g(c) ∈ B, then f ◦ g is continuous at c.

proof: let (xn)
∞
n=1 be a sequence in A and xn → c =⇒ g(xn) → g(c) =⇒

f(g(xn)) → f(g(c)) =⇒ f ◦ g is continuous at c
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Theorem 5.28 Let f be a polynomial function of the form

f(x) = apx
p + · · ·+ a1x+ a0.

Then, the function f is continuous on R.

proof: let c ∈ R, let (xn)
∞
n=1 be a sequence in R and xn → c, then we have

lim
n→∞

f(xn) = lim
n→∞

(apx
p
n + · · ·+ a1xn + a0)

= ap lim
n→∞

xpn + · · ·+ a1 lim
n→∞

xn + a0

= apc
p + · · ·+ a1c+ a0 = f(c)

Example 5.29 Theorems 5.26 and 5.27 allows us to show that some given function is
continuous without a huge ϵ− δ proof, for example:

• The function 1/x2 is continuous on (0,∞), since x2 is continuous on (0,∞).

• The function (cos(1/x2))
2
is continuous on (0,∞), since cosx is continuous on

R, and x2 is continuous on (0,∞).

Continuous functions 5-19

Extreme value theorem

Definition 5.30 A function f : S → R is bounded if there exists some B ≥ 0 such
that for all x ∈ S, we have |f(x)| ≤ B.

Theorem 5.31 If the function f : [a, b] → R is continuous then f is bounded.

proof:

• suppose f is unbounded, then ∀B ≥ 0, ∃x ∈ [a, b] such that |f(x)| > B

• let (xn)
∞
n=1 be a sequence in [a, b] such that for all n ∈ N, |f(xn)| > n

• (xn)
∞
n=1 is in [a, b] =⇒ (xn)

∞
n=1 is bounded =⇒ there exists a subsequence

(xni)
∞
i=1 (theorem 3.37) that converges to c ∈ R

• a ≤ xn ≤ b =⇒ a ≤ xni ≤ b =⇒ c ∈ [a, b]

• f is continuous on [a, b] =⇒ f(xni) → f(c) =⇒ (f(xni))
∞
i=1 is bounded

• however, |f(xni)| > ni =⇒ (ni)
∞
i=1 is bounded, which is a contradiction
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Definition 5.32 Let f : S → R be a function. We say the function f achieves an
absolute minimum at c if f(x) ≥ f(c) for all x ∈ S. We say the function f achieves
an absolute maximum at d if f(x) ≤ f(d) for all x ∈ S.

Theorem 5.33 Extreme value theorem. Let f : [a, b] → R be a function on a closed,
bounded interval [a, b]. If the function f is continuous on [a, b], then f achieves absolute
maximum and absolute minimum on [a, b].

proof: we show the case for absolute maximum

• f is continuous on [a, b] =⇒ f is bounded =⇒ the set E = {f(x) | x ∈ [a, b]}
is bounded =⇒ supE ∈ R exists

• supE is the supremum of {f(x) | x ∈ [a, b]} =⇒ ∀x ∈ [a, b], f(x) ≤ supE, and,
there exists some sequence (f(xn))

∞
n=1 with xn ∈ [a, b] such that f(xn) → supE

• (xn)
∞
n=1 is in [a, b] =⇒ there exists a subsequence (xni)

∞
i=1 such that xni → d

and d ∈ [a, b] =⇒ f(xni) → f(d) (since f is continuous)

• f(xn) → supE =⇒ f(xni) → supE =⇒ supE = f(d) =⇒ there exists a
point d ∈ [a, b] such that f(x) ≤ f(d) for all x ∈ [a, b]
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Remark 5.34 To apply the extreme value theorem, the function f has to be continuous
on a closed, bounded interval.

If the function f : [a, b] → R is not continuous, consider the function given by

f(x) =

{
1
2 x = 0 or x = 1

x x ∈ (0, 1),

which neither achieves an absolute maximum nor an absolute minimum on [0, 1].

If the function f : S → R is continuous but S not closed and bounded, consider the
function given by

f(x) =
1

x
− 1

1− x
, S = (0, 1),

which neither achieves an absolute maximum nor an absolute minimum on [0, 1].
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Intermediate value theorem

Theorem 5.35 Let f : [a, b] → R be a continuous function. If f(a) < 0 and f(b) > 0,
then there exists some c ∈ (a, b) such that f(c) = 0.

proof: let a1 = a, b1 = b, for all n ∈ N, given an and bn, define an+1 and bn+1 as:

• an+1 = an, bn+1 =
an+bn

2 , if f
(
an+bn

2

)
≥ 0

• an+1 =
an+bn

2 , bn+1 = bn, if f
(
an+bn

2

)
< 0

then the sequences (an)
∞
n=1 and (bn)

∞
n=1 has the following properties:

• a ≤ an ≤ an+1 ≤ bn+1 ≤ bn ≤ b for all n ∈ N =⇒ (an)
∞
n=1 and (bn)

∞
n=1 are

monotone and bounded =⇒ (an)
∞
n=1 and (bn)

∞
n=1 converge, let an → c, bn → d

• f(an) ≤ 0, f(bn) ≥ 0 for all n ∈ N, since f is continuous, c, d ∈ [a, b] =⇒
limn→∞ f(an) = f(c) ≤ 0 and limn→∞ f(bn) = f(d) ≥ 0

• bn+1 − an+1 =
bn−an

2 = bn−1−an−1

22
= · · · = b−a

2n =⇒ bn − an = 1
2n−1 (b− a)

=⇒ limn→∞(bn − an) = limn→∞ 1
2n−1 (b− a) = 0 = limn→∞ bn − limn→∞ an

=⇒ limn→∞ bn = limn→∞ an =⇒ c = d

put together, we have f(c) ≤ 0, f(d) ≥ 0, and f(c) = f(d) =⇒ f(c) = f(d) = 0
=⇒ ∃c ∈ (a, b) such that f(c) = 0
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Theorem 5.36 Bolzano’s intermediate value theorem. Let f : [a, b] → R be a contin-
uous function. Suppose y ∈ R such that f(a) < y < f(b) or f(b) < y < f(a), then
there exists a c ∈ (a, b) such that f(c) = y.

proof: we consider the case for f(a) < y < f(b), the other case is similar

• let g : [a, b] → R be a function given by g(x) = f(x)− y, then g is continuous on
[a, b] (theorem 5.26)

• f(a) < y < f(b) =⇒ g(a) = f(a)− y < 0, g(b) = f(b)− y > 0 =⇒ ∃c ∈ (a, b)
such that g(c) = f(c)− y = 0 (theorem 5.35) =⇒ ∃c ∈ (a, b) such that f(c) = y

Theorem 5.37 Let f : [a, b] → R be a continuous function. Suppose the function f
achieves absolute minimum at c ∈ [a, b], and achieves absolute maximum at d ∈ [a, b].
Then, we have f([a, b]) = [f(c), f(d)], i.e., every value between the absolute minimum
value and the absolute maximum value is achieved.

proof:

• according to theorem 5.33, we have f([a, b]) ⊆ [f(c), f(d)]

• according to theorem 5.36, we have [f(c), f(d)] ⊆ f([c, d]) ⊆ f([a, b])

• hence, f([a, b]) = [f(c), f(d)]
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Remark 5.38 Similarly, theorem 5.36 is false if the function f is not continuous.

Example 5.39 The polynomial given by f(x) = x2021 + x2020 + 9.03x+ 1 has at least
one real root.

proof: we have f(0) = 1 > 0 and f(−1) = −8.03 < 0, hence, by theorem 5.36, there
exists some c ∈ (−1, 0) such that f(c) = 0
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Uniform continuity

Example 5.40 The function f(x) = 1
x is continuous on (0, 1).

proof: let c ∈ (0, 1) and ϵ > 0, choose δ = min
{

c
2 ,

c2

2 ϵ
}
, then ∀x ∈ (0, 1) such that

|x− c| < δ, we have

• ||x| − |c|| ≤ |x− c| < δ ≤ c
2 =⇒ − c

2 < |x| − c =⇒ 1
|x| <

2
c

• hence,
∣∣ 1
x − 1

c

∣∣ = |x−c|
|x|c < δ

|x|c < 2δ
c2

≤ 2
c2

· c2

2 ϵ = ϵ

Remark 5.41 Example 5.40 shows that in the definition of function continuity, the
number δ can depend on both the number ϵ and the point c.

Definition 5.42 Let f : S → R be a function. We say the function f is uniformly
continuous on S if for all ϵ > 0, there exists some δ > 0 such that for all x, c ∈ S and
|x− c| < δ, we have |f(x)− f(c)| < ϵ.

Remark 5.43 In the definition of uniform continuity, the number δ only depends on ϵ.
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Example 5.44 The function f(x) = x2 is uniformly continuous on [0, 1].

proof: let ϵ > 0, choose δ = ϵ
2 , then for all x, c ∈ [0, 1] and |x− c| < δ, we have

|x+ c| ≤ 2, and hence,

|f(x)− f(c)| = |x2 − c2| = |x+ c||x− c| < |x+ c|δ ≤ 2δ = 2 · ϵ = ϵ

Remark 5.45 Let f : S → R be a function. We say the function f is not uniformly
continuous on S if there exists some ϵ > 0 such that for all δ > 0, there exists some
x, c ∈ S and |x− c| < δ so that |f(x)− f(c)| ≥ ϵ.

Example 5.46 The function f(x) = 1
x is not uniformly continuous on (0, 1).

proof: choose ϵ = 2, let δ > 0, choose c = min
{
δ, 12
}
, x = c

2 , then we have

• x, c ∈ (0, 1) and |x− c| = c
2 ≤ δ

2 < δ

•
∣∣ 1
x − 1

c

∣∣ = |x−c|
|x||c| =

c
2 · 2

c2
= 1

c ≥ 2 = ϵ
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Example 5.47 The function given by f(x) = x2 is not uniformly continuous on R.

proof: choose ϵ = 2, let δ > 0, choose c = 2
δ , x = c+ δ

2 , then we have

• x, c ∈ R and |x− c| = δ
2 < δ

• |x2 − c2| = |x+ c||x− c| = (2c+ δ
2) · δ

2 = (4δ +
δ
2) · δ

2 = 2 + δ2

4 ≥ 2 = ϵ

Theorem 5.48 Let f : [a, b] → R be a function. Then, the function f is continuous on
[a, b] if and only if f is uniformly continuous on [a, b].

proof:

• suppose f is uniformly continuous on [a, b]: let c ∈ [a, b], ϵ > 0, then according to
uniform continuity, ∃δ > 0 such that for all x ∈ [a, b] and |x− c| < δ, we have
|f(x)− f(c)| < ϵ

• suppose f is continuous on [a, b]

– assume f is not uniformly continuous on [a, b], then ∃ϵ > 0 such that ∀δ > 0, there
exists x, c ∈ [a, b] such that |x− c| < δ but |f(x)− f(c)| ≥ ϵ
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– choose sequences (xn)
∞
n=1 and (cn)

∞
n=1 such that for all n ∈ N, xn, cn ∈ [a, b],

|xn − cn| < 1
n , but |f(xn)− f(cn)| ≥ ϵ

– since xn ∈ [a, b] for all n ∈ N, there exists a subsequence (xni
)
∞
i=1 of (xn)

∞
n=1 such

that xni → c and c ∈ [a, b] (theorem 3.37)

– take subsequence (cni
)
∞
i=1 of (cn)

∞
n=1 according to the indexes ni of (xni

)
∞
i=1, then

cni
∈ [a, b] for all n ∈ N =⇒ there exists a subsequence

(
cnij

)∞
j=1

such that

cnij
→ d and d ∈ [a, b]

– take subsequence
(
xnij

)∞
j=1

of (xni
)
∞
i=1 according to the indexes nij of

(
cnij

)∞
j=1

,

then xnij
→ c since xni

→ c

– 0 ≤ |xnij
− cnij

| < 1
nij

and 1
nij

→ 0 =⇒ limj→∞ |xnij
− cnij

| = 0 =⇒
limj→∞ xnij

= limj→∞ cnij
=⇒ c = d

– since f is continuous on [a, b] and xnij
→ c, cnij

→ c, we have

lim
j→∞

f(xnij
) = lim

j→∞
f(cnij

) = f(c)

=⇒ 0 = |f(c)− f(c)| = lim
j→∞

|f(xnij
)− f(cnij

)| ≥ ϵ,

which is a contradiction
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Lipschitz continuity

Definition 5.49 Let f : S → R be a function. We say the function f is Lipschitz
continuous on S if there exists some K ≥ 0 such that for all x, y ∈ S, we have
|f(x)− f(y)| ≤ K|x− y|.

Remark 5.50 Geometrically, the function f is Lipschitz continuous if and only if all
lines intersects the graph of f in at least two distinct points has slope in absolute value
less than or equal to K.

Theorem 5.51 Let f : S → R be a function. If the function f is Lipschitz continuous,
then f is uniformly continuous.

proof: let ϵ > 0

• f is Lipschitz continuous =⇒ ∃K ≥ 0 such that for all x, y ∈ S, we have
|f(x)− f(y)| ≤ K|x− y|

• choose δ = ϵ/(K + 1), then for all x, y ∈ S and |x− y| < δ, we have

|f(x)− f(y)| ≤ K|x− y| < Kδ =
K

K + 1
ϵ < ϵ
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Example 5.52 The function f(x) =
√
x is Lipschitz continuous on [1,∞), but is not

Lipschitz continuous on [0,∞).

proof:

• consider the function f : [1,∞) → R given by f(x) =
√
x, then ∀x, y ∈ [1,∞):

– x ≥ 1, y ≥ 1 =⇒ √
x+

√
y ≥ 2

– hence,

|f(x)− f(y)| = |√x−√
y| = |x− y|√

x+
√
y
≤ 1

2
|x− y|

=⇒ f is Lipschitz continuous with K = 1/2

• consider the function g : [0,∞) → R given by g(x) =
√
x, let K ≥ 0, choose

x = 0, y = 1
K2+1

, then

∣∣∣∣
f(x)− f(y)

x− y

∣∣∣∣ =
∣∣∣∣
√
x−√

y

x− y

∣∣∣∣ =
√
y

y
=

1√
y
=
√

K2 + 1 >
√
K2 = K

=⇒ |f(x)− f(y)| > K|x− y|
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6. Derivative

• definition and basic properties

• differentiation rules

• Rolle’s theorem and mean value theorem

• Taylor’s theorem

Derivative 6-1

Derivative of functions

Definition 6.1 Let I be an interval, let f : I → R be a function, and let c ∈ I. We say
the function f is differentiable at c if the limit

L = lim
x→c

f(x)− f(c)

x− c

exists. We call L the derivative of f at c, and we write f ′(c) = L.

If f is differentiable at all c ∈ I, then we say the function f is differentiable, and we
write f ′ or df

dx for the function f ′(x), x ∈ I.

Example 6.2 Consider the function f(x) = ax+ b, then f ′(c) = a for all c ∈ R.

proof: let x, c ∈ R, then we have

lim
x→c

f(x)− f(c)

x− c
= lim

x→c

ax+ b− (ac+ b)

x− c
= lim

x→c

a(x− c)

x− c
= lim

x→c
a = a
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Example 6.3 Consider the function f(x) = x2, then f ′(c) = 2c for all c ∈ R.

proof: let x, c ∈ R, then we have

lim
x→c

f(x)− f(c)

x− c
= lim

x→c

x2 − c2

x− c
= lim

x→c

(x+ c)(x− c)

x− c
= lim

x→c
(x+ c) = 2c

Theorem 6.4 Suppose the function f : I → R is differentiable at c ∈ I, then f is
continuous at c.

proof: f is differentiable at c ∈ I =⇒ the limit limx→c
f(x)−f(c)

x−c exists, hence,

lim
x→c

f(x) = lim
x→c

(
f(x)− f(c)

x− c
(x− c) + f(c)

)
= f ′(c) · 0 + f(c) = f(c)

Remark 6.5 The converse of theorem 6.4 does not hold.
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Example 6.6 The function f(x) = |x| is not differentiable at 0.

proof: let (xn)
∞
n=1 be a sequence with xn = (−1)n

n for all n ∈ N

• 0 ≤
∣∣∣ (−1)n

n

∣∣∣ ≤ 1
n and 1

n → 0 =⇒ xn → 0

• consider the sequence
(
f(xn)−f(0)

xn−0

)∞
n=1

, we have

f(xn)− f(0)

xn − 0
=

|xn|
xn

=

∣∣∣ (−1)n

n

∣∣∣
(−1)n

n

= (−1)n

• limn→∞ (−1)n does not exist =⇒ limx→0
f(x)−f(0)

x−0 does not exist

Remark 6.7 There exist functions that are continuous but nowhere differentiable.
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Differentiation rules

Theorem 6.8 Let I be an interval, let f : I → R and g : I → R be differentiable
functions at c ∈ I.

• Linearity. Let α ∈ R. Define h(x) = αf(x) + g(x), then h′(c) = αf ′(c) + g′(c).

• Product rule. Define h(x) = f(x)g(x), then h′(c) = f ′(c)g(c) + f(c)g′(c).

• Quotient rule. If g(x) ̸= 0 for all x ∈ I, define h(x) = f(x)/g(x), then

h′(c) =
f ′(c)g(c)− f(c)g′(c)

(g(c))2
.

proof: f, g differentiable at c =⇒ limx→c
f(x)−f(c)

x−c , limx→c
g(x)−g(c)

x−c exists, and f, g
continuous at c =⇒ limx→c f(x) = f(c), limx→c g(x) = g(c)

• if h(x) = αf(x) + g(c), then we have

lim
x→c

h(x)− h(c)

x− c
= lim

x→c

αf(x) + g(x)− αf(c)− g(c)

x− c

= α lim
x→c

f(x)− f(c)

x− c
+ lim

x→c

g(x)− g(c)

x− c
= αf ′(c) + g′(c)
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• if h(x) = f(x)g(x), then we have

lim
x→c

h(x)− h(c)

x− c
= lim

x→c

f(x)g(x)− f(c)g(c)

x− c

= lim
x→c

f(x)g(x)− f(c)g(c) + f(x)g(c)− f(x)g(c)

x− c

= lim
x→c

g(c)(f(x)− f(c)) + f(x)(g(x)− g(c))

x− c

= g(c) lim
x→c

f(x)− f(c)

x− c
+ lim

x→c
f(x)

g(x)− g(c)

x− c
= f ′(c)g(c) + f(c)g′(c)

• if h(x) = f(x)/g(x), then we have

lim
x→c

h(x)− h(c)

x− c
= lim

x→c

f(x)/g(x)− f(c)/g(c)

x− c
= lim

x→c

1

g(x)g(c)

f(x)g(c)− f(c)g(x)

x− c

= lim
x→c

1

g(x)g(c)

f(x)g(c)− f(c)g(x) + f(x)g(x)− f(x)g(x)

x− c

= lim
x→c

1

g(x)g(c)

g(x)(f(x)− f(c))− f(x)(g(x)− g(c))

x− c

=
f ′(c)g(c)− f(c)g′(c)

(g(c))
2
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Theorem 6.9 Chain rule. Let I1, I2 be two intervals. Let g : I1 → R be differentiable
at c ∈ I1 and f : I2 → R be differentiable at g(c). Define h : I1 → R by h = f ◦ g,
then h is differentiable at c, and

h′(c) = f ′(g(c))g′(c).

proof: let d = g(c)

• define the following functions:

u(y) =

{
f(y)−f(d)

y−d y ̸= d

f ′(d) y = d
and v(x) =

{
g(x)−g(c)

x−c x ̸= c

g′(c) x = c,

then we have

lim
y→d

u(y) = lim
y→d

f(y)− f(d)

y − d
= f ′(d) = u(d)

lim
x→c

v(x) = lim
x→c

g(x)− g(c)

x− c
= g′(c) = v(c),

i.e., u is continuous at d, v is continuous at c
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• note that f(y)− f(d) = u(y)(y − d) and g(x)− d = v(x)(x− c), we have

h(x)− h(c) = f(g(x))− f(d) = u(g(x))(g(x)− d) = u(g(x))v(x)(x− c)

• put together, we have

lim
x→c

h(x)− h(c)

x− c
= lim

x→c
u(g(x))v(x) = u(g(c))v(c) = f ′(g(c))g′(c)
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Rolle’s theorem

Definition 6.10 Let f : S → R with S ⊆ R.

The function f is said to have a relative maximum at c ∈ S if there exists some δ > 0
such that for all x ∈ S and |x− c| < δ, we have f(x) ≤ f(c).

The function f is said to have a relative minimum at c ∈ S if there exists some δ > 0
such that for all x ∈ S and |x− c| < δ, we have f(x) ≥ f(c).

Theorem 6.11 If the function f : [a, b] → R has a relative maximum or minimum at
c ∈ (a, b) and f is differentiable at c, then f ′(c) = 0.

proof: we show the case for c being a relative maximum point

• c ∈ (a, b) is an relative maximum point =⇒ ∃δ > 0 such that for all x ∈ [a, b]
and |x− c| < δ, we have f(x) ≤ f(c)

• let (xn)
∞
n=1 be a sequence with xn = c− δ

2n for all n ∈ N, then we have xn < c,

xn → c, and |xn − c| < δ for all n ∈ N =⇒ f ′(c) = limn→∞
f(xn)−f(c)

xn−c ≥ 0

• let (yn)
∞
n=1 be a sequence with yn = c+ δ

2n for all n ∈ N, then we have yn > c,

yn → c, and |yn − c| < δ for all n ∈ N =⇒ f ′(c) = limn→∞
f(yn)−f(c)

yn−c ≤ 0
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Remark 6.12 In theorem 6.11, the function f does not necessarily have to be defined
on a closed interval, but the point c where the relative extremum is achieved has to be
on the open interval (a, b).

Remark 6.13 Absolute extremum is a special case of relative extremum.

Theorem 6.14 Rolle. Let the function f : [a, b] → R be continuous and differentiable
on (a, b). If f(a) = f(b), then there exists some c ∈ (a, b) such that f ′(c) = 0.

proof: let f(a) = f(b) = K; f is continuous on [a, b] =⇒ there exists an absolute
maximum point c1 ∈ [a, b] and an absolute minimum point c2 ∈ [a, b] (theorem 5.33)

• if c1 > K, then c1 ∈ (a, b) =⇒ f ′(c1) = 0 (theorem 6.11)

• if c2 < K, then c2 ∈ (a, b) =⇒ f ′(c2) = 0 (theorem 6.11)

• if c1 = c2 = K, then K ≤ f(x) ≤ K for all x ∈ [a, b] =⇒ f(x) = K for all
x ∈ [a, b] =⇒ f ′(c) = 0 for all c ∈ (a, b)
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Mean value theorem

Theorem 6.15 Mean value theorem. Let the function f : [a, b] → R be continuous and
differentiable on (a, b), then there exists some c ∈ (a, b) such that

f(b)− f(a) = f ′(c)(b− a).

proof:

• define g : [a, b] → R with g(x) = f(x)− f(b) + f(b)−f(a)
b−a (b− x)

• since g(a) = g(b) = 0, by theorem 6.14, there exists c ∈ (a, b) such that

g′(c) = 0 = f ′(c)− f(b)− f(a)

b− a
=⇒ f(b)− f(a) = f ′(c)(b− a)

Theorem 6.16 If the function f : I → R is differentiable and f ′(x) = 0 for all x ∈ I,
then f is constant.

proof: let a, b ∈ I with a < b, then f is continuous on [a, b] and differentiable on
(a, b) =⇒ ∃c ∈ (a, b) such that f(b)− f(a) = f ′(c)(b− a) = 0 (since f ′(x) = 0 for
all x ∈ I) =⇒ f(b) = f(a)
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Theorem 6.17 Let f : I → R be a differentiable function.

• The function f is increasing if and only if f ′(x) ≥ 0 for all x ∈ I.

• The function f is decreasing if and only if f ′(x) ≤ 0 for all x ∈ I.

proof: we prove the first statement

• suppose f ′(x) ≥ 0 for all x ∈ I, let a, b ∈ I with a < b, then f is continuous on
[a, b] and differentiable on (a, b) =⇒ ∃c ∈ (a, b) s.t. f(b)− f(a) = f ′(c)(b− a)
(theorem 6.15) and f ′(c) ≥ 0 =⇒ f(b)− f(a) ≥ 0 =⇒ f(a) ≤ f(b)

• suppose f is increasing, let c ∈ I, then we can find a sequence (xn)
∞
n=1 with

either xn < c or xn > c for all n ∈ N such that xn → c
– if xn < c for all n ∈ N =⇒ f(xn) ≤ f(c) for all n ∈ N, and hence

f ′(c) = lim
x→c

f(x)− f(c)

x− c
= lim

n→∞
f(xn)− f(c)

xn − c
≥ 0

– if xn > c for all n ∈ N =⇒ f(xn) ≥ f(c) for all n ∈ N, and hence

f ′(c) = lim
x→c

f(x)− f(c)

x− c
= lim

n→∞
f(xn)− f(c)

xn − c
≥ 0

in either case, we have f ′(c) ≥ 0
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Taylor’s theorem

Definition 6.18 We say the function f : I → R is n-times differentiable on J ⊆ I if
f ′, f ′′, . . . , f (n) exist at every point in J , where f (n) denotes the nth derivative of f .

Theorem 6.19 Taylor. Suppose the function f : [a, b] → R is continuous and has n
continuous derivatives on [a, b] such that f (n+1) exists on (a, b). Given x0, x ∈ [a, b],
there exists some c ∈ (x0, x) such that

f(x) =

n∑

k=0

1

k!
f (k)(x0)(x− x0)

k +
f (n+1)(c)

(n+ 1)!
(x− x0)

n+1.

We denote

Pn(x) =
n∑

k=0

1

k!
f (k)(x0)(x− x0)

k and Rn(x) =
f (n+1)(c)

(n+ 1)!
(x− x0)

n+1

as the nth order Taylor polynomial and the nth order remainder of f , respectively.
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proof: let x, x0 ∈ [a, b] and x ̸= x0 (if x = x0 then any c satisfies the theorem)

• let Mx,x0 = f(x)−Pn(x)

(x−x0)
n+1 , then we have

f(x) = Pn(x) +Mx,x0
(x− x0)

n+1

• note that for all 0 ≤ k ≤ n, we have f (k)(x0) = P
(k)
n (x0)

• let g(s) = f(s)− Pn(s)−Mx,x0(s− x0)
n+1, then we have

g(x0) = f(x0)− Pn(x0)−Mx,x0
(x0 − x0)

n+1
= 0

g′(x0) = f ′(x0)− P ′
n(x0)−Mx,x0

(n+ 1)(x0 − x0)
n
= 0

...

g(n)(x0) = f (n)(x0)− P
(n)
n (x0)−Mx,x0

(n+ 1)!(x0 − x0) = 0

• by theorem 6.15:

g(x0) = g(x) = 0 =⇒ ∃x1 between x0 and x s.t. g′(x1) = 0

g′(x0) = g′(x1) = 0 =⇒ ∃x2 between x0 and x1 s.t. g′′(x2) = 0
...

g(n−1)(x0) = g(n−1)(xn−1) = 0 =⇒ ∃xn between x0 and xn−1 s.t. g(n)(xn) = 0

g(n)(x0) = g(n)(xn) = 0 =⇒ ∃c between x0 and xn s.t. g(n+1)(c) = 0
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• note that

dn+1

dsn+1
Mx,x0(s− x0)

n+1 = Mx,x0(n+ 1)! and P (n+1)
n (c) = 0

• we have the (n+ 1)-times derivative of g at c given by

0 = g(n+1)(c) = f (n+1)(c)−Mx,x0(n+ 1)! =⇒ Mx,x0 =
f (n+1)(c)

(n+ 1)!

• hence, we have

f(x) = Pn(x) +Mx,x0(x− x0)
n+1

= Pn(x) +
f (n+1)(c)

(n+ 1)!
(x− x0)

n+1
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Theorem 6.20 Second derivative test. Suppose the function f : (a, b) → R has two
continuous derivatives. If x0 ∈ (a, b) such that f ′(x0) = 0 and f ′′(x0) > 0, then f has
a strict relative minimum at x0.

proof:

• it is easy to show that f ′′ is continuous and f ′′(x0) > 0 =⇒ there exists some
δ > 0 such that for all c ∈ (x0 − δ, x0 + δ), we have f ′′(c) > 0

• then for all x ∈ (x0 − δ, x0 + δ), by theorem 6.19, there exists some c0 between x
and x0 such that

f(x) = f(x0) + f ′(x0)(x− x0) +
1

2
f ′′(c0)(x− x0)

2

• c0 between x and x0 =⇒ c0 ∈ (x0 − δ, x0 + δ) =⇒ f ′′(c) > 0, and since
f ′(x0) = 0, we have

f(x)− f(x0) =
1

2
f ′′(c0)(x− x0)

2 > 0 =⇒ f(x) > f(x0)
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7. Riemann integral

• Riemann sum and some useful facts

• Riemann integral of continuous functions

• properties of Riemann integral

• fundamental theorem of calculus

• integration by parts

• change of variables

Riemann integral 7-1

Riemann sum

Definition 7.1 A partition x = {x0, x1, . . . , xn} of [a, b] is a finite set such that

a = x0 < x1 < · · · < xn = b.

The norm of x, denoted ∥x∥, is a number defined as

∥x∥ = max{x1 − x0, x2 − x1, . . . , xn − xn−1}.

Definition 7.2 let x be a partition of [a, b]. A tag of x is a finite set ξ = {ξ1, . . . , ξn}
such that

a = x0 ≤ ξ1 ≤ x1 ≤ ξ2 ≤ x2 ≤ · · · ≤ xn−1 ≤ ξn ≤ xn = b.

The pair (x, ξ) is referred to as a tagged partition.

example: (x, ξ) = ({1, 3/2, 2, 3}, {5/4, 7/4, 5/2}) is a tagged partition with norm

∥x∥ = max{3/2− 1, 2− 3/2, 3− 2} = 1
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Definition 7.3 The Riemann sum of f corresponding to (x, ξ) is the number

Sf (x, ξ) =
n∑

i=1

f(ξi)(xi − xi−1).

Remark 7.4 For a continuous function f on [a, b] that is positive, the Riemann sum
Sf (x, ξ) is an approximate area under the graph of f . As ∥x∥ → 0, we should expect
these approximate areas to converge to some number, which we interpret as the area
under the graph of f on the interval [a, b].
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Some useful facts

Definition 7.5 We define the set C([a, b]) = {f : [a, b] → R | f is continuous}.

Definition 7.6 Let f ∈ C([a, b]) and τ > 0, we define the modulus of continuity of
the function f as

wf (τ) = sup{|f(x)− f(y)| | |x− y| ≤ τ}.

Theorem 7.7 For all f ∈ C([a, b]), we have limτ→0wf (τ) = 0, i.e., for all ϵ > 0, there
exists some δ > 0 such that for all τ < δ, we have wf (τ) < ϵ.

proof: let ϵ > 0

• f ∈ C([a, b]) =⇒ f is uniformly continuous on [a, b] =⇒ ∃δ > 0 such that for
all x, y ∈ [a, b] and |x− y| < δ, we have |f(x)− f(y)| < ϵ/2

• let τ < δ, then for all x, y ∈ [a, b] and |x− y| ≤ τ , we have |x− y| < δ =⇒
|f(x)− f(y)| < ϵ/2 for all x, y ∈ [a, b] and |x− y| ≤ τ =⇒ ϵ/2 is an upper
bound of the set {|f(x)− f(y)| | |x− y| ≤ τ} =⇒ wf (τ) ≤ ϵ/2 < ϵ
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Theorem 7.8 Let f ∈ C([a, b]), then wf (τ) has the following properties:

• For all x, y ∈ [a, b], we have wf (|x− y|) ≥ |f(x)− f(y)|.
• Monotonicity. If τ1 ≤ τ2, then wf (τ1) ≤ wf (τ2).

Definition 7.9 Let (x, ξ) and (x′, ξ′) be tagged partitions of [a, b]. We say x′ is a
refinement of x if x ⊆ x′.

Theorem 7.10 Let (x, ξ) and (x′, ξ′) be tagged partitions of [a, b] such that x′ is a
refinement of x. If f ∈ C([a, b]), then

|Sf (x, ξ)− Sf (x
′, ξ′)| ≤ wf (∥x∥)(b− a).

proof: let x = {x0, . . . , xn}, ξ = {ξ1, . . . , ξn}, x′ = {x′0, . . . , x′n}, ξ′ = {ξ′1, . . . , ξ′n}
• for i = 1, . . . , n, let y(i) = {x′q, x′q+1, . . . , x

′
k}, ζ(i) = {ξ′q+1, ξ

′
q+2, . . . , ξ

′
k} s.t.

xi−1 = x′q < x′q+1 < · · · < x′k = xi

Riemann integral 7-5

• then for all i = 1, . . . , n, we have

|f(ξi)(xi − xi−1)− Sf (y
(i), ζ(i))|

=

∣∣∣∣∣∣
f(ξi)

k∑

ℓ=q+1

(x′ℓ − x′ℓ−1)−
k∑

ℓ=q+1

f(ξ′ℓ)(x
′
ℓ − x′ℓ−1)

∣∣∣∣∣∣

=

∣∣∣∣∣∣

k∑

ℓ=q+1

(f(ξi)− f(ξ′ℓ))(x
′
ℓ − x′ℓ−1)

∣∣∣∣∣∣
≤

k∑

ℓ=q+1

|f(ξi)− f(ξ′ℓ)|(x′ℓ − x′ℓ−1)

≤
k∑

ℓ=q+1

wf (xi − xi−1)(x
′
ℓ − x′ℓ−1) ≤

k∑

ℓ=q+1

wf (∥x∥)(x′ℓ − x′ℓ−1)

= wf (∥x∥)(xi − xi−1) (7.1)

– the first inequality is by lemma 4.18

– the second inequality is from ξi, ξ
′
ℓ ∈ [xi−1, xi]

– the third inequality is by the second statement of theorem 7.8, and ∥x∥ ≥ xi − xi−1
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• put together, we have

|Sf (x, ξ)− Sf (x
′, ξ′)| =

∣∣∣∣∣
n∑

i=1

(f(ξi)(xi − xi−1)− Sf (y
(i), ζ(i)))

∣∣∣∣∣

≤
n∑

i=1

|f(ξi)(xi − xi−1)− Sf (y
(i), ζ(i))| ≤

n∑

i=1

wf (∥x∥)(xi − xi−1)

= wf (∥x∥)(b− a),

where the last inequality is by plugging in (7.1)

Theorem 7.11 Let (x, ξ) and (x′, ξ′) be any two tagged partitions of [a, b] and f ∈
C([a, b]), then

|Sf (x, ξ)− Sf (x
′, ξ′)| ≤ (wf (∥x∥) + wf (∥x′∥))(b− a).

proof: let x′′ = x ∪ x′ and ξ′′ be a tag of x′′, then by theorem 7.10, we have

|Sf (x, ξ)− Sf (x
′, ξ′)| ≤ |Sf (x, ξ)− Sf (x

′′, ξ′′)|+ |Sf (x
′′, ξ′′)− Sf (x

′, ξ′)|
≤ (wf (∥x∥) + wf (∥x′∥))(b− a)
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Riemann integral of continuous functions

Theorem 7.12 Let f ∈ C([a, b]), then there exists a unique number denoted
∫ b
a f(x) dx

with the following property: For all sequences of tagged partitions
(
(x(r), ξ(r))

)∞
r=1

such

that limr→∞ ∥x(r)∥ = 0, we have

lim
r→∞

Sf (x
(r), ξ(r)) =

∫ b

a
f(x) dx.

proof: uniqueness follows immediately from uniqueness of limits of sequences of real
numbers, we only need to show the existence

• let
(
(y(r), ζ(r))

)∞
r=1

be a sequence of tagged partitions with limr→∞ ∥y(r)∥ = 0,

we first show that
(
Sf (y

(r), ζ(r))
)∞
r=1

is a Cauchy sequence; let ϵ > 0

– by theorem 7.7, ∃δ > 0 such that for all τ < δ, wf (τ) <
ϵ

2(b−a)

– ∥y(r)∥ → 0 =⇒ ∃M ∈ N s.t. ∀r, s ≥ M , ∥y(r)∥ < δ, ∥y(s)∥ < δ =⇒ ∀r, s ≥ M ,

we have wf (∥y(r)∥) < ϵ
2(b−a) , wf (∥y(s)∥) < ϵ

2(b−a)
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– hence, for all r, s ≥ M , by theorem 7.11, we have

|Sf (y
(r), ζ(r))− Sf (y

(s), ζ(s))|

≤ (wf (∥y(r)∥) + wf (∥y(s)∥))(b− a) <

(
ϵ

2(b− a)
+

ϵ

2(b− a)

)
(b− a) = ϵ

let L = limr→∞ Sf (y
(r), ζ(r)) (which exists by theorem 3.45)

• let
(
(x(r), ξ(r))

)∞
r=1

be any sequence of partitions with limr→∞ ∥x(r)∥ = 0, we

now show that limr→∞ Sf (x
(r), ξ(r)) = L

– since ∥x(r)∥ → 0, ∥y(r)∥ → 0, by theorem 7.7, we have

lim
r→∞

(wf (∥x(r)∥) + wf (∥y(r)∥))(b− a) = 0

– Sf (y
(r), ζ(r)) → L =⇒ |Sf (y

(r), ζ(r))− L| → 0
– by theorem 7.11, we have

0 ≤ |Sf (x
(r), ξ(r))− L| ≤ |Sf (x

(r), ξ(r))− Sf (y
(r), ζ(r))|+ |Sf (y

(r), ζ(r))− L|
≤ (wf (∥x(r)∥) + wf (∥y(r)∥))(b− a) + |Sf (y

(r), ζ(r))− L|

=⇒ limr→∞ |Sf (x
(r), ξ(r))− L| = 0 (theorem 3.21)

Riemann integral 7-9

Remark 7.13 Let f ∈ C([a, b]). We sometimes write

∫ b

a
f(x) dx =

∫ b

a
f.

By convention, we also define

∫ a

a
f = 0 and

∫ a

b
f = −

∫ b

a
f.

Riemann integral 7-10



Properties of Riemann integral

Theorem 7.14 Linearity. Let f, g ∈ C([a, b]) and α ∈ R, then

∫ b

a
(αf + g) = α

∫ b

a
f +

∫ b

a
g.

proof: let
(
(x(r), ξ(r))

)∞
r=1

be a sequence of tagged partitions such that ∥x(r)∥ → 0,

then we have

∫ b

a
(αf + g) = lim

r→∞
Sαf+g(x

(r), ξ(r))

= lim
r→∞

(αSf (x
(r), ξ(r)) + Sg(x

(r), ξ(r)))

= α lim
r→∞

Sf (x
(r), ξ(r)) + lim

r→∞
Sg(x

(r), ξ(r))

= α

∫ b

a
f +

∫ b

a
g

Riemann integral 7-11

Theorem 7.15 Additivity. Let f ∈ C([a, b]) and a < c < b, then we have

∫ b

a
f =

∫ c

a
f +

∫ b

c
f.

proof:

• let
(
(y(r), ζ(r))

)∞
r=1

be a sequence of tagged partitions of [a, c] with ∥y(r)∥ → 0

• let
(
(z(r), η(r))

)∞
r=1

be a sequence of tagged partitions of [c, b] with ∥z(r)∥ → 0

• then
(
(x(r), ξ(r))

)∞
r=1

with x(r) = y(r) ∪ z(r) and ξ(r) = ζ(r) ∪ η(r) is a sequence

of tagged partitions of [a, b]

• ∥y(r)∥ → 0 and ∥z(r)∥ → 0 =⇒ ∥x(r)∥ ≤ ∥y(r)∥+ ∥z(r)∥ → 0

• hence, we have

∫ b

a
f = lim

r→∞
Sf (x

(r), ξ(r)) = lim
r→∞

(Sf (y
(r), ζ(r)) + Sf (z

(r), η(r)))

= lim
r→∞

Sf (y
(r), ζ(r)) + lim

r→∞
Sf (z

(r), η(r)) =

∫ c

a
f +

∫ b

c
f

Riemann integral 7-12



Theorem 7.16 Let f, g ∈ C([a, b]) and f(x) ≤ g(x) for all x ∈ [a, b], then we have

∫ b

a
f ≤

∫ b

a
g.

proof: let
(
(x(r), ξ(r))

)∞
r=1

be a sequence of tagged partitions with ∥x(r)∥ → 0, then

Sf (x
(r), ξ(r)) =

n(r)∑

i=1

f(ξ
(r)
i )(x

(r)
i − x

(r)
i−1) ≤

n(r)∑

i=1

g(ξ
(r)
i )(x

(r)
i − x

(r)
i−1) = Sg(x

(r), ξ(r))

=⇒ limr→∞ Sf (x
(r), ξ(r)) ≤ limr→∞ Sg(x

(r), ξ(r)) =⇒
∫ b
a f ≤

∫ b
a g

Corollary 7.17 Let f ∈ C([a, b]), then
∣∣∣
∫ b
a f
∣∣∣ ≤

∫ b
a |f |.

proof: ±f(x) ≤ |f(x)| =⇒
∫ b
a ±f = ±

∫ b
a f ≤

∫ b
a |f | (theorem 7.16)

Riemann integral 7-13

Theorem 7.18 Let f ∈ C([a, b]), and

mf = inf{f(x) | x ∈ [a, b]}, Mf = sup{f(x) | x ∈ [a, b]}.

Then, we have

mf (b− a) ≤
∫ b

a
f ≤ Mf (b− a).

proof: let
(
(x(r), ξ(r))

)∞
r=1

be a sequence of tagged partitions with ∥x(r)∥ → 0, then

Sf (x
(r), ξ(r)) =

n(r)∑

i=1

f(ξ
(r)
i )(x

(r)
i − x

(r)
i−1) ≥

n(r)∑

i=1

mf (x
(r)
i − x

(r)
i−1) = mf (b− a)

Sf (x
(r), ξ(r)) =

n(r)∑

i=1

f(ξ
(r)
i )(x

(r)
i − x

(r)
i−1) ≤

n(r)∑

i=1

Mf (x
(r)
i − x

(r)
i−1) = Mf (b− a)

=⇒ mf (b− a) ≤ limr→∞ Sf (x
(r), ξ(r)) ≤ Mf (b− a)
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Fundamental theorem of calculus

Theorem 7.19 Fundamental theorem of calculus. Let f ∈ C([a, b]).

• If F : [a, b] → R is differentiable and F ′ = f , then

∫ b

a
f = F (b)− F (a).

• The function G(x) =
∫ x
a f is differentiable on [a, b] with

G(a) = 0, G′(x) = f(x).

proof:

• let
(
x(r)

)∞
r=1

be a sequence of partitions with ∥x(r)∥ → 0, by theorem 6.15, there

exist tags ξ(r) with ξ
(r)
i ∈ [x

(r)
i−1, x

(r)
i ], i = 1, . . . , n(r), such that

F (x
(r)
i )− F (x

(r)
i−1) = F ′(ξ(r)i )(x

(r)
i − x

(r)
i−1) = f(ξ

(r)
i )(x

(r)
i − x

(r)
i−1)

Riemann integral 7-15

hence, for the sequence of tagged partitions
(
(x(r), ξ(r))

)∞
r=1

we have

Sf (x
(r), ξ(r)) =

n(r)∑

i=1

f(ξ
(r)
i )(x

(r)
i − x

(r)
i−1) =

n(r)∑

i=1

F (x
(r)
i )− F (x

(r)
i−1) = F (b)− F (a)

=⇒
∫ b
a f = limr→∞ Sf (x

(r), ξ(r)) = F (b)− F (a)

• we only need to show that G is differentiable and G′ = f , i.e., let c ∈ [a, b], we

need to prove that limx→c
G(x)−G(c)

x−c = limx→c

∫ x
a f−

∫ c
a f

x−c = f(c); let ϵ > 0

– f continuous on [a, b] =⇒ ∃δ > 0 such that for all t ∈ [a, b] and |t− c| < δ, we
have |f(t)− f(c)| < ϵ/2

– suppose x ∈ (c, c+ δ), then for all t ∈ [c, x], we have |f(t)− f(c)| < ϵ/2, hence,

∣∣∣∣∣

∫ x

a
f −

∫ c

a
f

x− c
− f(c)

∣∣∣∣∣ =
∣∣∣∣∣

∫ x

c
f(t) dt

x− c
− f(c)

∣∣∣∣∣

=

∣∣∣∣
1

x− c

(∫ x

c

f(t) dt−
∫ x

c

f(c) dt

)∣∣∣∣ =
1

x− c

∣∣∣∣
∫ x

c

(f(t)− f(c)) dt

∣∣∣∣

≤ 1

x− c

∫ x

c

|f(t)− f(c)| dt ≤ 1

x− c

∫ x

c

ϵ

2
dt =

1

x− c
· ϵ
2
(x− c) =

ϵ

2
< ϵ

(the first inequality is by corollary 7.17)
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– suppose x ∈ (c− δ, c), using similar argument, we have
∣∣∣
∫ x
a

f−
∫ c
a
f

x−c − f(c)
∣∣∣ < ϵ

– put together, we conclude that for all x ∈ [a, b] and 0 < |x− c| < δ, we have

∣∣∣∣∣

∫ x

a
f −

∫ c

a
f

x− c
− f(c)

∣∣∣∣∣ < ϵ

=⇒ lim
x→c

G(x)−G(c)

x− c
= lim

x→c

∫ x

a
f −

∫ c

a
f

x− c
= f(c)

Riemann integral 7-17

Integration by parts

Theorem 7.20 Integration by parts. Suppose f, g ∈ C([a, b]), f ′, g′ ∈ C([a, b]), then
∫ b

a
f ′g = (f(b)g(b)− f(a)g(a))−

∫ b

a
fg′.

proof: let F ∈ C([a, b]) with F (x) = f(x)g(x), by theorem 6.8, we have

F ′(x) = f ′(x)g(x) + f(x)g′(x),

and hence,

∫ b

a
f ′(x)g(x) dx+

∫ b

a
f(x)g′(x) dx =

∫ b

a
(f ′(x)g(x) + f(x)g′(x)) dx

=

∫ b

a
F ′(x) dx = F (b)− F (a) = f(b)g(b)− f(a)g(a)

=⇒
∫ b
a f ′g = (f(b)g(b)− f(a)g(a))−

∫ b
a fg′

Riemann integral 7-18



Change of variables

Theorem 7.21 Change of variables. Let f ∈ C([c, d]) and φ : [a, b] → [c, d] be contin-
uously differentiable with φ(a) = c and φ(b) = d. Then, we have

∫ d

c
f(u) du =

∫ b

a
f(φ(x))φ′(x) dx.

proof:

• let F : [a, b] → R be a function with F ′ = f , then we have

∫ d

c
f(u) du = F (d)− F (c)

• by theorem 6.9, we have

(F ◦ φ)′(x) = F ′(φ(x))φ′(x) = f(φ(x))φ′(x),

and hence,
∫ b

a
f(φ(x))φ′(x) dx = F (φ(b))− F (φ(a)) = F (d)− F (c) =

∫ d

c
f(u) du
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8. Sequences of functions

• power series

• pointwise and uniform convergence

• interchange of limits

• Weierstrass M-test

• properties of power series

Sequences of functions 8-1

Power series

Definition 8.1 A power series about x0 ∈ R is a series of the form

∞∑

m=0

am(x− x0)
m.

Definition 8.2 Let
∑∞

m=0 am(x− x0)
m be a power series, if the limit

R = lim
m→∞

|am|1/m

exists, we define the radius of convergence ρ as

ρ =

{
1/R R > 0

∞ R = 0.

Sequences of functions 8-2



Theorem 8.3 Let
∑∞

m=0 am(x− x0)
m be a power series and R = limm→∞ |am|1/m

exists. If R = 0, the series converges absolutely for all x ∈ R. If R > 0, the series
converges absolutely if |x− x0| < ρ and diverges if |x− x0| > ρ.

proof: consider the root test (theorem 4.26), we have

L = lim
m→∞

|am(x− x0)
m|1/m = |x− x0| lim

m→∞
|am|1/m = R|x− x0|

• suppose R = 0, then we have L = 0 < 1 for all x ∈ R =⇒ ∑∞
m=0 am(x− x0)

m

converges absolutely for all x ∈ R

• suppose R > 0

– if |x− x0| < ρ =⇒ L < Rρ = 1 =⇒ ∑∞
m=0 am(x− x0)

m converges absolutely

– if |x− x0| > ρ =⇒ L > Rρ = 1 =⇒ ∑∞
m=0 am(x− x0)

m diverges

Sequences of functions 8-3

Remark 8.4 Let
∑∞

m=0 am(x− x0)
m be a power series with radius of convergence ρ.

Define f : (x0 − ρ, x0 + ρ) → R such that

f(x) =
∞∑

m=0

am(x− x0)
m,

then, the function f is the limit of a sequence of functions (fn)
∞
n=1, given by

f(x) = lim
n→∞

fn(x), fn(x) =

n∑

m=0

am(x− x0)
m.

Example 8.5 Consider the geometric series
∑∞

m=0 x
m (which is a power series with

am = 1, x0 = 0), we have f : (−1, 1) → R given by

f(x) =
1

1− x
=

∞∑

m=0

xm = lim
n→∞

fn(x), fn(x) =
n∑

m=0

xm.

Sequences of functions 8-4



Example 8.6 Exponential function. Consider the power series with am = 1
m! , x0 = 0,

we have the exponential function f(x) : R → R, given by

f(x) = exp(x) =
∞∑

m=0

xm

m!
= lim

n→∞
fn(x), fn(x) =

n∑

m=0

xm

m!
.

Remark 8.7 Based on remark 8.4, we may ask several questions.

(1) Is the function f continuous?

(2) If (1) is true, is f differentiable, and does f ′ = limn→∞ f ′
n?

(3) If (1) is true, does
∫ b
a f = limn→∞

∫ b
a fn?

Sequences of functions 8-5

Pointwise convergence

Definition 8.8 Let (fn)
∞
n=1 with fn : S → R for all n ∈ N be a sequence of functions,

and let f : S → R be a function. We say that (fn)
∞
n=1 converges pointwise (or just

converges) to f if for all x ∈ S, we have limn→∞ fn(x) = f(x).

Example 8.9 Let fn(x) = xn be defined on [0, 1], then we have the sequence of

functions (fn)
∞
n=1 converges pointwise to f(x) =

{
0 x ∈ [0, 1)

1 x = 1
.

proof:

• if x ∈ [0, 1): limn→∞ xn = 0

• if x = 1: limn→∞ 1n = 1

Remark 8.10 A sequence of continuous
functions may not converge pointwise to a
continuous function. 0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

x x2 x5 x10 x100

x

f
(x
)
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Example 8.11 Let fn(x) : [0, 1] → R be defined by

fn(x) =





4n2x x ∈
[
0, 1

2n

]

4n− 4n2x x ∈
[

1
2n ,

1
n

]

0 x ∈
[
1
n , 1
]
,

then (fn)
∞
n=1 converges pointwise to f(x) = 0 (x ∈ [0, 1]).

proof: if x = 0, we have limn→∞ fn(0) = 0; if x ∈ (0, 1], then ∃M ∈ [0, 1] such that
∀n ≥ M , 1

n < x, and hence,

(fn(x))
∞
n=1 = f1(x), . . . , fM−1(x), 0, 0, 0, . . . =⇒ lim

n→∞
fn(x) = 0

0 1
4

1
2

1
0

4

x

f 2
(x
)

0 1
8
1
4

1
0

8

x

f 4
(x
)

0 1
8

1
0

16

x

f 8
(x
)

1
16

1
0

32

x

f 1
6
(x
)
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Uniform convergence

Definition 8.12 Let (fn)
∞
n=1 with fn : S → R for all n ∈ N be a sequence of functions,

and let f : S → R be a function. We say that (fn)
∞
n=1 converges uniformly to f if

for all ϵ > 0, there exists some M ∈ N such that for all n ≥ M and x ∈ S, we have
|fn(x)− f(x)| < ϵ.

Theorem 8.13 Let f : S → R, fn : S → R for all n ∈ N be functions. If the sequence
of functions (fn)

∞
n=1 converges uniformly to f , then (fn)

∞
n=1 converges pointwise to f .

proof: let c ∈ S, ϵ > 0

• (fn)
∞
n=1 converges uniformly to f =⇒ ∃M ∈ N such that for all n ≥ M and

x ∈ S, |fn(x)− f(x)| < ϵ

• hence, ∀n ≥ M , |fn(c)− f(c)| < ϵ =⇒ (fn)
∞
n=1 converges pointwise to f

Remark 8.14 Let f : S → R, fn : S → R for all n ∈ N be functions. The sequence
(fn)

∞
n=1 does not converge to f uniformly if there exists some ϵ > 0 such that for all

M ∈ N, there exist some n ≥ M and some x ∈ S, so that |fn(x)− f(x)| ≥ ϵ.
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Theorem 8.15 Let fn(x) = xn, n ∈ N, and let f(x) =

{
0 x ∈ [0, 1)

1 x = 1
.

• The sequence (fn)
∞
n=1 converges uniformly to f on [0, b] for all 0 < b < 1.

• The sequence (fn)
∞
n=1 does not converges to f uniformly on [0, 1].

proof:

• let ϵ > 0, b ∈ (0, 1), then bn → 0 =⇒ ∃M ∈ N such that ∀n ≥ M , bn < ϵ =⇒
∀n ≥ M and x ∈ [0, b], we have

|fn(x)− f(x)| = xn ≤ bn < ϵ

• choose ϵ = 1/2, then ∀M ∈ N, choose n = M , x = (1/2)1/M < 1, we have

|fM (x)− f(x)| = xM = 1/2 ≥ ϵ

Sequences of functions 8-9

Interchange of limits

Example 8.16 In general, limits cannot be interchanged. For example,

lim
n→∞

lim
k→∞

n/k

n/k + 1
= lim

n→∞
0 = 0, lim

k→∞
lim
n→∞

n/k

n/k + 1
= lim

k→∞
1 = 1.

Remark 8.17 Based on example 8.16, we may ask the following questions.

• If fn : S → R with fn continuous for all n ∈ N and (fn)
∞
n=1 converges to f

uniformly or pointwise, then is f continuous?

• If fn : [a, b] → R with fn differentiable for all n ∈ N, and (fn)
∞
n=1 converges to f ,

(f ′
n)

∞
n=1 converges to g uniformly or pointwise, then is f differentiable and does

f ′ = g?

• If fn : [a, b] → R, n ∈ N, f : [a, b] → R, with fn and f continuous, and (fn)
∞
n=1

converges to f uniformly or pointwise, then does
∫ b
a f = limn→∞

∫ b
a fn?
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Remark 8.18 If convergence is only pointwise, the answer is no for all questions in
remark 8.17.

• Let fn(x) = xn on [0, 1], n ∈ N. Example 8.9 shows that (fn)
∞
n=1 converges

pointwise to a noncontinuous function.

• Let fn(x) =
xn+1

n+1 on [0, 1], then (fn)
∞
n=1 converges to f(x) = 0 pointwise on

[0, 1] and (f ′
n)

∞
n=1 converges pointwise to g given by g(x) =

{
0 x ∈ [0, 1)

1 x = 1
,

but f ′(1) = 0 ̸= g(1) = 1.

• Let fn : [0, 1] → R be given by fn(x) =





4n2x x ∈
[
0, 1

2n

]

4n− 4n2x x ∈
[

1
2n ,

1
n

]

0 x ∈
[
1
n , 1
]

, then

(fn)
∞
n=1 converges to f(x) = 0 pointwise on [0, 1] (example 8.11), but

∫ 1

0
f = 0 ̸= lim

n→∞

∫ 1

0
fn = lim

n→∞
(
1

2
· 1
n
· 2n) = 1.

Sequences of functions 8-11

Theorem 8.19 If fn : S → R is continuous for all n ∈ N, f : S → R, and (fn)
∞
n=1

converges to f uniformly, then f is continuous.

proof: let c ∈ S, ϵ > 0

• fn continuous on S, c ∈ S =⇒ ∃δ > 0 such that for all x ∈ S and |x− c| < δ,
we have |fn(x)− fn(c)| < ϵ/3

• fn → f uniformly =⇒ ∃M ∈ N such that for all n ≥ M and x ∈ S, we have
|f(x)− fn(x)| < ϵ/3

• hence, for all x ∈ S and |x− c| < δ, we have

|f(x)− f(c)| = |f(x)− fM (x) + fM (x)− fM (c) + fM (c)− f(c)|

≤ |f(x)− fM (x)|+ |fM (x)− fM (c)|+ |fM (c)− f(c)|

<
ϵ

3
+

ϵ

3
+

ϵ

3
= ϵ
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Theorem 8.20 If fn : [a, b] → R is continuous for all n ∈ N, f : [a, b] → R, and

(fn)
∞
n=1 converges to f uniformly, then

∫ b
a f = limn→∞

∫ b
a fn.

proof: let ϵ > 0

• by theorem 8.19, we know that f is continuous on [a, b]

• (fn)
∞
n=1 converges uniformly to f =⇒ ∃M ∈ N such that for all n ≥ M and

x ∈ [a, b], we have |fn(x)− f(x)| < ϵ
b−a

• hence, for all n ≥ M , we have

∣∣∣∣
∫ b

a
fn −

∫ b

a
f

∣∣∣∣ =
∣∣∣∣
∫ b

a
(fn − f)

∣∣∣∣ ≤
∫ b

a
|fn − f | <

∫ b

a

ϵ

b− a
= ϵ,

where the first inequality is by corollary 7.17

Remark 8.21 Notationally, theorem 8.20 says that

∫ b

a
f =

∫ b

a
lim
n→∞

fn = lim
n→∞

∫ b

a
fn.
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Theorem 8.22 If fn : [a, b] → R is continuously differentiable, f : [a, b] → R,
g : [a, b] → R, and

• (fn)
∞
n=1 converges to f pointwise,

• (f ′
n)

∞
n=1 converges to g uniformly,

then f is continuously differentiable and f ′ = g.

proof: let x ∈ [a, b]

• by theorem 8.19, we know that g is continuous on [a, b]

• by theorem 7.19, we have
∫ x

a
f ′
n = fn(x)− f(a) =⇒ lim

n→∞

∫ x

a
f ′
n = lim

n→∞
fn(x)− lim

n→∞
fn(a)

• fn → f pointwise =⇒ limn→∞ fn(x)− limn→∞ fn(a) = f(x)− f(a)

• f ′
n → g uniformly =⇒ limn→∞

∫ x
a f ′

n =
∫ x
a g (theorem 8.20)

• put together, we have

∫ x

a
g = f(x)− f(a) =⇒

(∫ x

a
g

)′
= g(x) = f ′(x)
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Weierstrass M-test

Theorem 8.23 Weierstrass M-test. Let fk : S → R for all k ∈ N. Suppose there exists
Mk > 0, k ∈ N, such that

(a) |fk(x)| ≤ Mk for all x ∈ S,

(b)
∑∞

k=1Mk converges.

Then, we have the following conclusion.

(1) The series
∑∞

k=1 fk(x) converges absolutely for all x ∈ S.

(2) Let f(x) =
∑∞

k=1 fk(x) for all x ∈ S, then the series (
∑n

k=1 fk)
∞
n=1 converges to

f uniformly on S.

proof:

(1) |fk(x)| ≤ Mk,
∑∞

k=1Mk converges =⇒ ∑∞
k=1 |fk(x)| converges (theorem 4.20)

=⇒ ∑∞
k=1 fk(x) converges absolutely
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(2) let ϵ > 0;
∑∞

k=1Mk converges =⇒ ∃M ∈ N s.t. ∀n ≥ M , we have

∞∑

k=n+1

Mk =

∣∣∣∣∣
∞∑

k=1

Mk −
n∑

k=1

Mk

∣∣∣∣∣ < ϵ

then, for all n ≥ M and x ∈ S, we have
∣∣∣∣∣
∞∑

k=1

fk(x)−
n∑

k=1

fk(x)

∣∣∣∣∣ =
∣∣∣∣∣

∞∑

k=n+1

fk(x)

∣∣∣∣∣ ≤
∞∑

k=n+1

|fk(x)| ≤
∞∑

k=n+1

Mk < ϵ
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Properties of power series

Theorem 8.24 Let
∑∞

k=0 ak(x− x0)
k be a power series with radius of convergence

ρ ∈ (0,∞], then for all r ∈ (0, ρ), the series
∑∞

k=0 ak(x− x0)
k converges uniformly on

[x0 − r, x0 + r].

proof:

• note that we have |x− x0| ≤ r for all x ∈ [x0 − r, x0 + r]

• let fk = ak(x− x0)
k, choose Mk = |ak|rk, k ∈ N, then ∀x ∈ [x0 − r, x0 + r],

|fk(x)| = |ak(x− x0)
k| = |ak||x− x0|k ≤ |ak|rk = Mk

• consider the root test (theorem 4.26) for
∑∞

k=0Mk, we have

L = lim
k→∞

M
1/k
k = lim

k→∞

(
|ak|rk

)1/k
= lim

k→∞
|ak|1/kr =

{
r/ρ ρ < ∞
0 ρ = ∞

since r ∈ (0, ρ), we have L < 1 =⇒ ∑∞
k=0Mk converges absolutely

• put together, by theorem 8.23, we have (
∑n

k=0 fk)
∞
n=1 =

∑n
k=0 ak(x− x0)

k

converges uniformly on [x0 − r, x0 + r]
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Theorem 8.25 Let
∑∞

k=0 ak(x− x0)
k be a power series with radius of convergence

ρ ∈ (0,∞], then we have the following conclusion.

• For all c ∈ (x0 − ρ, x0 + ρ), the function given by the series
∑∞

k=0 ak(x− x0)
k is

differentiable at c, and

d

dx

( ∞∑

k=0

ak(x− x0)
k

)∣∣∣∣∣
x=c

=
∞∑

k=0

d

dx
(ak(x− x0)

k)

∣∣∣∣
x=c

.

• For all a, b such that x0 − ρ < a < b < x0 + ρ,

∫ b

a

∞∑

k=0

ak(x− x0)
k dx =

∞∑

k=0

∫ b

a
ak(x− x0)

k dx.
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9. Metric spaces

• metric spaces

• Cauchy-Schwarz inequality

• open and closed sets

• closure and boundary

• sequences and convergence in metric spaces

• convergence properties of topology

• Cauchy sequences and completeness
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Metric spaces

Definition 9.1 Let A and B be sets. The Cartesian product is the set of tuples defined
as

A×B = {(x, y) | x ∈ A, y ∈ B}.

examples:

• {a, b} × {c, d} = {(a, c), (a, d), (b, c), (b, d)}

• the set R2 = R×R is the Cartesian plane

• the set [0, 1]2 = [0, 1]× [0, 1] is a subset of the Cartesian plane bounded by a
square with vertices (0, 0), (0, 1), (1, 0), and (1, 1)

Remark 9.2 To denote an element in the set Rn, we write x = (x1, . . . , xn) ∈ Rn,
or simply x ∈ Rn, where the subscripts i = 1, . . . , n denote the ith entry of the tuple
(x1, . . . , xn) that describes x.

We also simply write 0 ∈ Rn to mean the point (0, 0, . . . 0) ∈ Rn.
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Definition 9.3 Let X be a set, and let d : X ×X → R be a function such that for all
x, y, z ∈ X, we have

• d(x, y) ≥ 0, (nonnegativity)

• d(x, y) = 0 if and only if x = y,

• d(x, y) = d(y, x), and (symmetry)

• d(x, z) ≤ d(x, y) + d(y, z). (triangle inequality)

Then the pair (X, d) is called a metric space. The function d is called the metric or
the distance function. Sometimes we just write X as the metric space if the metric is
clear from context.

Example 9.4 The real numbers R is a metric space with the metric d(x, y) = |x− y|.

proof:

• the first three properties follows immediately from the properties of the absolute
value (theorem 2.25)

• to show the triangle inequality, let x, y, z ∈ R, then we have

d(x, z) = |x− z| = |x− y + y − z| ≤ |x− y|+ |y − z| = d(x, y) + d(x, z)
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Definition 9.5 Let (X, d) be a metric space. A set S ⊆ X is said to be bounded if
there exists a point p ∈ X and some number B ∈ R such that

d(p, x) ≤ B for all x ∈ S.

We say (X, d) is bounded if X is a bounded set.
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Cauchy-Schwarz inequality

Theorem 9.6 Cauchy-Schwarz inequality. Suppose x = (x1, . . . , xn) ∈ Rn, y =
(y1, . . . , yn) ∈ Rn, then

(
n∑

i=1

xiyi

)2

≤
(

n∑

i=1

x2i

)(
n∑

i=1

y2i

)
.

proof:

0 ≤
n∑

i=1

n∑

j=1

(xiyj − xjyi)
2 =

n∑

i=1

n∑

j=1

(x2i y
2
j − 2xiyjxjyi + x2jy

2
i )

=

(
n∑

i=1

x2i

)


n∑

j=1

y2j


+

(
n∑

i=1

y2i

)


n∑

j=1

x2j


− 2

(
n∑

i=1

xiyi

)


n∑

j=1

xjyj




=⇒
(

n∑

i=1

xiyi

)2

≤
(

n∑

i=1

x2i

)(
n∑

i=1

y2i

)
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Theorem 9.7 The function f : Rn ×Rn → R given by

f(x, y) =

√
(x1 − y1)

2 + · · ·+ (xn − yn)
2 =

√√√√
n∑

i=1

(xi − yi)
2

is a metric for Rn.

proof: we show that f satisfies the triangle inequality, by theorem 9.6, we have

(f(x, z))
2
=

n∑

i=1

(xi − zi)
2
=

n∑

i=1

(xi − yi + yi − zi)
2

=

n∑

i=1

(xi − yi)
2
+ 2

n∑

i=1

(xi − yi)(yi − zi) +

n∑

i=1

(yi − zi)
2

≤
n∑

i=1

(xi − yi)
2
+ 2

√√√√
n∑

i=1

(xi − yi)
2

n∑

i=1

(yi − zi)
2
+

n∑

i=1

(yi − zi)
2

=



√√√√

n∑

i=1

(xi − yi)
2
+

√√√√
n∑

i=1

(yi − zi)
2




2

= (f(x, y) + f(y, z))
2
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n-dimensional Euclidean space

Definition 9.8 The n-dimensional Euclidean space is the metric space (Rn, d) with
the metric d defined by

d(x, y) =

√
(x1 − y1)

2 + · · ·+ (xn − yn)
2 =

√√√√
n∑

i=1

(xi − yi)
2. (9.1)

Remark 9.9 For n = 1, the n-dimensional Euclidean space reduces to the real numbers
and the metric given by (9.1) agrees with the standard metric for the set of real numbers
d(x, y) = |x− y| in example 9.4.
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Open and closed sets

Definition 9.10 Let (X, d) be a metric space, x ∈ X, and δ > 0. Define the open ball
and closed ball, of radius δ around x as

B(x, δ) = {y ∈ X | d(x, y) < δ} and C(x, δ) = {y ∈ X | d(x, y) ≤ δ},

respectively.

Example 9.11 Consider the metric space R, for x ∈ R and δ > 0, we have

B(x, δ) = (x− δ, x+ δ) and C(x, δ) = [x− δ, x+ δ].

Example 9.12 Consider the metric space R2, for x ∈ R2 and δ > 0, we have

B(x, δ) = {y ∈ R2 | (x1 − y1)
2 + (x2 − y2)

2 < δ2}.
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Definition 9.13 Let (X, d) be a metric space. A subset V ⊆ X is open if for all x ∈ V ,
there exists some δ > 0 such that B(x, δ) ⊆ V . A subset E ⊆ X is closed if the
complement Ec = X \ E is open.

examples:

• (0,∞) ⊆ R is open; [0,∞) ⊆ R is closed

• [0, 1) ⊆ R is neither open nor closed

• the singleton {x} with x ∈ X is closed

Theorem 9.14 Let (X, d) be a metric space.

(1) The sets ∅ and X are open.

(2) If V1, . . . , Vk are subsets of X, then
⋂k

i=1 Vi is open, i.e., a finite intersection of
open sets is open.

(3) Let {Vi ⊆ X | i ∈ I} be a collection of open subsets of X, where I is an arbitrary
index set, then

⋃
i∈I Vi is open, i.e., a union of open sets is open.

proof:

• the sets ∅ and X are obviously open
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• let x ∈ ⋂k
i=1 Vi, then x ∈ V1, . . . , Vk

– V1, . . . , Vk are open =⇒ ∃δ1, . . . , δk > 0 s.t. B(x, δ1) ⊆ V1, . . . , B(x, δk) ⊆ Vk

– choose δ = min{δ1, . . . , δk}, then B(x, δ) ⊆ V1, . . . , Vk =⇒ B(x, δ) ⊆ ⋂k
i=1 Vi

• let x ∈ ⋃i∈I Vi, then ∃Vk ∈ {Vi | i ∈ I} such that x ∈ Vk

– Vk is open =⇒ ∃δ > 0 such that B(x, δ) ⊆ Vk ⊆ ⋃i∈I Vi

Theorem 9.15 Let (X, d) be a metric space.

(1) The sets ∅ and X are closed.

(3) Let {Vi ⊆ X | i ∈ I} be a collection of closed subsets of X, where I is an arbitrary
index set, then

⋂
i∈I Vi is closed, i.e., an intersection of closed sets is closed.

(2) If V1, . . . , Vk are subsets of X, then
⋃k

i=1 Vi is closed, i.e., a finite union of closed
sets is closed.

Remark 9.16 Note that in theorem 9.14, the statement (2) is not true for an arbitrary
intersection. For example,

⋂∞
n=1(−1/n, 1/n) = {0}, which is not open in R.

Similarly, in theorem 9.15, the statement (3) is not true for an arbitrary intersection.
For example,

⋃∞
n=1[1/n,∞) = (0,∞), which is not closed in R.
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Theorem 9.17 Let (X, d) be a metric space, x ∈ X, and δ > 0. Then B(x, δ) is open
and C(x, δ) is closed.

proof: we show that B(x, δ) is open; let z ∈ B(x, δ), then d(x, z) < δ

• choose ϵ = δ − d(x, z), let B(z, ϵ) = {y ∈ X | d(y, z) < ϵ} be an open ball

• let y ∈ B(z, ϵ), we have d(y, z) < ϵ, and hence

d(x, y) ≤ d(x, z) + d(z, y) < d(x, z) + ϵ = d(x, z) + δ − d(x, z) = δ

=⇒ y ∈ B(x, δ) =⇒ B(z, ϵ) ⊆ B(x, δ)
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Closure and boundary

Definition 9.18 Let (X, d) be a metric space and A ⊆ X. The closure of A is the set

clA =
⋂

{E ⊆ X | E is closed and A ⊆ E},

i.e., clA is the intersection of all closed sets that contain A.

Definition 9.19 Let (X, d) be a metric space and A ⊆ X. The interior of A is the set

intA = {x ∈ A | B(x, δ) ⊆ A for some δ > 0}.

The boundary of A is the set

bdA = clA \ intA.

example: consider A = (0, 1] and X = R, then we have clA = [0, 1], intA = (0, 1),
and bdA = {0, 1}
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Remark 9.20 Notationally, in some textbooks, the closure, interior, and boundary of
some set A are denoted as

A = clA, A◦ = intA, and ∂A = bdA,

respectively.

Theorem 9.21 Let (X, d) be a metric space and A ⊆ X.

• The closure clA is closed and A ⊆ clA.

• If A is closed, then clA = A.

proof: let clA =
⋂{E ⊆ X | E is closed and A ⊆ E}

• the first statement follows directly from the definition of closure and theorem 9.15

• if A is closed, then A ∈ {E ⊆ X | E is closed and A ⊆ E} =⇒ clA ⊆ A =⇒
A = clA
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Theorem 9.22 Let (X, d) be a metric space and A ⊆ X, then x ∈ clA if and only if
for all δ > 0, we have B(x, δ) ∩A ̸= ∅.

proof: we show the following claim: x /∈ clA if and only if there exists some δ > 0
such that B(x, δ) ∩A = ∅

• suppose x /∈ clA, then x ∈ (clA)c

– clA is closed =⇒ (clA)
c is open =⇒ ∃δ > 0 s.t. B(x, δ) ⊆ (clA)

c ⊆ Ac =⇒
B(x, δ) ∩A = ∅

• suppose ∃δ > 0 such that B(x, δ) ∩A = ∅, let x ∈ X

– B(x, δ) is open =⇒ (B(x, δ))
c is closed

– B(x, δ) ∩A = ∅ =⇒ A ⊆ (B(x, δ))
c

=⇒ clA ⊆ (B(x, δ))
c

– x ∈ B(x, δ) =⇒ x /∈ (B(x, c))
c

– put together, we have x /∈ clA
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Theorem 9.23 Let (X, d) be a metric space and A ⊆ X, then intA is open and bdA
is closed.

proof:

• let x ∈ intA

– x ∈ intA =⇒ ∃δ > 0 such that B(x, δ) ⊆ A

– let z ∈ B(x, δ); B(x, δ) open =⇒ ∃ϵ > 0 such that B(z, ϵ) ⊆ B(x, δ) ⊆ A =⇒
z ∈ intA =⇒ B(x, δ) ⊆ intA =⇒ intA is open

• intA open =⇒ (intA)c closed =⇒ bdA = clA \ intA = clA ∩ (intA)c is
closed (theorem 9.15)

Theorem 9.24 Let (X, d) be a metric space and A ⊆ X, then x ∈ bdA if and only if
for all δ > 0, we have the sets B(x, δ) ∩A and B(x, δ) ∩Ac are both nonempty.

proof:

• suppose x ∈ bdA, let δ > 0

– x ∈ bdA =⇒ x ∈ clA, and hence, by theorem 9.22, we have B(x, δ) ∩A ̸= ∅
– assume B(x, δ) ∩Ac = ∅, then we have B(x, δ) ⊆ A =⇒ x ∈ intA, which is a

contradiction
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• suppose B(x, δ) ∩A ̸= ∅ and B(x, δ) ∩Ac ̸= ∅ for all δ > 0, assume x /∈ bdA

– x /∈ bdA =⇒ x /∈ clA or x ∈ intA

– if x /∈ clA =⇒ ∃δ0 > 0 such that B(x, δ0) ∩A = ∅, which is a contradiction

– if x ∈ intA =⇒ ∃δ0 > 0 such that B(x, δ0) ⊆ A =⇒ B(x, δ0)∩Ac = ∅, which is
a contradiction

Theorem 9.25 Let (X, d) be a metric space and A ⊆ X, then bdA = clA∩ cl(Ac).

proof: let x ∈ bdA, δ > 0

• by theorem 9.24, we have B(x, δ) ∩A and B(x, δ) ∩Ac nonempty

• by theorem 9.22, B(x, δ) ∩A ̸= ∅ =⇒ x ∈ clA and B(x, δ) ∩Ac ̸= ∅ =⇒
x ∈ clAc

• hence, we have bdA = clA ∩ cl(Ac)
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Sequences in metric spaces

Definition 9.26 A sequence in a metric space (X, d) is a function x : N → X. To
denote a sequence we write (xn)

∞
n=1, where xn is the nth element in the sequence.

A sequence (xn)
∞
n=1 is bounded if there exists a point p ∈ X and B ∈ R such that

d(p, xn) ≤ B for all n ∈ N.

Let (ni)
∞
i=1 be a strictly increasing sequence of natural numbers, then the sequence

(xni)
∞
i=1 is called a subsequence of (xn)

∞
n=1.

Definition 9.27 A sequence (xn)
∞
n=1 in a metric space (X, d) is said to converge to

a point p ∈ X if for all ϵ > 0, there exists some M ∈ N such that for all n ≥ M , we
have d(xn, p) < ϵ.

The point p is called a limit of (xn)
∞
n=1. If the limit p is unique, we write

lim
n→∞

xn = p.

A sequence that converges is said to be convergent, and otherwise is divergent.
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Theorem 9.28 A convergent sequence in a metric space has a unique limit.

proof: let x, y ∈ X such that xn → x and xn → y; let ϵ > 0

• xn → x =⇒ ∃M1 ∈ N such that ∀n ≥ M1, d(xn, x) < ϵ/2

• xn → y =⇒ ∃M2 ∈ N such that ∀n ≥ M2, d(xn, y) < ϵ/2

• hence, for all n ≥ M , we have

d(x, y) ≤ d(xn, x) + d(xn, y) <
ϵ

2
+

ϵ

2
= ϵ

=⇒ d(x, y) = 0 =⇒ x = y

Theorem 9.29 A convergent sequence in a metric space is bounded.

proof: suppose xn → p ∈ X

• let ϵ > 0, xn → p =⇒ ∃M ∈ N such that ∀n ≥ M , d(xn, p) < ϵ

• choose B = max{d(x1, p), . . . , d(xM , p), ϵ}, then for all n ∈ N, d(xn, p) ≤ B
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Theorem 9.30 A sequence (xn)
∞
n=1 in a metric space (X, d) converges to p ∈ X if and

only if there exists a sequence (an)
∞
n=1 of real numbers such that for all n ∈ N, we have

d(xn, p) ≤ an and lim
n→∞

an = 0.

proof:

• suppose xn → p

– xn → p =⇒ ∀ϵ > 0, ∃M ∈ N s.t. ∀n ≥ M , d(xn, p) < ϵ =⇒ d(xn, p) → 0

– choose an = d(xn, p) for all n ∈ N, then we have d(xn, p) ≤ an and an → 0

• suppose an → 0 with an ∈ R and d(xn, p) ≤ an, let ϵ > 0

– 0 ≤ d(xn, p) ≤ an, an → 0 =⇒ d(xn, p) → 0 (theorem 3.21)

– d(xn, p) → 0 =⇒ ∃M ∈ N such that ∀n ≥ M , d(xn, p) < ϵ =⇒ xn → p
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Theorem 9.31 Let (xn)
∞
n=1 be a sequence in a metric space (X, d). If (xn)

∞
n=1 converges

to p ∈ X, then all subsequences of (xn)
∞
n=1 converges to p.

proof: let ϵ > 0

• let xn → p, then ∃M ∈ N such that ∀n ≥ M , d(xn, p) < ϵ

• let (xni)
∞
i=1 be a subsequence of (xn)

∞
n=1, then we have ni ≥ i

• hence, for all i ≥ M , we have ni ≥ M =⇒ ∀i ≥ M , d(xni , p) < ϵ
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Convergence in Euclidean space

Theorem 9.32 Let (xn)
∞
n=1 be a sequence in Rk, where xn ∈ Rk for all n ∈ N. Then

(xn)
∞
n=1 converges if and only if (xn,i)

∞
n=1 converges for all i = 1, . . . , k, i.e.,

lim
n→∞

xn =
(
lim
n→∞

xn,1, . . . , lim
n→∞

xn,k

)
.

proof:

• suppose xn → p ∈ Rk, let ϵ > 0

– xn → p =⇒ ∃M ∈ N such that ∀n ≥ M , d(xn, p) < ϵ

– hence, ∀n ≥ M , we have

(d(xn, p))
2
=

k∑

i=1

(xn,i − pi)
2
< ϵ2 =⇒ (xn,i − pi)

2
< ϵ2, i = 1, . . . , k

=⇒ |xn,i − pi| < ϵ for all i = 1, . . . , k =⇒ xn,i → pi for all i = 1, . . . , k

Metric spaces 9-21

• suppose xn,i → pi for all i = 1, . . . , k, let ϵ > 0, p = (p1, . . . , pk)

– xn,i → pi, i = 1, . . . , k =⇒ ∃M1, . . . ,Mk ∈ N such that ∀n ≥ Mi, we have

|xn,i − pi| < ϵ/
√
k, i = 1, . . . , k

– choose M = max{M1, . . . ,Mk}, then ∀n ≥ M , we have

d(xn, p) =

√√√√
k∑

i=1

(xn,i − pi)
2
<

√√√√
k∑

i=1

(
ϵ√
k

)2

=

√√√√
k∑

i=1

ϵ2

k
=

√
ϵ2 = ϵ

=⇒ xn → p

Metric spaces 9-22



Convergence properties of topology

Theorem 9.33 Let (X, d) be a metric space and (xn)
∞
n=1 be a sequence in X, then

(xn)
∞
n=1 converges to p ∈ X if and only if for all open sets U ⊆ X with p ∈ U , there

exists some M ∈ N such that for all n ≥ M , we have xn ∈ U .

proof:

• suppose xn → p, let U ⊆ X be open and p ∈ U

– U is an open set contains p =⇒ ∃δ > 0 such that B(p, δ) ⊆ U

– xn → p =⇒ ∃M ∈ N s.t. ∀n ≥ M , d(xn, p) < δ =⇒ ∀n ≥ M , xn ∈ B(p, δ)
=⇒ ∀n ≥ M , xn ∈ U

• suppose for all open sets U ⊆ X with p ∈ U , there exists some M ∈ N such that
xn ∈ U for all n ≥ M ; let ϵ > 0

– choose U = B(p, ϵ), then ∃M ∈ N such that ∀n ≥ M , xn ∈ B(p, ϵ)

– hence, ∀n ≥ M , d(xn, p) < ϵ =⇒ xn → p

Metric spaces 9-23

Theorem 9.34 Let (X, d) be a metric space, E ⊆ X be a closed set, and (xn)
∞
n=1 be

a sequence in E that converges to some p ∈ X, then we have p ∈ E.

proof: assume (xn)
∞
n=1 in E converges to p but p /∈ E

• p /∈ E =⇒ p ∈ Ec

• E is closed =⇒ Ec is open, then by theorem 9.33, ∃M ∈ N such that ∀n ≥ M ,
xn ∈ Ec =⇒ ∀n ≥ M , xn /∈ E, which is a contradiction

Theorem 9.35 Let (X, d) be a metric space and A ⊆ X, then p ∈ clA if and only if
there exists a sequence (xn)

∞
n=1 of elements in A such that limn→∞ xn = p.

proof:

• suppose p ∈ clA, then by theorem 9.22, we have B(p, δ) ∩A ̸= ∅ for all δ > 0

– choose (xn)
∞
n=1 such that xn ∈ A and d(xn, p) <

1
n for all n ∈ N

– 0 ≤ d(xn, p) <
1
n and 1

n → 0 =⇒ d(xn, p) → 0 =⇒ xn → p (theorem 9.30)

• suppose (xn)
∞
n=1 in A and xn → p, let δ > 0

– xn → p =⇒ ∃M ∈ N s.t. ∀n ≥ M , d(xn, p) < δ =⇒ ∀n ≥ M , xn ∈ B(p, δ)

– then, since xn ∈ A, we have B(p, δ) ∩A ̸= ∅ =⇒ p ∈ clA (theorem 9.22)
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Cauchy sequences and completeness

Definition 9.36 Let (X, d) be a metric space. A sequence (xn)
∞
n=1 in X is Cauchy if for

all ϵ > 0, there exists some M ∈ N such that for all n, k ≥ M , we have d(xn, xk) < ϵ.

Theorem 9.37 A convergent sequence in a metric space is Cauchy.

proof: let xn → p, ϵ > 0, then ∃M ∈ N such that ∀n, k ≥ M , d(xn, p) < ϵ/2 and
d(xk, p) < ϵ/2, and hence ∀n, k ≥ M , we have

d(xn, xk) ≤ d(xn, p) + d(xk, p) < ϵ/2 + ϵ/2 = ϵ

Definition 9.38 We say a metric space (X, d) is complete or Cauchy-complete if all
Cauchy sequences in X converges to some point in X.
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Theorem 9.39 The Euclidean space Rk is a complete metric space.

proof: let (xn)
∞
n=1 be a Cauchy sequence with xn ∈ Rk for all n ∈ N; let ϵ > 0

• (xn)
∞
n=1 is Cauchy =⇒ ∃M ∈ N such that ∀m,n ≥ M , d(xm − xn) < ϵ

• hence, for all m,n ≥ M , we have

(d(xm, xn))
2 =

k∑

i=1

(xm,i − xn,i)
2 < ϵ2 =⇒ |xm,i − xn,i| < ϵ, i = 1, . . . , k

=⇒ the sequence of real numbers (xn,i)
∞
n=1 is Cauchy for all i = 1, . . . , k

• by theorem 3.45, we conclude that (xn,i)
∞
n=1 converges for all i = 1, . . . , k

• then, by theorem 9.32, we conclude that the sequence (xn)
∞
n=1 converges
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