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Metric spaces

Definition 9.1 Let A and B be sets. The Cartesian product is the set of tuples defined

as
AxB={(z,y) |z €A, ye B}

examples:
o {a,b} x{c,d} ={(a, ), (a,d), (bc),(b,d)}
e the set R? = R x R is the Cartesian plane

is a subset of the Cartesian plane bounded by a

e the set [0,1]* = [0,1] x [0,1] is
(0,1), (1,0), and (1,1)

square with vertices (0,0),

Remark 9.2 To denote an element in the set R", we write x = (z1,...,2,) € R",
or simply x € R", where the subscripts i = 1,...,n denote the ith entry of the tuple
(x1,...,xy) that describes x.

We also simply write 0 € R" to mean the point (0,0,...0) € R".
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Definition 9.3 Let X be a set, and let d: X x X — R be a function such that for all
z,y,z € X, we have

d(z,y) > (nonnegativity)

d(z,y) =0 |f and only if x =y,

d(z,y) = d(y, ), and (symmetry)
. d(x z) < d(x,y) +d(y, 2). (triangle inequality)

Then the pair (X, d) is called a metric space. The function d is called the metric or
the distance function. Sometimes we just write X as the metric space if the metric is
clear from context.

Example 9.4 The real numbers R is a metric space with the metric d(z,y) = |z —y|.

proof:

e the first three properties follows immediately from the properties of the absolute
value (theorem 2.25)

e to show the triangle inequality, let z,y, 2 € R, then we have

d(a,z) = lo —z[=lx —y+y —z[ < |z —y[ + |y — z[ = d(z,y) + d(, 2)
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Definition 9.5 Let (X, d) be a metric space. A set S C X is said to be bounded if
there exists a point p € X and some number B € R such that

d(p,z) < B forallz € S.

We say (X, d) is bounded if X is a bounded set.
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Cauchy-Schwarz inequality

Theorem 9.6 Cauchy-Schwarz inequality. Suppose x = (z1,...,z,) € R", y =

(y1,---,yn) € R", then
n 2 n n
=1 i=1 i=1

proof:

n n n n

03 (ways —ajw) =D (@7y) — 2miyjajyi + 25y7)

i=1 j=1 i=1 j=1

n n n n n n
() (30 ) + () (58] -2 (o) (o
i=1 j=1 i=1 j=1 i=1 j=1

= (B = (£4) (59)
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Theorem 9.7 The function f: R" x R™ — R given by

f(-’l',y) = \/(l’l—y1)2+...+(xn_yn)2 _

is a metric for R".

proof: we show that f satisfies the triangle inequality, by theorem 9.6, we have

Z —Yi+Yi _Zi)2

+QZ —yi) (Wi — )+ Y (Wi — 2)°

1 =1

+2\l . 2i Z _Zz
z:l
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+JZ yi — ) ) = (f(@,9) + f(y,2))°
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n-dimensional Euclidean space

Definition 9.8 The n-dimensional Euclidean space is the metric space (R", d) with
the metric d defined by

Remark 9.9 For n = 1, the n-dimensional Euclidean space reduces to the real numbers
and the metric given by (9.1) agrees with the standard metric for the set of real numbers
d(xz,y) = |z — y| in example 9.4.
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Open and closed sets

Definition 9.10 Let (X, d) be a metric space, x € X, and 6 > 0. Define the open ball
and closed ball, of radius § around x as

B(z,0) ={ye X |d(z,y) <} and C(z,0)={ye X |d(z,y) <},

respectively.

Example 9.11 Consider the metric space R, for z € R and § > 0, we have

B(z,0) = (xr — 6,z +6) and C(z,9)= [z — 0,z +J].

Example 9.12 Consider the metric space R?, for z € R? and § > 0, we have

B(x,6) = {y € R* | (z1 — 11)” + (22 — y2)* < °}.
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Definition 9.13 Let (X, d) be a metric space. A subset V' C X is open if for all x € V,
there exists some § > 0 such that B(z,0) C V. A subset E C X is closed if the
complement E¢ = X \ E is open.

examples:
e (0,00) C R is open; [0,00) C R is closed
e [0,1) C R is neither open nor closed
e the singleton {z} with x € X is closed

Theorem 9.14 Let (X, d) be a metric space.

(1) The sets ) and X are open.
(2) If Vi,...,V} are subsets of X, then ﬂle V; is open, i.e., a finite intersection of
open sets is open.

(3) Let {V; C X | i € I} be a collection of open subsets of X, where I is an arbitrary
index set, then | J;; Vi is open, i.e., a union of open sets is open.

proof:
e the sets () and X are obviously open
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. Ieta:eﬂlevi, thenx e Vi,..., V;
- Vi,..., Vi areopen = 36y,...,0 > 0s.t. B(x,6,) CV4,...,B(z,0;) C Vi
— choose § = min{éy,...,0}, then B(x,8) C Vi,..., Vi = B(z,8) SN, Vi
o let x € | J;c; Vi, then IV, € {V; | i € I} such that 2 € V},

— Vi isopen == 36 > 0 such that B(x,6) €V}, C,;c; Vi

Theorem 9.15 Let (X, d) be a metric space.

(1) The sets () and X are closed.

(3) Let {V; C X | i € I} be a collection of closed subsets of X, where I is an arbitrary
index set, then ﬂieIVi is closed, i.e., an intersection of closed sets is closed.

(2) If Vi,...,Vj are subsets of X, then Ule V; is closed, i.e., a finite union of closed
sets is closed.

Remark 9.16 Note that in theorem 9.14, the statement (2) is not true for an arbitrary
intersection. For example, (2, (—1/n,1/n) = {0}, which is not open in R.

Similarly, in theorem 9.15, the statement (3) is not true for an arbitrary intersection.
For example, (J;2 ;[1/n,00) = (0, 00), which is not closed in R.
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Theorem 9.17 Let (X, d) be a metric space, z € X, and § > 0. Then B(z,J) is open
and C(z,9) is closed.

proof: we show that B(z,J) is open; let z € B(z,J), then d(z,z) < §
e choose € =0 — d(x, 2), let B(z,€) = {y € X | d(y, 2z) < €} be an open ball

o let y € B(z,¢€), we have d(y, z) < €, and hence
d(z,y) <d(z,z)+d(z,y) <d(z,z)+e=d(x,z) +J —d(z,z) =0

— y € B(z,0) = B(z,¢) C B(z,0)
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Closure and boundary

Definition 9.18 Let (X, d) be a metric space and A C X. The closure of A is the set
clA=(|{ECX|Eisclosed and A C E},

i.e., cl A is the intersection of all closed sets that contain A.

Definition 9.19 Let (X, d) be a metric space and A C X. The interior of A is the set
int A={x € A| B(z,0) C A for some § > 0}.
The boundary of A is the set

bdA=clA)\ int A.

example: consider A = (0,1] and X = R, then we have c1 A =[0,1], int A = (0,1),
and bd A = {0, 1}
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Remark 9.20 Notationally, in some textbooks, the closure, interior, and boundary of
some set A are denoted as

A=clA, A°=intA, and O0A=DbdA,

respectively.

Theorem 9.21 Let (X, d) be a metric space and A C X.

e The closure cl A is closed and A C cl A.
e If Ais closed, then cl A = A.

proof: let clA=({F C X | Eis closed and A C E}

o the first statement follows directly from the definition of closure and theorem 9.15

o if Aisclosed, then A€ {EC X |Eisclosedand ACE} = clACA =
A=clA
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Theorem 9.22 Let (X, d) be a metric space and A C X, then = € cl A if and only if
for all § > 0, we have B(z,6) N A # 0.

proof: we show the following claim: = ¢ cl A if and only if there exists some § > 0
such that B(z,0)NA=10
e suppose = ¢ cl A, then z € (cl A)°
- clAisclosed = (clA)“isopen = 3§ > 0s.t. B(x,8) C (clA)° C A° =
B(z,5)NA=10

e suppose 30 > 0 such that B(z,0) N A =0, let z € X
- B(z,6) is open = (B(x,0)) is closed
- B(z,0)NA=0 = AC(B(x,6) = clAC (B(z,0))"
- x € B(z,8) = z ¢ (B(z,¢)"

— put together, we have z ¢ cl A
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Theorem 9.23 Let (X, d) be a metric space and A C X, then int A is open and bd A
is closed.

proof:
o let x €int A
-z €int A = 36 > 0 such that B(x,4) C A
— let z € B(x,0); B(xz,d) open = e > 0 such that B(z,¢) C B(z,0) CA =
z€intA = B(z,0) Cint A = int A is open
e int A open —> (int A)“ closed = bd A =clA\int A=clAN (int A)“ is
closed (theorem 9.15)

Theorem 9.24 Let (X, d) be a metric space and A C X, then x € bd A if and only if
for all § > 0, we have the sets B(z,d) N A and B(z,d) N A° are both nonempty.

proof:
e suppose z € bd A4, let § >0

- 2z€bdA = z € clA, and hence, by theorem 9.22, we have B(z,0) N A # ()
— assume B(z,d) N A° =0, then we have B(z,0) C A = z € int A, which is a
contradiction
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e suppose B(z,d) N A # () and B(x,0) N A° #£ () for all § > 0, assume = ¢ bd A
- 2x¢bdA = x¢clAorxcint A

- ifx¢clA = 3§y > 0 such that B(z,dp) N A = 0, which is a contradiction

- ifxeint A = 3§y > 0 such that B(z,d0) C A = B(x,dp) N A = (), which is
a contradiction

Theorem 9.25 Let (X, d) be a metric space and A C X, then bd A = cl ANcl(A°).

proof: let x € bd A, § >0
e by theorem 9.24, we have B(z,d) N A and B(z,d) N A° nonempty

e by theorem 9.22, B(z,0)NA#() = z€clAand B(z,/)NA°#£() =
x € cl A¢

e hence, we have bd A = cl AN cl(A°)
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Metric spaces

Sequences in metric spaces

Definition 9.26 A sequence in a metric space (X,d) is a function z: N — X. To

°2 1, where z;, is the nth element in the sequence.

denote a sequence we write (z;,)
A sequence (z,),~; is bounded if there exists a point p € X and B € R such that

d(p,zy) < B for all n € N.

Let (n;);2; be a strictly increasing sequence of natural numbers, then the sequence

(Zp,; )soq is called a subsequence of (), ;.

Definition 9.27 A sequence (z,),.; in a metric space (X,d) is said to converge to
a point p € X if for all € > 0, there exists some M € N such that for all n > M, we
have d(x,,p) < €.

The point p is called a limit of (z,,),~ . If the limit p is unique, we write
lim x, = p.
n—oo

A sequence that converges is said to be convergent, and otherwise is divergent.
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Theorem 9.28 A convergent sequence in a metric space has a unique limit.

proof: let x,y € X such that x,, - z and z,, = y; let € > 0
e x, »>x = 3JM; € N such that Vn > M, d(z,,x) < €/2

e x, >y = IMs € N such that Vn > Ms, d(z,,y) < €/2

e hence, for all n > M, we have
A(e,y) < (e, 2) + dn,y) < 5+ 5 =

= d(z,y) =0 = z=y

Theorem 9.29 A convergent sequence in a metric space is bounded.

proof: suppose x, > p € X
e lete>0, z, > p = IM € N such that Vn > M, d(z,,p) < €

e choose B = max{d(z1,p),...,d(znm,p),€}, then for all n € N, d(z,,p) < B
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Theorem 9.30 A sequence (x,,),~; in a metric space (X, d) converges to p € X if and
only if there exists a sequence (ay,), -, of real numbers such that for all n € N, we have

d(zp,p) <ap, and lim a, =0.

n—oo

proof:
® suppose T, — p
- &y, —op = Ve>0,3IM € Nst. Vn> M, d(x,,p) <e = d(zn,p) =0

— choose a,, = d(z,,,p) for all n € N, then we have d(z,,p) < a,, and a,, — 0

e suppose a,, — 0 with a, € R and d(zy,p) < ay, let € >0
- 0<d(xn,p) <an, an — 0 = d(z,,p) — 0 (theorem 3.21)

- d(xn,p) >0 = IM € N such that Vn > M, d(z,,p) <€ = z, = p
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Theorem 9.31 Let (z,,);7 ; be a sequence in a metric space (X, d). If (), converges
to p € X, then all subsequences of (x,), ; converges to p.

proof: let ¢ > 0
e let x,, — p, then IM € N such that Vn > M, d(z,,p) < €

o let (zy,);2, be a subsequence of (z,,),2,, then we have n; > i

e hence, for all i > M, we have n; > M = Vi > M, d(xy,,p) <€
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Convergence in Euclidean space

Theorem 9.32 Let (,)°>°, be a sequence in R, where z,, € R¥ for all n € N. Then

(Tn)p—; converges if and only if (), ; converges for all i =1,...,k, i.e.,
lim x, = (lim Tni, --., lim x, k)
n—oo n— o0 n—oo

proof:

e suppose 2, — p € R¥, let e >0
- xp, > p = IM € N such that Vn > M, d(z,,p) < e

— hence, Vn > M, we have

k
2 2 2 .
{I?n,p Z Tn,i — z <6 - (mn’i_pi) < €7, 221,...,]{
i=1
= |zn;—pi| <eforalli=1,...,k = x,; > p;foralli=1,...k
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e suppose z,; — p; foralli=1,...,k lete >0, p=(p1,...,pk)
- ZTpi—pi,t=1,....,k = 3M;,..., My € N such that Vn > M;, we have
|£Cnvifpi‘<6/\/E,Z‘:1,...,k

— choose M = max{My,..., My}, then Vn > M, we have

d(zn,p) = éwm pi)? < i(\/})z: iek -

i=1

- Ty — P
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Convergence properties of topology

Theorem 9.33 Let (X, d) be a metric space and (z,),-, be a sequence in X, then
(z5,),~; converges to p € X if and only if for all open sets U C X with p € U, there

exists some M € N such that for all n > M, we have z,, € U.

proof:
e suppose z, — p, let U C X be openand pc U
— U is an open set contains p = 30 > 0 such that B(p,0) CU

-z, —op = IMeNst.Vn>M, d(z,,p) <éd = VYn>M, x, € B(p,9)
— Vn>M, z,e€U

e suppose for all open sets U C X with p € U, there exists some M € N such that
z, €U foralln> M;lete>0

— choose U = B(p,¢), then M € N such that Vn > M, x,, € B(p,€)

— hence, Yn > M, d(z,,p) <e¢ = xz, =D
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Theorem 9.34 Let (X, d) be a metric space, £ C X be a closed set, and (z,),-, be
a sequence in E that converges to some p € X, then we have p € F.

proof: assume (z,),~, in E converges to p but p ¢ E
e p¢ E — peE°
e Fis closed = FE° is open, then by theorem 9.33, 3M &€ N such that Vn > M,
xn € B¢ = VYn> M, x, ¢ E, which is a contradiction

Theorem 9.35 Let (X, d) be a metric space and A C X, then p € cl A if and only if
there exists a sequence (z,,),., of elements in A such that lim,_, 2, = p.

proof:
e suppose p € cl A, then by theorem 9.22, we have B(p,5) N A # () for all 6 > 0

— choose (z,,),, such that z,, € A and d(z,,p) < % foralln € N

- 0<d(zn,p)<iandl -0 = d(z,,p) >0 = =z, — p (theorem 9.30)

e suppose ().~ in Aand z, — p, let § >0
-z, —op = IMeNst.Vn>M, d(z,,p) <d = VYn>M, x, € B(p,9)

— then, since z,, € A, we have B(p,§) N A # 0 = p € cl A (theorem 9.22)
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Cauchy sequences and completeness

Definition 9.36 Let (X, d) be a metric space. A sequence (xy),- in X is Cauchy if for
all € > 0, there exists some M € N such that for all n,k > M, we have d(x,, zx) < €.

Theorem 9.37 A convergent sequence in a metric space is Cauchy.

proof: let x,, — p, € > 0, then M € N such that Vn,k > M, d(z,,p) < €/2 and
d(x,p) < €/2, and hence Vn,k > M, we have

d(xn, zk) < d(Tn,p) +d(zR,p) < €/2+€/2=c¢

Definition 9.38 We say a metric space (X, d) is complete or Cauchy-complete if all
Cauchy sequences in X converges to some point in X.
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Theorem 9.39 The Euclidean space R” is a complete metric space.

proof: let ()72, be a Cauchy sequence with z,, € R” for alln € N; let € > 0
o (), is Cauchy = 3IM € N such that Ym,n > M, d(zp, — z,) < €

e hence, for all m,n > M, we have

k
2 .
(dxm,mn mel Tn,i) 2o = |, — , i=1,...,k
=1
— the sequence of real numbers (z,,;).~ , is Cauchy foralli =1,... k
e by theorem 3.45, we conclude that (z,;), , converges forall i =1,... k

e then, by theorem 9.32, we conclude that the sequence (z,),-, converges
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