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Metric spaces

Definition 9.1 Let A and B be sets. The Cartesian product is the set of tuples defined
as

A×B = {(x, y) | x ∈ A, y ∈ B}.

examples:

• {a, b} × {c, d} = {(a, c), (a, d), (b, c), (b, d)}

• the set R2 = R×R is the Cartesian plane

• the set [0, 1]2 = [0, 1]× [0, 1] is a subset of the Cartesian plane bounded by a
square with vertices (0, 0), (0, 1), (1, 0), and (1, 1)

Remark 9.2 To denote an element in the set Rn, we write x = (x1, . . . , xn) ∈ Rn,
or simply x ∈ Rn, where the subscripts i = 1, . . . , n denote the ith entry of the tuple
(x1, . . . , xn) that describes x.

We also simply write 0 ∈ Rn to mean the point (0, 0, . . . 0) ∈ Rn.
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Definition 9.3 Let X be a set, and let d : X ×X → R be a function such that for all
x, y, z ∈ X, we have

• d(x, y) ≥ 0, (nonnegativity)

• d(x, y) = 0 if and only if x = y,

• d(x, y) = d(y, x), and (symmetry)

• d(x, z) ≤ d(x, y) + d(y, z). (triangle inequality)

Then the pair (X, d) is called a metric space. The function d is called the metric or
the distance function. Sometimes we just write X as the metric space if the metric is
clear from context.

Example 9.4 The real numbers R is a metric space with the metric d(x, y) = |x− y|.

proof:

• the first three properties follows immediately from the properties of the absolute
value (theorem 2.25)

• to show the triangle inequality, let x, y, z ∈ R, then we have

d(x, z) = |x− z| = |x− y + y − z| ≤ |x− y|+ |y − z| = d(x, y) + d(x, z)
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Definition 9.5 Let (X, d) be a metric space. A set S ⊆ X is said to be bounded if
there exists a point p ∈ X and some number B ∈ R such that

d(p, x) ≤ B for all x ∈ S.

We say (X, d) is bounded if X is a bounded set.
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Cauchy-Schwarz inequality

Theorem 9.6 Cauchy-Schwarz inequality. Suppose x = (x1, . . . , xn) ∈ Rn, y =
(y1, . . . , yn) ∈ Rn, then (

n∑
i=1

xiyi

)2

≤

(
n∑

i=1

x2i

)(
n∑

i=1

y2i

)
.

proof:

0 ≤
n∑

i=1

n∑
j=1

(xiyj − xjyi)
2 =

n∑
i=1

n∑
j=1

(x2i y
2
j − 2xiyjxjyi + x2jy

2
i )

=

(
n∑

i=1

x2i

) n∑
j=1

y2j

+

(
n∑

i=1

y2i

) n∑
j=1

x2j

− 2

(
n∑

i=1

xiyi

) n∑
j=1

xjyj


=⇒

(
n∑

i=1

xiyi

)2

≤

(
n∑

i=1

x2i

)(
n∑

i=1

y2i

)
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Theorem 9.7 The function f : Rn ×Rn → R given by

f(x, y) =

√
(x1 − y1)

2 + · · ·+ (xn − yn)
2 =

√√√√ n∑
i=1

(xi − yi)
2

is a metric for Rn.

proof: we show that f satisfies the triangle inequality, by theorem 9.6, we have

(f(x, z))
2
=

n∑
i=1

(xi − zi)
2
=

n∑
i=1

(xi − yi + yi − zi)
2

=

n∑
i=1

(xi − yi)
2
+ 2

n∑
i=1

(xi − yi)(yi − zi) +

n∑
i=1

(yi − zi)
2

≤
n∑

i=1

(xi − yi)
2
+ 2

√√√√ n∑
i=1

(xi − yi)
2

n∑
i=1

(yi − zi)
2
+

n∑
i=1

(yi − zi)
2

=

√√√√ n∑
i=1

(xi − yi)
2
+

√√√√ n∑
i=1

(yi − zi)
2

2

= (f(x, y) + f(y, z))
2
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n-dimensional Euclidean space

Definition 9.8 The n-dimensional Euclidean space is the metric space (Rn, d) with
the metric d defined by

d(x, y) =

√
(x1 − y1)

2 + · · ·+ (xn − yn)
2 =

√√√√ n∑
i=1

(xi − yi)
2. (9.1)

Remark 9.9 For n = 1, the n-dimensional Euclidean space reduces to the real numbers
and the metric given by (9.1) agrees with the standard metric for the set of real numbers
d(x, y) = |x− y| in example 9.4.
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Open and closed sets

Definition 9.10 Let (X, d) be a metric space, x ∈ X, and δ > 0. Define the open ball
and closed ball, of radius δ around x as

B(x, δ) = {y ∈ X | d(x, y) < δ} and C(x, δ) = {y ∈ X | d(x, y) ≤ δ},

respectively.

Example 9.11 Consider the metric space R, for x ∈ R and δ > 0, we have

B(x, δ) = (x− δ, x+ δ) and C(x, δ) = [x− δ, x+ δ].

Example 9.12 Consider the metric space R2, for x ∈ R2 and δ > 0, we have

B(x, δ) = {y ∈ R2 | (x1 − y1)
2 + (x2 − y2)

2 < δ2}.
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Definition 9.13 Let (X, d) be a metric space. A subset V ⊆ X is open if for all x ∈ V ,
there exists some δ > 0 such that B(x, δ) ⊆ V . A subset E ⊆ X is closed if the
complement Ec = X \ E is open.

examples:

• (0,∞) ⊆ R is open; [0,∞) ⊆ R is closed

• [0, 1) ⊆ R is neither open nor closed

• the singleton {x} with x ∈ X is closed

Theorem 9.14 Let (X, d) be a metric space.

(1) The sets ∅ and X are open.

(2) If V1, . . . , Vk are subsets of X, then
⋂k

i=1 Vi is open, i.e., a finite intersection of
open sets is open.

(3) Let {Vi ⊆ X | i ∈ I} be a collection of open subsets of X, where I is an arbitrary
index set, then

⋃
i∈I Vi is open, i.e., a union of open sets is open.

proof:

• the sets ∅ and X are obviously open
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• let x ∈
⋂k

i=1 Vi, then x ∈ V1, . . . , Vk

– V1, . . . , Vk are open =⇒ ∃δ1, . . . , δk > 0 s.t. B(x, δ1) ⊆ V1, . . . , B(x, δk) ⊆ Vk

– choose δ = min{δ1, . . . , δk}, then B(x, δ) ⊆ V1, . . . , Vk =⇒ B(x, δ) ⊆
⋂k

i=1 Vi

• let x ∈
⋃

i∈I Vi, then ∃Vk ∈ {Vi | i ∈ I} such that x ∈ Vk

– Vk is open =⇒ ∃δ > 0 such that B(x, δ) ⊆ Vk ⊆
⋃

i∈I Vi

Theorem 9.15 Let (X, d) be a metric space.

(1) The sets ∅ and X are closed.

(3) Let {Vi ⊆ X | i ∈ I} be a collection of closed subsets of X, where I is an arbitrary
index set, then

⋂
i∈I Vi is closed, i.e., an intersection of closed sets is closed.

(2) If V1, . . . , Vk are subsets of X, then
⋃k

i=1 Vi is closed, i.e., a finite union of closed
sets is closed.

Remark 9.16 Note that in theorem 9.14, the statement (2) is not true for an arbitrary
intersection. For example,

⋂∞
n=1(−1/n, 1/n) = {0}, which is not open in R.

Similarly, in theorem 9.15, the statement (3) is not true for an arbitrary intersection.
For example,

⋃∞
n=1[1/n,∞) = (0,∞), which is not closed in R.
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Theorem 9.17 Let (X, d) be a metric space, x ∈ X, and δ > 0. Then B(x, δ) is open
and C(x, δ) is closed.

proof: we show that B(x, δ) is open; let z ∈ B(x, δ), then d(x, z) < δ

• choose ϵ = δ − d(x, z), let B(z, ϵ) = {y ∈ X | d(y, z) < ϵ} be an open ball

• let y ∈ B(z, ϵ), we have d(y, z) < ϵ, and hence

d(x, y) ≤ d(x, z) + d(z, y) < d(x, z) + ϵ = d(x, z) + δ − d(x, z) = δ

=⇒ y ∈ B(x, δ) =⇒ B(z, ϵ) ⊆ B(x, δ)
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Closure and boundary

Definition 9.18 Let (X, d) be a metric space and A ⊆ X. The closure of A is the set

clA =
⋂

{E ⊆ X | E is closed and A ⊆ E},

i.e., clA is the intersection of all closed sets that contain A.

Definition 9.19 Let (X, d) be a metric space and A ⊆ X. The interior of A is the set

intA = {x ∈ A | B(x, δ) ⊆ A for some δ > 0}.

The boundary of A is the set

bdA = clA \ intA.

example: consider A = (0, 1] and X = R, then we have clA = [0, 1], intA = (0, 1),
and bdA = {0, 1}
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Remark 9.20 Notationally, in some textbooks, the closure, interior, and boundary of
some set A are denoted as

A = clA, A◦ = intA, and ∂A = bdA,

respectively.

Theorem 9.21 Let (X, d) be a metric space and A ⊆ X.

• The closure clA is closed and A ⊆ clA.

• If A is closed, then clA = A.

proof: let clA =
⋂
{E ⊆ X | E is closed and A ⊆ E}

• the first statement follows directly from the definition of closure and theorem 9.15

• if A is closed, then A ∈ {E ⊆ X | E is closed and A ⊆ E} =⇒ clA ⊆ A =⇒
A = clA
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Theorem 9.22 Let (X, d) be a metric space and A ⊆ X, then x ∈ clA if and only if
for all δ > 0, we have B(x, δ) ∩A ̸= ∅.

proof: we show the following claim: x /∈ clA if and only if there exists some δ > 0
such that B(x, δ) ∩A = ∅

• suppose x /∈ clA, then x ∈ (clA)c

– clA is closed =⇒ (clA)
c is open =⇒ ∃δ > 0 s.t. B(x, δ) ⊆ (clA)

c ⊆ Ac =⇒
B(x, δ) ∩A = ∅

• suppose ∃δ > 0 such that B(x, δ) ∩A = ∅, let x ∈ X

– B(x, δ) is open =⇒ (B(x, δ))
c is closed

– B(x, δ) ∩A = ∅ =⇒ A ⊆ (B(x, δ))
c

=⇒ clA ⊆ (B(x, δ))
c

– x ∈ B(x, δ) =⇒ x /∈ (B(x, c))
c

– put together, we have x /∈ clA
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Theorem 9.23 Let (X, d) be a metric space and A ⊆ X, then intA is open and bdA
is closed.

proof:

• let x ∈ intA

– x ∈ intA =⇒ ∃δ > 0 such that B(x, δ) ⊆ A

– let z ∈ B(x, δ); B(x, δ) open =⇒ ∃ϵ > 0 such that B(z, ϵ) ⊆ B(x, δ) ⊆ A =⇒
z ∈ intA =⇒ B(x, δ) ⊆ intA =⇒ intA is open

• intA open =⇒ (intA)c closed =⇒ bdA = clA \ intA = clA ∩ (intA)c is
closed (theorem 9.15)

Theorem 9.24 Let (X, d) be a metric space and A ⊆ X, then x ∈ bdA if and only if
for all δ > 0, we have the sets B(x, δ) ∩A and B(x, δ) ∩Ac are both nonempty.

proof:

• suppose x ∈ bdA, let δ > 0

– x ∈ bdA =⇒ x ∈ clA, and hence, by theorem 9.22, we have B(x, δ) ∩A ̸= ∅
– assume B(x, δ) ∩Ac = ∅, then we have B(x, δ) ⊆ A =⇒ x ∈ intA, which is a

contradiction
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• suppose B(x, δ) ∩A ̸= ∅ and B(x, δ) ∩Ac ̸= ∅ for all δ > 0, assume x /∈ bdA

– x /∈ bdA =⇒ x /∈ clA or x ∈ intA

– if x /∈ clA =⇒ ∃δ0 > 0 such that B(x, δ0) ∩A = ∅, which is a contradiction

– if x ∈ intA =⇒ ∃δ0 > 0 such that B(x, δ0) ⊆ A =⇒ B(x, δ0)∩Ac = ∅, which is
a contradiction

Theorem 9.25 Let (X, d) be a metric space and A ⊆ X, then bdA = clA∩ cl(Ac).

proof: let x ∈ bdA, δ > 0

• by theorem 9.24, we have B(x, δ) ∩A and B(x, δ) ∩Ac nonempty

• by theorem 9.22, B(x, δ) ∩A ̸= ∅ =⇒ x ∈ clA and B(x, δ) ∩Ac ̸= ∅ =⇒
x ∈ clAc

• hence, we have bdA = clA ∩ cl(Ac)
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Sequences in metric spaces

Definition 9.26 A sequence in a metric space (X, d) is a function x : N → X. To
denote a sequence we write (xn)

∞
n=1, where xn is the nth element in the sequence.

A sequence (xn)
∞
n=1 is bounded if there exists a point p ∈ X and B ∈ R such that

d(p, xn) ≤ B for all n ∈ N.

Let (ni)
∞
i=1 be a strictly increasing sequence of natural numbers, then the sequence

(xni)
∞
i=1 is called a subsequence of (xn)

∞
n=1.

Definition 9.27 A sequence (xn)
∞
n=1 in a metric space (X, d) is said to converge to

a point p ∈ X if for all ϵ > 0, there exists some M ∈ N such that for all n ≥ M , we
have d(xn, p) < ϵ.

The point p is called a limit of (xn)
∞
n=1. If the limit p is unique, we write

lim
n→∞

xn = p.

A sequence that converges is said to be convergent, and otherwise is divergent.
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Theorem 9.28 A convergent sequence in a metric space has a unique limit.

proof: let x, y ∈ X such that xn → x and xn → y; let ϵ > 0

• xn → x =⇒ ∃M1 ∈ N such that ∀n ≥ M1, d(xn, x) < ϵ/2

• xn → y =⇒ ∃M2 ∈ N such that ∀n ≥ M2, d(xn, y) < ϵ/2

• hence, for all n ≥ M , we have

d(x, y) ≤ d(xn, x) + d(xn, y) <
ϵ

2
+

ϵ

2
= ϵ

=⇒ d(x, y) = 0 =⇒ x = y

Theorem 9.29 A convergent sequence in a metric space is bounded.

proof: suppose xn → p ∈ X

• let ϵ > 0, xn → p =⇒ ∃M ∈ N such that ∀n ≥ M , d(xn, p) < ϵ

• choose B = max{d(x1, p), . . . , d(xM , p), ϵ}, then for all n ∈ N, d(xn, p) ≤ B
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Theorem 9.30 A sequence (xn)
∞
n=1 in a metric space (X, d) converges to p ∈ X if and

only if there exists a sequence (an)
∞
n=1 of real numbers such that for all n ∈ N, we have

d(xn, p) ≤ an and lim
n→∞

an = 0.

proof:

• suppose xn → p

– xn → p =⇒ ∀ϵ > 0, ∃M ∈ N s.t. ∀n ≥ M , d(xn, p) < ϵ =⇒ d(xn, p) → 0

– choose an = d(xn, p) for all n ∈ N, then we have d(xn, p) ≤ an and an → 0

• suppose an → 0 with an ∈ R and d(xn, p) ≤ an, let ϵ > 0

– 0 ≤ d(xn, p) ≤ an, an → 0 =⇒ d(xn, p) → 0 (theorem 3.21)

– d(xn, p) → 0 =⇒ ∃M ∈ N such that ∀n ≥ M , d(xn, p) < ϵ =⇒ xn → p
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Theorem 9.31 Let (xn)
∞
n=1 be a sequence in a metric space (X, d). If (xn)

∞
n=1 converges

to p ∈ X, then all subsequences of (xn)
∞
n=1 converges to p.

proof: let ϵ > 0

• let xn → p, then ∃M ∈ N such that ∀n ≥ M , d(xn, p) < ϵ

• let (xni)
∞
i=1 be a subsequence of (xn)

∞
n=1, then we have ni ≥ i

• hence, for all i ≥ M , we have ni ≥ M =⇒ ∀i ≥ M , d(xni , p) < ϵ
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Convergence in Euclidean space

Theorem 9.32 Let (xn)
∞
n=1 be a sequence in Rk, where xn ∈ Rk for all n ∈ N. Then

(xn)
∞
n=1 converges if and only if (xn,i)

∞
n=1 converges for all i = 1, . . . , k, i.e.,

lim
n→∞

xn =
(
lim
n→∞

xn,1, . . . , lim
n→∞

xn,k

)
.

proof:

• suppose xn → p ∈ Rk, let ϵ > 0

– xn → p =⇒ ∃M ∈ N such that ∀n ≥ M , d(xn, p) < ϵ

– hence, ∀n ≥ M , we have

(d(xn, p))
2
=

k∑
i=1

(xn,i − pi)
2
< ϵ2 =⇒ (xn,i − pi)

2
< ϵ2, i = 1, . . . , k

=⇒ |xn,i − pi| < ϵ for all i = 1, . . . , k =⇒ xn,i → pi for all i = 1, . . . , k
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• suppose xn,i → pi for all i = 1, . . . , k, let ϵ > 0, p = (p1, . . . , pk)

– xn,i → pi, i = 1, . . . , k =⇒ ∃M1, . . . ,Mk ∈ N such that ∀n ≥ Mi, we have

|xn,i − pi| < ϵ/
√
k, i = 1, . . . , k

– choose M = max{M1, . . . ,Mk}, then ∀n ≥ M , we have

d(xn, p) =

√√√√ k∑
i=1

(xn,i − pi)
2
<

√√√√ k∑
i=1

(
ϵ√
k

)2

=

√√√√ k∑
i=1

ϵ2

k
=

√
ϵ2 = ϵ

=⇒ xn → p
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Convergence properties of topology

Theorem 9.33 Let (X, d) be a metric space and (xn)
∞
n=1 be a sequence in X, then

(xn)
∞
n=1 converges to p ∈ X if and only if for all open sets U ⊆ X with p ∈ U , there

exists some M ∈ N such that for all n ≥ M , we have xn ∈ U .

proof:

• suppose xn → p, let U ⊆ X be open and p ∈ U

– U is an open set contains p =⇒ ∃δ > 0 such that B(p, δ) ⊆ U

– xn → p =⇒ ∃M ∈ N s.t. ∀n ≥ M , d(xn, p) < δ =⇒ ∀n ≥ M , xn ∈ B(p, δ)
=⇒ ∀n ≥ M , xn ∈ U

• suppose for all open sets U ⊆ X with p ∈ U , there exists some M ∈ N such that
xn ∈ U for all n ≥ M ; let ϵ > 0

– choose U = B(p, ϵ), then ∃M ∈ N such that ∀n ≥ M , xn ∈ B(p, ϵ)

– hence, ∀n ≥ M , d(xn, p) < ϵ =⇒ xn → p
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Theorem 9.34 Let (X, d) be a metric space, E ⊆ X be a closed set, and (xn)
∞
n=1 be

a sequence in E that converges to some p ∈ X, then we have p ∈ E.

proof: assume (xn)
∞
n=1 in E converges to p but p /∈ E

• p /∈ E =⇒ p ∈ Ec

• E is closed =⇒ Ec is open, then by theorem 9.33, ∃M ∈ N such that ∀n ≥ M ,
xn ∈ Ec =⇒ ∀n ≥ M , xn /∈ E, which is a contradiction

Theorem 9.35 Let (X, d) be a metric space and A ⊆ X, then p ∈ clA if and only if
there exists a sequence (xn)

∞
n=1 of elements in A such that limn→∞ xn = p.

proof:

• suppose p ∈ clA, then by theorem 9.22, we have B(p, δ) ∩A ̸= ∅ for all δ > 0

– choose (xn)
∞
n=1 such that xn ∈ A and d(xn, p) <

1
n for all n ∈ N

– 0 ≤ d(xn, p) <
1
n and 1

n → 0 =⇒ d(xn, p) → 0 =⇒ xn → p (theorem 9.30)

• suppose (xn)
∞
n=1 in A and xn → p, let δ > 0

– xn → p =⇒ ∃M ∈ N s.t. ∀n ≥ M , d(xn, p) < δ =⇒ ∀n ≥ M , xn ∈ B(p, δ)

– then, since xn ∈ A, we have B(p, δ) ∩A ̸= ∅ =⇒ p ∈ clA (theorem 9.22)
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Cauchy sequences and completeness

Definition 9.36 Let (X, d) be a metric space. A sequence (xn)
∞
n=1 in X is Cauchy if for

all ϵ > 0, there exists some M ∈ N such that for all n, k ≥ M , we have d(xn, xk) < ϵ.

Theorem 9.37 A convergent sequence in a metric space is Cauchy.

proof: let xn → p, ϵ > 0, then ∃M ∈ N such that ∀n, k ≥ M , d(xn, p) < ϵ/2 and
d(xk, p) < ϵ/2, and hence ∀n, k ≥ M , we have

d(xn, xk) ≤ d(xn, p) + d(xk, p) < ϵ/2 + ϵ/2 = ϵ

Definition 9.38 We say a metric space (X, d) is complete or Cauchy-complete if all
Cauchy sequences in X converges to some point in X.
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Theorem 9.39 The Euclidean space Rk is a complete metric space.

proof: let (xn)
∞
n=1 be a Cauchy sequence with xn ∈ Rk for all n ∈ N; let ϵ > 0

• (xn)
∞
n=1 is Cauchy =⇒ ∃M ∈ N such that ∀m,n ≥ M , d(xm − xn) < ϵ

• hence, for all m,n ≥ M , we have

(d(xm, xn))
2 =

k∑
i=1

(xm,i − xn,i)
2 < ϵ2 =⇒ |xm,i − xn,i| < ϵ, i = 1, . . . , k

=⇒ the sequence of real numbers (xn,i)
∞
n=1 is Cauchy for all i = 1, . . . , k

• by theorem 3.45, we conclude that (xn,i)
∞
n=1 converges for all i = 1, . . . , k

• then, by theorem 9.32, we conclude that the sequence (xn)
∞
n=1 converges
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