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Power series

Definition 8.1 A power series about z( € R is a series of the form

oo
Z am(x - xO)m'
m=0

Definition 8.2 Let > a,,(z — 20)™ be a power series, if the limit

R = lim |am]1/m
m—00

exists, we define the radius of convergence p as

) 1/R R>0
7)1 « R=o0
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Theorem 8.3 Let >~ am(z —x0)™ be a power series and R = lim, o0 |am|1/m

exists. If R = 0, the series converges absolutely for all x € R. If R > 0, the series
converges absolutely if |z — z¢| < p and diverges if |x — x| > p.

proof: consider the root test (theorem 4.26), we have

L= lim |am(z — z0)™ "™ m — Rla — x|

= |z —xo| lim |an]
m—0o0 m—o0

e suppose R =0, thenwe have L=0<1forallz€e R = Y~ amn(z—z)"
converges absolutely for all z € R

e suppose R >0
—iflz—a9|<p = L<Rp=1 = Y~ amn(z—x0)" converges absolutely

—iflzg—a9|>p = L>Rp=1 = Y °_jam(z— )" diverges
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Remark 8.4 Let >~ a,(z —20)™ be a power series with radius of convergence p.
Define f: (zo — p, o + p) — R such that

f(x) = Z am(x - xo)m7
m=0

S
n=1’

then, the function f is the limit of a sequence of functions (f,) given by

n

f(2) = lim fo(x), fal@) =) am(z—zo)"

m=0

Example 8.5 Consider the geometric series >~z (which is a power series with
am =1, xg = 0), we have f: (=1,1) — R given by

@)=t =3 am = lim fula), fule)= 3
m=0

1—
X m=0
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Example 8.6 Exponential function. Consider the power series with a,, =
we have the exponential function f(z): R — R, given by

f(z) = exp(x Z % nl;ngofn(x), fu(z) = Z %
m=0 m=0

1
ml :B():Ox

Remark 8.7 Based on remark 8.4, we may ask several questions.

(1) Is the function f continuous?

(2) If (1) is true, is f differentiable, and does f' = lim,,~ f,?

(3) If (1) is true, does f;f = limy, 00 f: fn?
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Pointwise convergence

Definition 8.8 Let (f,,) 2, with f,,: S — R for all n € N be a sequence of functions,

n=1
and let f: S — R be a function. We say that (f,,) -, converges pointwise (or just

n=1

converges) to f if for all x € S, we have lim,, o frn(x) = f(x).

Example 8.9 Let f,(x) = z™ be defined on [0,1], then we have the sequence of

0 z€]0,1
functions (f,)>., converges pointwise to f(x) = { ) * [1 ) .
Tr =

proof: 1

o ifz€0,1): limy oo™ =0 0.81

o if z=1: limy 001" =1 - 061

= 04

Remark 8.10 A sequence of continuous 021 4 72 25 10/ 10
functions may not converge pointwise to a 0 ‘

0 02 04 06 0.8 1
T

continuous function.
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Example 8.11 Let f,(z): [0,1] — R be defined by

Anx T e [O, ﬁ]
fal@) =< 4n—4n’z z € [ﬁ %]
0 T € [% 1] ,

then (f,),=, converges pointwise to f(z) =0 (x € [0,1]).

proof: if x =0, we have lim,,_, f(0) = 0; if € (0,1], then IM € [0, 1] such that

Vn > M, % < z, and hence,

(fal@)ry = fi(z),..., far—1(2),0,0,0,... = lim f,(z) =0
16 32
8 —
o © © B
& ] & 2
0 0 0 0
011 1 011 1 01 1 1
4 2 84 8 16
X X T T
8-7
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Uniform convergence

Definition 8.12 Let (f,),; with f,: S — R for all n € N be a sequence of functions,
and let f: S — R be a function. We say that (f,),—, converges uniformly to f if

for all € > 0, there exists some M & N such that for all n > M and z € S, we have

[fu(z) = f(z)] <e.

Theorem 8.13 Let f: S = R, f,: S — R for all n € N be functions. If the sequence
of functions (f,),-, converges uniformly to f, then (fy),>; converges pointwise to f.

proof: let c€ S, e >0
o (fn),, converges uniformly to f = IM € N such that for all n > M and

z €S, [falz) = f(z)] <e
e hence, Vn > M, |fn(c) — f(c)] <€ = (fn),—; converges pointwise to f

Remark 8.14 Let f: S — R, f,: S — R for all n € N be functions. The sequence
(fn)pey does not converge to f uniformly if there exists some € > 0 such that for all
M € N, there exist some n > M and some x € S, so that |f,(z) — f(z)| > €.
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0 ze€l0,1)

Theorem 8.15 Let f,(x) = 2™, n €N, and let f(z) = { ) )
xr =

e The sequence (f,),-, converges uniformly to f on [0,b] for all 0 < b < 1.

e The sequence (f,),-; does not converges to f uniformly on [0, 1].

proof:

o lete>0,b€(0,1), thend” -0 = IM € N such that Vn > M, " < e =
Vn > M and z € [0,b], we have

[fo(z) — f(2)] = 2" <V <e
e choose ¢ = 1/2, then VM € N, choose n = M, x = (1/2)1/M < 1, we have

[fule) = fla)| =2 =1/2>¢
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Interchange of limits

Example 8.16 In general, limits cannot be interchanged. For example,

im tim 7 hmo=0,  tm im - gmo1—,
n—ook—oo n/k+1  n—oo k—oon—oon/k+1 koo

Remark 8.17 Based on example 8.16, we may ask the following questions.

e If f,: S — R with f,, continuous for all n € N and (f,),—; converges to f
uniformly or pointwise, then is f continuous?

e If f,: [a,b] — R with f,, differentiable for all n € N, and (f,,),—, converges to f,

n=1
(f1)o2, converges to g uniformly or pointwise, then is f differentiable and does

f'=g?

o If f:[a,b] > R, neN, f:[a,b] - R, with f,, and f continuous, and (f,);~
converges to f uniformly or pointwise, then does fff = lim,, 0 f: fn?
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Remark 8.18 If convergence is only pointwise, the answer is no for all questions in
remark 8.17.

e Let f,(z) = 2" on [0,1], n € N. Example 8.9 shows that (f,),-, converges
pointwise to a noncontinuous function.

n+1

o Let fu(z) = 551 on [0,1], then (f,,),~, converges to f(x) = 0 pointwise on
[0,1] and (f},)o—; converges pointwise to g given by g(z) = { (1) i f [10’ 1) ,
but f/(1) =0# g(1) = 1.

A’y T € [O, %]
e Let fn: [0,1] = R be given by f(z) = ¢ 4n—4n’z =z € [5-, 1] | then
0 NS [%, 1]
(fn)n—q converges to f(z) = 0 pointwise on [0,1] (example 8.11), but
/f—O;éhm fn—hm(112n):1
n—oo 2 n
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Theorem 8.19 If f,: S — R is continuous for all n € N, f: S — R, and (f,),2,
converges to f uniformly, then f is continuous.

proof: letc€ S, ¢ >0

e fyn continuous on S, c € S = 3§ > 0 such that forall z € S and |z — ¢| < 0,
we have |f,(x) — fn(c)| < €/3

o f, — f uniformly = JM € N such that for all n > M and x € S, we have

F(2) = fal@)| < ¢/3
e hence, for all z € S and |z — ¢| < d, we have
|f(z) = flo)| = |f(z) = fm(2) + fau(x) — far(e) + faule) — f(c)]
< |f(@) = fu@)| + [fm (@) = fa ()] + [ fale) = f(c)]

L
37373°°¢
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Theorem 8.20 If f,,: [a,b] — R is continuous for all n € N, f: [a,b] - R, and
(fn)p2, converges to f uniformly, then fff = lim,, 00 ff fn.

proof: let ¢ >0
e by theorem 8.19, we know that f is continuous on [a, b]

o (fn)oo converges uniformly to f == 3IM € N such that for all n > M and
x € [a,b], we have |f(z) — f(2)] < ;5

e hence, for all n > M, we have

Lo LA oo o [ e

where the first inequality is by corollary 7.17

Remark 8.21 Notationally, theorem 8.20 says that

b b b
/ f:/ lim f, = lim / fn-
a a n—oo n—0o0 a
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Theorem 8.22 If f,: [a,b] — R is continuously differentiable, f: [a,b] — R,

g: la,b] - R, and

o (fn)o2, converges to f pointwise,

o (f)>, converges to g uniformly,

then f is continuously differentiable and f' = g.

proof: let x € [a,b]
e by theorem 8.19, we know that g is continuous on [a, b]
e by theorem 7.19, we have

n—oo

[ o=t = 1@ =t [ gi= i o) — lim g

o f, — f pointwise = lim, o frn(z) — limy, o0 fr(a) = f(z) — f(a)
o fl, = g uniformly = lim,— [ f7, = [" g (theorem 8.20)
e put together, we have

[ o=t@-t@) — (/g)z (2) = ()
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Weierstrass M-test

Theorem 8.23 Weierstrass M-test. Let fi.: S — R for all kK € N. Suppose there exists
My, > 0, k € N, such that

(a) |fr(x)| < My for all z € S,

(b) >-p2, My, converges.

Then, we have the following conclusion.

(1) The series > 22, fx(z) converges absolutely for all z € S.

(2) Let f(x) =332, fr(x) for all 2 € S, then the series (3}, fx).—, converges to
f uniformly on S.

proof:

(1) |fr(z)| < My, >p2y My, converges = > 1=, | fr(z)| converges (theorem 4.20)
= > 72 fx(x) converges absolutely
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(2) let € > 0; > -2, My converges —> IM € N s.t. Vn > M, we have
o0 o0 n
DL Mp=|) M=) M
k=n+1 k=1 k=1
then, for all n > M and z € S, we have

Y ful@) =D fulw) > fula)
P k=1

k=n+1

<€

< 3 @< Y Mi<e

k=n+1 k=n+1
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Properties of power series

Theorem 8.24 Let > 7 ap(z — 20)" be a power series with radius of convergence
p € (0,00], then for all r € (0, p), the series Y 72 j a(z — 20)" converges uniformly on
[xo — 1, x0 + 7).

proof:
e note that we have |x — zg| < r for all z € [zg — r, 20 + 7]
o let fr = axp(x — mo)k, choose My, = |ag|r*, k € N, then Vx € [x¢ — 7,20 + 7],

[fe(@)] = lar(e = 20)*| = |ax|lz — zo|* < |ax|r® = M

e consider the root test (theorem 4.26) for ).~ ) M}, we have

r/p p< o0
0 p =00

k—o0

1/k
L= lim M/* = lim (\ak\rk> = lim |ay|"*r = {
k—o0 k—o0

since € (0,p), we have L <1 = ;2 M, converges absolutely

e put together, by theorem 8.23, we have (3_7_( fr)rey = D po ak(® — a:o)k
converges uniformly on [xg — 7, o + 7]
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Theorem 8.25 Let > 7 ax(z — 20)" be a power series with radius of convergence
p € (0, 00], then we have the following conclusion.

e Forall ¢ € (xg — p,zo + p), the function given by the series Y 72 aj(z — xo)k is
differentiable at ¢, and

% (Z ay(x — a:o)k>
k=0

e For all a,b such that z9p — p < a < b < xg + p,

Tr=c k=0
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