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Riemann sum

Definition 7.1 A partition z = {xo,z1,...,2,} of [a,b] is a finite set such that
a=x0<x1 < - <xp =0
The norm of z, denoted ||z||, is a number defined as

llz|| = max{x1 — xo, z2 — 21, ..., Tp — Tp-1}.

Definition 7.2 let = be a partition of [a,b]. A tag of z is a finite set £ = {&1,...,&}
such that

a=20<& <21 <& << <Ly <& <z =0

The pair (z,§) is referred to as a tagged partition.

example: (z,§) = ({1,3/2,2,3}, {5/4,7/4,5/2}) is a tagged partition with norm
lz|| = max{3/2 — 1, 2—3/2, 3—2} =1
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Definition 7.3 The Riemann sum of f corresponding to (z,£) is the number

Sp(z,€) =D F(&) (@i —wi).
=1

Remark 7.4 For a continuous function f on [a,b] that is positive, the Riemann sum
S¢(x,&) is an approximate area under the graph of f. As ||z| — 0, we should expect
these approximate areas to converge to some number, which we interpret as the area
under the graph of f on the interval [a,b].
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Some useful facts

Definition 7.5 We define the set C([a,b]) = {f: [a,b] = R | f is continuous}.

Definition 7.6 Let f € C([a,b]) and 7 > 0, we define the modulus of continuity of
the function f as

wy(7) = sup{|f(z) = f(W)| | |z —yl < 7}

Theorem 7.7 For all f € C([a,b]), we have lim,_,o ws(7) =0, i.e., for all € > 0, there
exists some ¢ > 0 such that for all 7 < 6, we have wy(7) < e.

proof: let ¢ > 0
e f€C([a,b]) = f is uniformly continuous on [a,b] = 3d > 0 such that for
all z,y € [a,b] and |z —y| < J, we have |f(z) — f(y)| < €/2

e let 7 < 9, then for all z,y € [a,b] and |z —y| < 7, we have |z —y| < § =
|f(x) — f(y)| <e€/2forall z,y € [a,b] and |x —y| <7 = €/2 is an upper
bound of the set {|f(z) — f(y)| | |zt —y| <7} = wy(1) <€/2 <€
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Theorem 7.8 Let f € C([a,b]), then w¢(7) has the following properties:

e Forall z,y € [a,b], we have wy(|z —y|) > |f(z) — f(y)|.
e Monotonicity. If 71 < 79, then wy (1) < wy(72).

Definition 7.9 Let (z,§) and (2/,¢’) be tagged partitions of [a,b]. We say 2’ is a
refinement of z if z C 2.

Theorem 7.10 Let (z,£) and (2/,¢') be tagged partitions of [a,b] such that 2’ is a
refinement of z. If f € C([a,b]), then

1S5(z,€) = Sy, ) < we(llzl) (b — a).

proof: let z = {xo,...,zn}, £ = {&1, ..., &n}, 2/ = {ag, .. 2}, & = {81, ..., &)
e fori=1,...,n, let g(i) = {2, s T ) g(i) = {18258t St

xi_1:$;<l‘;+1<"-<$;€:$i
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e then foralli =1,...,n, we have

|F(&) (i — 1) — Sp(y,

k k
= Z P = Tp1) Z J(&)( Ty_q)
l=q+1 l=q+1
k k
= | > (&) = fe (@ — 2| < D 1f(&) — FEDI(l — -y
l=q+1 l=q+1
k k
<3 wplw - m)@h ) <Y wpllal) ) -2 y)
l=q+1 l=q+1

=wr(llz|)(@; — zi-1)
— the first inequality is by lemma 4.18
— the second inequality is from &;,&; € [zi—1, x;]

— the third inequality is by the second statement of theorem 7.8, and ||z|| > z;
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e put together, we have

1S (z, &) —

n

Sy, &) =

n

D (FE&) (i — zima) — Sp(y™, <))

i=1

<D G @i —wion) = Sp(y?, <) |<wa lz]) (i = wi-1)

i=1

= w([lz])(b - a),

where the last inequality is by plugging in (7.1)

Theorem 7.11 Let (z,§) and (2/,¢’) be any two tagged partitions of [a,b] and f €
C([a,b]), then

|Sy(2,8) = Sp(a, &) < (wy(llzl)) +we(ll2'])) (b — a).
proof: let 2’ = z Uz’ and £" be a tag of 2”, then by theorem 7.10, we have

S (z, &) — Sy(a’
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Riemann integral of continuous functions

Theorem 7.12 Let f € C([a, b]), then there exists a unique number denoted f; f(x) dx
with the following property: For all sequences of tagged partitions ((Q(T),§(T))>Oi1 such
that lim, o |2 || = 0, we have

lim Sy(z §(T / f(z
r—00

proof: uniqueness follows immediately from uniqueness of limits of sequences of real
numbers, we only need to show the existence

o let ((g(r),g(’")))w be a sequence of tagged partitions with lim, ||g(’”)|| =0,

o0
we first show that (Sf(g(r),g(”)> is a Cauchy sequence; let € > 0

— by theorem 7.7, 3§ > 0 such that for all 7 < 0, wy(7) < m

- [ly™ y(’“)H <4, |y <é = V¥r,s>M,
we have wy (|ly™]) < 55545 wf(lly )||) -0
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— hence, for all r,s > M, by theorem 7.11, we have
1S5y, ¢) = S5y, ¢

< (gl D+ w00 - ) < (5550 + 5 ) -0 =€

let L = lim, o Sf(g(r),g(’")) (which exists by theorem 3.45)

o let ((g(r)é(r))):il be any sequence of partitions with lim, o, [|2("|| = 0, we

now show that lim, Sf(g(r)é(”)) =1L
- since ||z — 0, [ly™|| — 0, by theorem 7.7, we have

Tim (wy (lz™) + wr (D) (b~ a) = 0

- Siy (") - L = Sy, (")~ L] =0
— by theorem 7.11, we have

0 < [S(e, €M) — L < [87(, €M) = S5y, ¢+ 185 (47, ¢) — L
< (s (I 1) +wr(ly™ D) b —a) +Sp(y", (") — LI

= lim, 00 [Sy (2™, M) — L| = 0 (theorem 3.21)
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Remark 7.13 Let f € C([a, b]). We sometimes write

b b
[ t@a= [+
By convention, we also define

/aaf:() and /baf:/abf.
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Properties of Riemann integral

Theorem 7.14 Linearity. Let f,g € C([a,b]) and « € R, then

/ab<af+g>=a/abf+/abg.

proof: let ((@”,é”))m be a sequence of tagged partitions such that ||z(")|| — 0,

r=1

then we have

b
[ (@ +9) = lim Supyfa”, )

= lim (aS;(2®,£0) + S, (), £0)

r—00

)
=a lim Sp(z™, ) + lim Sy(z,¢™)

r—00 r—00
b b
e f )
a a
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Theorem 7.15 Additivity. Let f € C([a,b]) and a < ¢ < b, then we have

/abfz/:f+/cbf-

proof:
o0
o let ( ) ) be a sequence of tagged partitions of [a, ¢] with ||y || — 0
Y — Y
o let ( z , )T be a sequence of tagged partitions of [c, b] with |[z(")| — 0

then (( (r) f(r))> _with z(") :g( )U 2" and f(r —C )Un( ") is a sequence
of tagged partitions of [a, ]
ly@ =0 and |27 =0 = 2@ < [y + 2] =0

hence, we have

/f_lmsf 7,€0) = lim (S;(y"), <) + S5z, 7))

r—00 = r—00
(r)
= lim (3, () + lim (= /f+/f
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Theorem 7.16 Let f,g € C([a,b]) and f(x) < g(z) for all x € [a, b], then we have

/abfﬁ/abg

proof: let ((g(”,g(”))m be a sequence of tagged partitions with [|z(")|| — 0, then

- r=1
n(r) n(m)

€0) =3 f(el) @ — 20 < Zg ") 2Dy = 5y (2, £0)
=1

= lim, oo Sf(ﬁ(r)7§(r)) < limy o0 Sg(i(r)vé(r)) - f;f < f;g

Corollary 7.17 Let f € C([a, b]), then ‘f;f‘ < f;|f|

proof: £f(x) < |f(z)] = fabif = if;’f < f;|f| (theorem 7.16)
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Theorem 7.18 Let f € C([a,b]), and

my =inf{f(z) [z € [a,b]}, My =sup{f(z) |z € [a,b]}
Then, we have

b
my(b—a) S/ f<My(b—a).

proof: let (@(r) ; §(T))> b

r=1

be a sequence of tagged partitions with ||z

)| = 0, then
()

(™
€0y = Z FEN @ — 2

D> mpal” — 7)) = mypb - a)
=1
n(v ()
") = Zf =l

—a") <> M@l =2 = My(b - a)
=1
= my(b—a) <lim, 00 Sp(

x(r),é(r)) < Mf(b —a)
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Fundamental theorem of calculus

Theorem 7.19 Fundamental theorem of calculus. Let f € C([a,b]).

e If F: [a,b] — R is differentiable and F’ = f, then

b
/ f=F(b) - Fla).

e The function G(z) = [ f is differentiable on [a, b] with

proof:
o let (g(r))zl be a sequence of partitions with ||z(")|| — 0, by theorem 6.15, there
exist tags £ with £ € [2\7) 2{7], i = 1,...,n(), such that

11—

F(a\") — F@") = /()@ — 7)) = fe) @ —2))
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oo

hence, for the sequence of tagged partitions ((g(r),é(r))) » we have

™

n(
€)= 2 SEMN @ —ail) = 3 P — Pl = FO) - Flo)

= [0 f =m0 Sp(2"),£7) = F(b) - F(a)
e we only need to show that G is differentiable and G’ = f, i.e., let ¢ € [a, ], we

need to prove that lim,_,. % = lim,_,. % = f(c); let e >0
— f continuous on [a,b] == 3 > 0 such that for all ¢ € [a,b] and |t — ¢| < J, we

have |(t) — f(c)| < ¢/2
— suppose x € (¢,c+ 0), then for all t € [c, z], we have |f(t) — f(c)| < €/2, hence,

o —f@4= ﬁ—f@’

xic</aﬂ”ﬁ_/mﬂ@dg‘le‘/7ﬂ0—f@)ﬁ
1 €

€ €
dt<7 it = - <
(©)] L2 o W =g<e

r—cC

(the first inequality is by corollary 7.17)
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w_f(c) <e

Tr—c

— suppose x € (¢ — 0, ¢), using similar argument, we have
— put together, we conclude that for all z € [a,b] and 0 < |z — ¢| < §, we have

S il I

Tr—c fle)

<€

= limwzhmwz

T—c T—c e T —¢C

f(e)
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Integration by parts

Theorem 7.20 Integration by parts. Suppose f,g € C([a,b]), f',¢" € C([a,b]), then

b b
/ f'a = (f®)g(b) — F(a)g(a)) - / fd.

proof: let F' € C([a,b]) with F(z) = f(z)g(z), by theorem 6.8, we have

F'(z) = f'(z)g(z) + f(2)g'(2),

and hence,
b
/ f'(@)g(x) de + / f(@)g (@) dz = / (f'(2)g(@) + f(2)g () da
- / F(x) dz = F(b) — F(a) = f(b)g(b) — f(a)g(a)

= [P f'g=(f(b)g(b) — f(a)g(a)) — [} fg'
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Change of variables

Theorem 7.21 Change of variables. Let f € C([c,d]) and ¢: [a,b] — [c, d] be contin-
uously differentiable with ¢(a) = ¢ and ¢(b) = d. Then, we have

/ " ) du = / ' (@) (@) da.

proof:
e let F': [a,b] — R be a function with F’ = f, then we have

d
| fw du=F@) - P
e by theorem 6.9, we have

(F o) (x) =F'(e(x)¢(z) = flo(x))e'(x),

and hence,

b d
/ F(o(@))@(2) dx = F(p(b)) - F(p(a)) = F(d) — F(c) = / £(u) du
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