Derivative

6. Derivative

definition and basic properties

differentiation rules

Rolle's theorem and mean value theorem

Taylor's theorem



Derivative of functions

Definition 6.1 Let I be an interval, let f: I — R be a function, and let ¢ € I. We say
the function f is differentiable at c if the limit

L f@ = )

T—C T —c

exists. We call L the derivative of f at ¢, and we write f'(¢) = L.

If f is differentiable at all ¢ € I, then we say the function f is differentiable, and we
write f’ or % for the function f'(z), z € I.

Example 6.2 Consider the function f(x) = ax + b, then f'(¢) = a for all ¢ € R.

proof: let x,c € R, then we have

limM:Iimax+b_(ac+b) zlimmzlima:a
T—C xr—c r—c xr—c r—c I —C T—c
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Example 6.3 Consider the function f(x) = 22, then f/(c) = 2c for all c € R..

proof: let x,c € R, then we have

_ 2 2 B
limM:limx ¢ :limw:lim(x—kc):%
T—C Tr—cC T—Cc I — C T—C T —C T—c

Theorem 6.4 Suppose the function f: I — R is differentiable at ¢ € I, then f is
continuous at c.

f@)=f(c)

proof: f is differentiable at c € I = the limit lim,_,. exists, hence,

lim f(z) = lim (f”‘f()< o+ f<c>> — J(e) -0+ f(e) = £(0

T—C r—c Tr —C

Remark 6.5 The converse of theorem 6.4 does not hold.
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Example 6.6 The function f(z) = |z| is not differentiable at 0.

proof: let (z,),. , be a sequence with z,, = =07 ) foralln e N
. og‘%‘ggand%—m — 2, =0
o

e consider the sequence (W) , we have
n n=1

fan) = FO) el S
Tn—0 oz, =D = (1)

(w) f (0)

e lim, ;o (—1)" does not exist = lim,_,o does not exist

Remark 6.7 There exist functions that are continuous but nowhere differentiable.
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Differentiation rules

Theorem 6.8 Let I be an interval, let f: I — R and ¢g: I — R be differentiable

functions at ¢ € 1.

o Linearity. Let @ € R. Define h(z) = af(z) + g(x), then 1/ (c) = af'(c) + ¢'(c).

e Product rule. Define h(x) = f(x)g(zx), then h'(c) = f'(c)g(c) + f(c)g'(c).
e Quotient rule. If g(z) # 0 for all z € I, define h(x) = f(x)/g(x), then

proof: f,g differentiable at ¢ = lim,_, f(xgz C(C) lim,,_, 9(2:9(0) exists, and f, g

C

continuous at ¢ = lim,—,. f(x) = f(c¢), limy—. g(z) = g(c)
o if h(z) = af(z)+ g(c), then we have

lim () — h(c) — lim af(z) +g() —af(c) —g(c)
:aig%+i%w =Ozf/(c)+g’(c)
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o if h(x) = f(x)g(x), then we have
ha) —he) . F@)o(x) ~ f(g(e)

lim

o o 1)) — F)g(e) + F@)gle) ~ @)oo
i QW) — F0) + T@)(9(x) - 9(0)
= () tim PO ZTO 4 g ) 29 ey 4 peg (0

o if h(z) = f(x)/g(z), then we have

) he) L f@) /o)~ f(0)/le) F(@)g(e) — F(Q)g()

T—c xr —cC xTx—rc Tr—cC _;11—>H1c g(x g(C) Tr —cC
i L f(@)g(e) — f(e)g(z) + f(2)g(x) — f(z)9(2)
e g(a)g(c) r—c
L @ (@) = () ~ @) (g(x) — 9(c)
whe g(2)9(0) r—c
f'()g(c) = fle)g'(c)
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Theorem 6.9 Chain rule. Let Iy, I> be two intervals. Let g: I1 — R be differentiable
at ¢ € I; and f: Is — R be differentiable at g(c). Define h: I; - R by h = fogy,
then h is differentiable at ¢, and

proof: let d = g(c)
e define the following functions:

fly)—f(d) d g(x)—g(c)
uy={ = VT g @)=y e TP
f(d) y=d =

then we have

f(y) — f(d) :f'(d):u(d)

lim u(y) = lim

y—d y—d Yy — d
lim v(z) = lim 9@) = 9(c) =g'(c) = v(c)
Tr—cC Tr—cC Tr — C ’

i.e., u is continuous at d, v is continuous at ¢
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e note that f(y) — f(d) = u(y)(y — d) and g(x) — d

v(z)(x — ¢), we have

W) —h(c) = fg(x)) = f(d) = u(g(x))(g(x) — d) = u(g(x))v(z)(z — )

e put together, we have

lim h(z) — h(c)

T—C T —c T—C
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= lim u(g(z))v(z) = u(g(c))v(c) = f'(g(c))d (c)
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Rolle’s theorem

Definition 6.10 Let f: S — R with S C R.

The function f is said to have a relative maximum at ¢ € S if there exists some § > 0
such that for all z € S and |z — ¢| < J, we have f(x) < f(c).

The function f is said to have a relative minimum at ¢ € S if there exists some § > 0
such that for all z € S and |z — ¢| < 4, we have f(z) > f(c).

Theorem 6.11 If the function f: [a,b] — R has a relative maximum or minimum at
¢ € (a,b) and f is differentiable at ¢, then f’(c) = 0.

proof: we show the case for ¢ being a relative maximum point
e c € (a,b) is an relative maximum point = 3 > 0 such that for all = € [a, ]
and |z — ¢| < 0, we have f(x) < f(c)
e let (z,,),2 | be a sequence with z, = ¢ — % for all n € N, then we have z,, < ¢,
Tp — ¢ and |z, —c| <dforallme N = f/(c) :limnﬁm% >0
e let (yn),~ | be a sequence with y, = ¢+ % for all n € N, then we have y,, > ¢,
Yn — ¢, and |y, —c| <dforallme N = f'(c) zlimn_mOM <0

Yn—C
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Remark 6.12 In theorem 6.11, the function f does not necessarily have to be defined
on a closed interval, but the point ¢ where the relative extremum is achieved has to be
on the open interval (a,b).

Remark 6.13 Absolute extremum is a special case of relative extremum.

Theorem 6.14 Rolle. Let the function f: [a,b] — R be continuous and differentiable
on (a,b). If f(a) = f(b), then there exists some ¢ € (a,b) such that f’(¢) = 0.

proof: let f(a) = f(b) = K; f is continuous on [a,b] = there exists an absolute
maximum point ¢; € [a,b] and an absolute minimum point ¢z € [a, b] (theorem 5.33)

e if c; > K, then ¢; € (a,b) = f'(c1) = 0 (theorem 6.11)
o if co < K, then ¢3 € (a,b) = f’(c2) = 0 (theorem 6.11)

o ifc; =cp =K, then K < f(z) < K for all x € [a,b] = f(x) = K for all
x € [a,b] = f'(¢) =0 forall c € (a,b)
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Mean value theorem

Theorem 6.15 Mean value theorem. Let the function f: [a,b] — R be continuous and
differentiable on (a,b), then there exists some ¢ € (a, b) such that

f®) = f(a) = f'(c)(b - a).

proof:
o define g: [a,b] — R with g(x) = f(z) — f(b) + {O= @D — z)
e since g(a) = g(b) = 0, by theorem 6.14, there exists ¢ € (a, b) such that
f(0) — f(a)

() =0=f()- 1Y = 1)~ (@) = Fe)b-a)

Theorem 6.16 If the function f: I — R is differentiable and f/(x) = 0 for all z € I,
then f is constant.

proof: let a,b € I with a < b, then f is continuous on [a, b] and differentiable on
(a,b) = 3Fc € (a,b) such that f(b) — f(a) = f'(¢)(b —a) =0 (since f'(x) =0 for
alzel) = f(b) = f(a)



Theorem 6.17 Let f: I — R be a differentiable function.

e The function f is increasing if and only if f'(x) >0 for all x € I.
e The function f is decreasing if and only if f/(x) <0 for all z € I.

proof: we prove the first statement
e suppose f'(x) >0 for all x € I, let a,b € I with a < b, then f is continuous on
[a,b] and differentiable on (a,b) = Jc € (a,b) s.t. f(b) — f(a) = f'(c)(b—a)
(theorem 6.15) and f'(¢c) >0 = f(b) — f(a) >0 = f(a) < f(b)
e suppose f is increasing, let ¢ € I, then we can find a sequence (z,,),-; with
either x,, < ¢ or x,, > ¢ for all n € N such that z,, — ¢
—ifx, <cforallne N = f(z,) < f(c) for all n € N, and hence

T—c Tr—c n—o00 Ty —C
—ifz, >cforalln e N = f(x,) > f(c) for all n € N, and hence

f/(c): lim f(T)_f(C) — 1 L >

T—c xr—c n—00 Ty, —C

in either case, we have f’(c) >0
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Taylor’s theorem

Definition 6.18 We say the function f: I — R is n-times differentiable on J C [ if
f'of", .., ) exist at every point in J, where f(") denotes the nth derivative of f.

Theorem 6.19 Taylor. Suppose the function f: [a,b] — R is continuous and has n
continuous derivatives on [a,b] such that f("*1) exists on (a,b). Given zo,z € [a,b],
there exists some ¢ € (g, x) such that

2= S~ ) () wg)E 4 L@ e
1) = 3 gy e =0+ g
We denote
" (n1)
Py(x) = l'f(k) (zo)(z — x0)* and Ry (z)= f(n+1()')(:c — )" !
k! !

as the nth order Taylor polynomial and the nth order remainder of f, respectively.

6-13



proof: let x,zg € [a,b] and = # x¢ (if x = o then any c satisfies the theorem)

o let M, ., = % then we have

f(z) = Py(z) + Mg 2, (z — xo)n—&-l

e note that for all 0 < k < n, we have f*)(zq) = P,(lk)(xo)
o let g(s) = f(s) — Pu(s) — My, (5 — x0)" ", then we have

g(zo) = f(z0) — Pu(x0) — My (0 — 20)" " =0
g'(x0) = f'(x0) = P} (20) — My zo(n+1)(x0 — 20)" =
9" (w0) = f(x0) = P (w0) = Moz (n + 1)!(wo — 79) = 0

e by theorem 6.15:

g(xo) =g(r) =0 == Jx; between zy and = s.t. ¢'(z1) =0
g (o) =¢'(x1) =0 =z, between z¢ and z1 s.t. ¢"’(z2) =
g™ D(xg) =g V(z,_1) =0 = Iz, between zq and z,_; s.t. g™ (z,) =0
g™ (20) = g™ (x,) =0 = Jc between o and z,, s.t. g""V(c) =0
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e note that

dn+1

WMx7x0 (s —20)"tt = Myao(n+1)! and P(c) =0

e we have the (n + 1)-times derivative of g at ¢ given by

(n+1)
0= gD (0) = FO(e) = Mgy (n+ 1) —> Mgy = 1)

e hence, we have
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Theorem 6.20 Second derivative test. Suppose the function f: (a,b) — R has two
continuous derivatives. If 2o € (a,b) such that f/(xo) = 0 and f”(zo) > 0, then f has
a strict relative minimum at xg.

proof:
e it is easy to show that f” is continuous and f”(xg) > 0 = there exists some
d > 0 such that for all ¢ € (29 — d, 209 + ¢), we have f"(c) >0

e then for all = € (xg — 0,29 + 0), by theorem 6.19, there exists some ¢y between x
and xg such that

£(2) = f(z0) + f'(w0) & — 7o) + 5./ (co)(w — wo)’

e ¢o between z and zg = ¢¢ € (xg — 3,20 +0) = [f"(c) > 0, and since
f'(zg) = 0, we have

£() = flwo) = /")~ w0)* >0 = () > f(zo)
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