
6. Derivative

• definition and basic properties

• differentiation rules

• Rolle’s theorem and mean value theorem

• Taylor’s theorem
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Derivative of functions

Definition 6.1 Let I be an interval, let f : I → R be a function, and let c ∈ I. We say
the function f is differentiable at c if the limit

L = lim
x→c

f(x)− f(c)

x− c

exists. We call L the derivative of f at c, and we write f ′(c) = L.

If f is differentiable at all c ∈ I, then we say the function f is differentiable, and we
write f ′ or df

dx for the function f ′(x), x ∈ I.

Example 6.2 Consider the function f(x) = ax+ b, then f ′(c) = a for all c ∈ R.

proof: let x, c ∈ R, then we have

lim
x→c

f(x)− f(c)

x− c
= lim

x→c

ax+ b− (ac+ b)

x− c
= lim

x→c

a(x− c)

x− c
= lim

x→c
a = a
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Example 6.3 Consider the function f(x) = x2, then f ′(c) = 2c for all c ∈ R.

proof: let x, c ∈ R, then we have

lim
x→c

f(x)− f(c)

x− c
= lim

x→c

x2 − c2

x− c
= lim

x→c

(x+ c)(x− c)

x− c
= lim

x→c
(x+ c) = 2c

Theorem 6.4 Suppose the function f : I → R is differentiable at c ∈ I, then f is
continuous at c.

proof: f is differentiable at c ∈ I =⇒ the limit limx→c
f(x)−f(c)

x−c exists, hence,

lim
x→c

f(x) = lim
x→c

(
f(x)− f(c)

x− c
(x− c) + f(c)

)
= f ′(c) · 0 + f(c) = f(c)

Remark 6.5 The converse of theorem 6.4 does not hold.
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Example 6.6 The function f(x) = |x| is not differentiable at 0.

proof: let (xn)
∞
n=1 be a sequence with xn = (−1)n

n for all n ∈ N

• 0 ≤
∣∣∣ (−1)n

n

∣∣∣ ≤ 1
n and 1

n → 0 =⇒ xn → 0

• consider the sequence
(
f(xn)−f(0)

xn−0

)∞
n=1

, we have

f(xn)− f(0)

xn − 0
=

|xn|
xn

=

∣∣∣ (−1)n

n

∣∣∣
(−1)n

n

= (−1)n

• limn→∞ (−1)n does not exist =⇒ limx→0
f(x)−f(0)

x−0 does not exist

Remark 6.7 There exist functions that are continuous but nowhere differentiable.
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Differentiation rules

Theorem 6.8 Let I be an interval, let f : I → R and g : I → R be differentiable
functions at c ∈ I.

• Linearity. Let α ∈ R. Define h(x) = αf(x) + g(x), then h′(c) = αf ′(c) + g′(c).

• Product rule. Define h(x) = f(x)g(x), then h′(c) = f ′(c)g(c) + f(c)g′(c).

• Quotient rule. If g(x) ̸= 0 for all x ∈ I, define h(x) = f(x)/g(x), then

h′(c) =
f ′(c)g(c)− f(c)g′(c)

(g(c))2
.

proof: f, g differentiable at c =⇒ limx→c
f(x)−f(c)

x−c , limx→c
g(x)−g(c)

x−c exists, and f, g
continuous at c =⇒ limx→c f(x) = f(c), limx→c g(x) = g(c)

• if h(x) = αf(x) + g(c), then we have

lim
x→c

h(x)− h(c)

x− c
= lim

x→c

αf(x) + g(x)− αf(c)− g(c)

x− c

= α lim
x→c

f(x)− f(c)

x− c
+ lim

x→c

g(x)− g(c)

x− c
= αf ′(c) + g′(c)
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• if h(x) = f(x)g(x), then we have

lim
x→c

h(x)− h(c)

x− c
= lim

x→c

f(x)g(x)− f(c)g(c)

x− c

= lim
x→c

f(x)g(x)− f(c)g(c) + f(x)g(c)− f(x)g(c)

x− c

= lim
x→c

g(c)(f(x)− f(c)) + f(x)(g(x)− g(c))

x− c

= g(c) lim
x→c

f(x)− f(c)

x− c
+ lim

x→c
f(x)

g(x)− g(c)

x− c
= f ′(c)g(c) + f(c)g′(c)

• if h(x) = f(x)/g(x), then we have

lim
x→c

h(x)− h(c)

x− c
= lim

x→c

f(x)/g(x)− f(c)/g(c)

x− c
= lim

x→c

1

g(x)g(c)

f(x)g(c)− f(c)g(x)

x− c

= lim
x→c

1

g(x)g(c)

f(x)g(c)− f(c)g(x) + f(x)g(x)− f(x)g(x)

x− c

= lim
x→c

1

g(x)g(c)

g(x)(f(x)− f(c))− f(x)(g(x)− g(c))

x− c

=
f ′(c)g(c)− f(c)g′(c)

(g(c))
2
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Theorem 6.9 Chain rule. Let I1, I2 be two intervals. Let g : I1 → R be differentiable
at c ∈ I1 and f : I2 → R be differentiable at g(c). Define h : I1 → R by h = f ◦ g,
then h is differentiable at c, and

h′(c) = f ′(g(c))g′(c).

proof: let d = g(c)

• define the following functions:

u(y) =

{
f(y)−f(d)

y−d y ̸= d

f ′(d) y = d
and v(x) =

{
g(x)−g(c)

x−c x ̸= c

g′(c) x = c,

then we have

lim
y→d

u(y) = lim
y→d

f(y)− f(d)

y − d
= f ′(d) = u(d)

lim
x→c

v(x) = lim
x→c

g(x)− g(c)

x− c
= g′(c) = v(c),

i.e., u is continuous at d, v is continuous at c

Derivative 6-7



• note that f(y)− f(d) = u(y)(y − d) and g(x)− d = v(x)(x− c), we have

h(x)− h(c) = f(g(x))− f(d) = u(g(x))(g(x)− d) = u(g(x))v(x)(x− c)

• put together, we have

lim
x→c

h(x)− h(c)

x− c
= lim

x→c
u(g(x))v(x) = u(g(c))v(c) = f ′(g(c))g′(c)
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Rolle’s theorem

Definition 6.10 Let f : S → R with S ⊆ R.

The function f is said to have a relative maximum at c ∈ S if there exists some δ > 0
such that for all x ∈ S and |x− c| < δ, we have f(x) ≤ f(c).

The function f is said to have a relative minimum at c ∈ S if there exists some δ > 0
such that for all x ∈ S and |x− c| < δ, we have f(x) ≥ f(c).

Theorem 6.11 If the function f : [a, b] → R has a relative maximum or minimum at
c ∈ (a, b) and f is differentiable at c, then f ′(c) = 0.

proof: we show the case for c being a relative maximum point

• c ∈ (a, b) is an relative maximum point =⇒ ∃δ > 0 such that for all x ∈ [a, b]
and |x− c| < δ, we have f(x) ≤ f(c)

• let (xn)
∞
n=1 be a sequence with xn = c− δ

2n for all n ∈ N, then we have xn < c,

xn → c, and |xn − c| < δ for all n ∈ N =⇒ f ′(c) = limn→∞
f(xn)−f(c)

xn−c ≥ 0

• let (yn)
∞
n=1 be a sequence with yn = c+ δ

2n for all n ∈ N, then we have yn > c,

yn → c, and |yn − c| < δ for all n ∈ N =⇒ f ′(c) = limn→∞
f(yn)−f(c)

yn−c ≤ 0
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Remark 6.12 In theorem 6.11, the function f does not necessarily have to be defined
on a closed interval, but the point c where the relative extremum is achieved has to be
on the open interval (a, b).

Remark 6.13 Absolute extremum is a special case of relative extremum.

Theorem 6.14 Rolle. Let the function f : [a, b] → R be continuous and differentiable
on (a, b). If f(a) = f(b), then there exists some c ∈ (a, b) such that f ′(c) = 0.

proof: let f(a) = f(b) = K; f is continuous on [a, b] =⇒ there exists an absolute
maximum point c1 ∈ [a, b] and an absolute minimum point c2 ∈ [a, b] (theorem 5.33)

• if c1 > K, then c1 ∈ (a, b) =⇒ f ′(c1) = 0 (theorem 6.11)

• if c2 < K, then c2 ∈ (a, b) =⇒ f ′(c2) = 0 (theorem 6.11)

• if c1 = c2 = K, then K ≤ f(x) ≤ K for all x ∈ [a, b] =⇒ f(x) = K for all
x ∈ [a, b] =⇒ f ′(c) = 0 for all c ∈ (a, b)
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Mean value theorem

Theorem 6.15 Mean value theorem. Let the function f : [a, b] → R be continuous and
differentiable on (a, b), then there exists some c ∈ (a, b) such that

f(b)− f(a) = f ′(c)(b− a).

proof:

• define g : [a, b] → R with g(x) = f(x)− f(b) + f(b)−f(a)
b−a (b− x)

• since g(a) = g(b) = 0, by theorem 6.14, there exists c ∈ (a, b) such that

g′(c) = 0 = f ′(c)− f(b)− f(a)

b− a
=⇒ f(b)− f(a) = f ′(c)(b− a)

Theorem 6.16 If the function f : I → R is differentiable and f ′(x) = 0 for all x ∈ I,
then f is constant.

proof: let a, b ∈ I with a < b, then f is continuous on [a, b] and differentiable on
(a, b) =⇒ ∃c ∈ (a, b) such that f(b)− f(a) = f ′(c)(b− a) = 0 (since f ′(x) = 0 for
all x ∈ I) =⇒ f(b) = f(a)
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Theorem 6.17 Let f : I → R be a differentiable function.

• The function f is increasing if and only if f ′(x) ≥ 0 for all x ∈ I.

• The function f is decreasing if and only if f ′(x) ≤ 0 for all x ∈ I.

proof: we prove the first statement

• suppose f ′(x) ≥ 0 for all x ∈ I, let a, b ∈ I with a < b, then f is continuous on
[a, b] and differentiable on (a, b) =⇒ ∃c ∈ (a, b) s.t. f(b)− f(a) = f ′(c)(b− a)
(theorem 6.15) and f ′(c) ≥ 0 =⇒ f(b)− f(a) ≥ 0 =⇒ f(a) ≤ f(b)

• suppose f is increasing, let c ∈ I, then we can find a sequence (xn)
∞
n=1 with

either xn < c or xn > c for all n ∈ N such that xn → c
– if xn < c for all n ∈ N =⇒ f(xn) ≤ f(c) for all n ∈ N, and hence

f ′(c) = lim
x→c

f(x)− f(c)

x− c
= lim

n→∞

f(xn)− f(c)

xn − c
≥ 0

– if xn > c for all n ∈ N =⇒ f(xn) ≥ f(c) for all n ∈ N, and hence

f ′(c) = lim
x→c

f(x)− f(c)

x− c
= lim

n→∞

f(xn)− f(c)

xn − c
≥ 0

in either case, we have f ′(c) ≥ 0
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Taylor’s theorem

Definition 6.18 We say the function f : I → R is n-times differentiable on J ⊆ I if
f ′, f ′′, . . . , f (n) exist at every point in J , where f (n) denotes the nth derivative of f .

Theorem 6.19 Taylor. Suppose the function f : [a, b] → R is continuous and has n
continuous derivatives on [a, b] such that f (n+1) exists on (a, b). Given x0, x ∈ [a, b],
there exists some c ∈ (x0, x) such that

f(x) =

n∑
k=0

1

k!
f (k)(x0)(x− x0)

k +
f (n+1)(c)

(n+ 1)!
(x− x0)

n+1.

We denote

Pn(x) =
n∑

k=0

1

k!
f (k)(x0)(x− x0)

k and Rn(x) =
f (n+1)(c)

(n+ 1)!
(x− x0)

n+1

as the nth order Taylor polynomial and the nth order remainder of f , respectively.

Derivative 6-13



proof: let x, x0 ∈ [a, b] and x ̸= x0 (if x = x0 then any c satisfies the theorem)

• let Mx,x0 = f(x)−Pn(x)

(x−x0)
n+1 , then we have

f(x) = Pn(x) +Mx,x0
(x− x0)

n+1

• note that for all 0 ≤ k ≤ n, we have f (k)(x0) = P
(k)
n (x0)

• let g(s) = f(s)− Pn(s)−Mx,x0(s− x0)
n+1, then we have

g(x0) = f(x0)− Pn(x0)−Mx,x0
(x0 − x0)

n+1
= 0

g′(x0) = f ′(x0)− P ′
n(x0)−Mx,x0

(n+ 1)(x0 − x0)
n
= 0

...

g(n)(x0) = f (n)(x0)− P
(n)
n (x0)−Mx,x0

(n+ 1)!(x0 − x0) = 0

• by theorem 6.15:

g(x0) = g(x) = 0 =⇒ ∃x1 between x0 and x s.t. g′(x1) = 0

g′(x0) = g′(x1) = 0 =⇒ ∃x2 between x0 and x1 s.t. g′′(x2) = 0
...

g(n−1)(x0) = g(n−1)(xn−1) = 0 =⇒ ∃xn between x0 and xn−1 s.t. g(n)(xn) = 0

g(n)(x0) = g(n)(xn) = 0 =⇒ ∃c between x0 and xn s.t. g(n+1)(c) = 0

Derivative 6-14



• note that

dn+1

dsn+1
Mx,x0(s− x0)

n+1 = Mx,x0(n+ 1)! and P (n+1)
n (c) = 0

• we have the (n+ 1)-times derivative of g at c given by

0 = g(n+1)(c) = f (n+1)(c)−Mx,x0(n+ 1)! =⇒ Mx,x0 =
f (n+1)(c)

(n+ 1)!

• hence, we have

f(x) = Pn(x) +Mx,x0(x− x0)
n+1

= Pn(x) +
f (n+1)(c)

(n+ 1)!
(x− x0)

n+1
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Theorem 6.20 Second derivative test. Suppose the function f : (a, b) → R has two
continuous derivatives. If x0 ∈ (a, b) such that f ′(x0) = 0 and f ′′(x0) > 0, then f has
a strict relative minimum at x0.

proof:

• it is easy to show that f ′′ is continuous and f ′′(x0) > 0 =⇒ there exists some
δ > 0 such that for all c ∈ (x0 − δ, x0 + δ), we have f ′′(c) > 0

• then for all x ∈ (x0 − δ, x0 + δ), by theorem 6.19, there exists some c0 between x
and x0 such that

f(x) = f(x0) + f ′(x0)(x− x0) +
1

2
f ′′(c0)(x− x0)

2

• c0 between x and x0 =⇒ c0 ∈ (x0 − δ, x0 + δ) =⇒ f ′′(c) > 0, and since
f ′(x0) = 0, we have

f(x)− f(x0) =
1

2
f ′′(c0)(x− x0)

2 > 0 =⇒ f(x) > f(x0)

Derivative 6-16


