- definition and basic properties
- differentiation rules
- Rolle's theorem and mean value theorem
- Taylor's theorem

Derivative of functions

Definition 6.1 Let I be an interval, let $f: I \to \mathbf{R}$ be a function, and let $c \in I$. We say the function f is **differentiable** at c if the limit

$$L = \lim_{x \to c} \frac{f(x) - f(c)}{x - c}$$

exists. We call L the **derivative** of f at c, and we write f'(c) = L.

If f is differentiable at all $c \in I$, then we say the function f is differentiable, and we write f' or $\frac{df}{dx}$ for the function f'(x), $x \in I$.

Example 6.2 Consider the function f(x) = ax + b, then f'(c) = a for all $c \in \mathbf{R}$.

proof: let $x, c \in \mathbf{R}$, then we have

$$\lim_{x \to c} \frac{f(x) - f(c)}{x - c} = \lim_{x \to c} \frac{ax + b - (ac + b)}{x - c} = \lim_{x \to c} \frac{a(x - c)}{x - c} = \lim_{x \to c} a = a$$

Example 6.3 Consider the function $f(x) = x^2$, then f'(c) = 2c for all $c \in \mathbf{R}$.

proof: let $x, c \in \mathbf{R}$, then we have

$$\lim_{x \to c} \frac{f(x) - f(c)}{x - c} = \lim_{x \to c} \frac{x^2 - c^2}{x - c} = \lim_{x \to c} \frac{(x + c)(x - c)}{x - c} = \lim_{x \to c} (x + c) = 2c$$

Theorem 6.4 Suppose the function $f: I \to \mathbf{R}$ is differentiable at $c \in I$, then f is continuous at c.

proof: f is differentiable at $c \in I \implies$ the limit $\lim_{x \to c} \frac{f(x) - f(c)}{x - c}$ exists, hence,

$$\lim_{x \to c} f(x) = \lim_{x \to c} \left(\frac{f(x) - f(c)}{x - c} (x - c) + f(c) \right) = f'(c) \cdot 0 + f(c) = f(c)$$

Remark 6.5 The converse of theorem 6.4 does not hold.

Example 6.6 The function f(x) = |x| is not differentiable at 0.

proof: let $(x_n)_{n=1}^{\infty}$ be a sequence with $x_n = \frac{(-1)^n}{n}$ for all $n \in \mathbb{N}$

•
$$0 \le \left| \frac{(-1)^n}{n} \right| \le \frac{1}{n} \text{ and } \frac{1}{n} \to 0 \implies x_n \to 0$$

• consider the sequence $\left(\frac{f(x_n)-f(0)}{x_n-0}\right)_{n=1}^\infty$, we have

$$\frac{f(x_n) - f(0)}{x_n - 0} = \frac{|x_n|}{x_n} = \frac{\left|\frac{(-1)^n}{n}\right|}{\frac{(-1)^n}{n}} = (-1)^n$$

• $\lim_{n\to\infty} (-1)^n$ does not exist $\implies \lim_{x\to 0} \frac{f(x)-f(0)}{x-0}$ does not exist

Remark 6.7 There exist functions that are continuous but nowhere differentiable.

Differentiation rules

Theorem 6.8 Let I be an interval, let $f: I \to \mathbf{R}$ and $g: I \to \mathbf{R}$ be differentiable functions at $c \in I$.

- Linearity. Let $\alpha \in \mathbf{R}$. Define $h(x) = \alpha f(x) + g(x)$, then $h'(c) = \alpha f'(c) + g'(c)$.
- Product rule. Define h(x) = f(x)g(x), then h'(c) = f'(c)g(c) + f(c)g'(c).
- Quotient rule. If $g(x) \neq 0$ for all $x \in I$, define h(x) = f(x)/g(x), then

$$h'(c) = \frac{f'(c)g(c) - f(c)g'(c)}{(g(c))^2}$$

proof: f, g differentiable at $c \implies \lim_{x \to c} \frac{f(x) - f(c)}{x - c}$, $\lim_{x \to c} \frac{g(x) - g(c)}{x - c}$ exists, and f, g continuous at $c \implies \lim_{x \to c} f(x) = f(c)$, $\lim_{x \to c} g(x) = g(c)$

• if $h(x) = \alpha f(x) + g(c)$, then we have

$$\lim_{x \to c} \frac{h(x) - h(c)}{x - c} = \lim_{x \to c} \frac{\alpha f(x) + g(x) - \alpha f(c) - g(c)}{x - c}$$
$$= \alpha \lim_{x \to c} \frac{f(x) - f(c)}{x - c} + \lim_{x \to c} \frac{g(x) - g(c)}{x - c} = \alpha f'(c) + g'(c)$$

• if h(x) = f(x)g(x), then we have

$$\lim_{x \to c} \frac{h(x) - h(c)}{x - c} = \lim_{x \to c} \frac{f(x)g(x) - f(c)g(c)}{x - c}$$
$$= \lim_{x \to c} \frac{f(x)g(x) - f(c)g(c) + f(x)g(c) - f(x)g(c)}{x - c}$$
$$= \lim_{x \to c} \frac{g(c)(f(x) - f(c)) + f(x)(g(x) - g(c))}{x - c}$$
$$= g(c) \lim_{x \to c} \frac{f(x) - f(c)}{x - c} + \lim_{x \to c} f(x) \frac{g(x) - g(c)}{x - c} = f'(c)g(c) + f(c)g'(c)$$

• if h(x) = f(x)/g(x), then we have

$$\lim_{x \to c} \frac{h(x) - h(c)}{x - c} = \lim_{x \to c} \frac{f(x)/g(x) - f(c)/g(c)}{x - c} = \lim_{x \to c} \frac{1}{g(x)g(c)} \frac{f(x)g(c) - f(c)g(x)}{x - c}$$
$$= \lim_{x \to c} \frac{1}{g(x)g(c)} \frac{f(x)g(c) - f(c)g(x) + f(x)g(x) - f(x)g(x)}{x - c}$$
$$= \lim_{x \to c} \frac{1}{g(x)g(c)} \frac{g(x)(f(x) - f(c)) - f(x)(g(x) - g(c))}{x - c}$$
$$= \frac{f'(c)g(c) - f(c)g'(c)}{(g(c))^2}$$

Theorem 6.9 Chain rule. Let I_1 , I_2 be two intervals. Let $g: I_1 \to \mathbf{R}$ be differentiable at $c \in I_1$ and $f: I_2 \to \mathbf{R}$ be differentiable at g(c). Define $h: I_1 \to \mathbf{R}$ by $h = f \circ g$, then h is differentiable at c, and

$$h'(c) = f'(g(c))g'(c).$$

proof: let d = g(c)

• define the following functions:

$$u(y) = \begin{cases} \frac{f(y) - f(d)}{y - d} & y \neq d\\ f'(d) & y = d \end{cases} \quad \text{and} \quad v(x) = \begin{cases} \frac{g(x) - g(c)}{x - c} & x \neq c\\ g'(c) & x = c, \end{cases}$$

then we have

$$\lim_{y \to d} u(y) = \lim_{y \to d} \frac{f(y) - f(d)}{y - d} = f'(d) = u(d)$$
$$\lim_{x \to c} v(x) = \lim_{x \to c} \frac{g(x) - g(c)}{x - c} = g'(c) = v(c),$$

i.e., u is continuous at d, v is continuous at c

- note that f(y) f(d) = u(y)(y d) and g(x) d = v(x)(x c), we have h(x) - h(c) = f(g(x)) - f(d) = u(g(x))(g(x) - d) = u(g(x))v(x)(x - c)
- put together, we have

$$\lim_{x \to c} \frac{h(x) - h(c)}{x - c} = \lim_{x \to c} u(g(x))v(x) = u(g(c))v(c) = f'(g(c))g'(c)$$

Rolle's theorem

Definition 6.10 Let $f: S \to \mathbf{R}$ with $S \subseteq \mathbf{R}$.

The function f is said to have a **relative maximum** at $c \in S$ if there exists some $\delta > 0$ such that for all $x \in S$ and $|x - c| < \delta$, we have $f(x) \le f(c)$.

The function f is said to have a **relative minimum** at $c \in S$ if there exists some $\delta > 0$ such that for all $x \in S$ and $|x - c| < \delta$, we have $f(x) \ge f(c)$.

Theorem 6.11 If the function $f: [a, b] \to \mathbf{R}$ has a relative maximum or minimum at $c \in (a, b)$ and f is differentiable at c, then f'(c) = 0.

proof: we show the case for c being a relative maximum point

- $c \in (a, b)$ is an relative maximum point $\implies \exists \delta > 0$ such that for all $x \in [a, b]$ and $|x - c| < \delta$, we have $f(x) \le f(c)$
- let $(x_n)_{n=1}^{\infty}$ be a sequence with $x_n = c \frac{\delta}{2n}$ for all $n \in \mathbb{N}$, then we have $x_n < c$, $x_n \to c$, and $|x_n c| < \delta$ for all $n \in \mathbb{N} \implies f'(c) = \lim_{n \to \infty} \frac{f(x_n) f(c)}{x_n c} \ge 0$
- let $(y_n)_{n=1}^{\infty}$ be a sequence with $y_n = c + \frac{\delta}{2n}$ for all $n \in \mathbb{N}$, then we have $y_n > c$, $y_n \to c$, and $|y_n c| < \delta$ for all $n \in \mathbb{N} \implies f'(c) = \lim_{n \to \infty} \frac{f(y_n) f(c)}{y_n c} \le 0$

Remark 6.12 In theorem 6.11, the function f does not necessarily have to be defined on a closed interval, but the point c where the relative extremum is achieved has to be on the open interval (a, b).

Remark 6.13 Absolute extremum is a special case of relative extremum.

Theorem 6.14 Rolle. Let the function $f: [a,b] \to \mathbf{R}$ be continuous and differentiable on (a,b). If f(a) = f(b), then there exists some $c \in (a,b)$ such that f'(c) = 0.

proof: let f(a) = f(b) = K; f is continuous on $[a, b] \implies$ there exists an absolute maximum point $c_1 \in [a, b]$ and an absolute minimum point $c_2 \in [a, b]$ (theorem 5.33)

- if $c_1 > K$, then $c_1 \in (a, b) \implies f'(c_1) = 0$ (theorem 6.11)
- if $c_2 < K$, then $c_2 \in (a,b) \implies f'(c_2) = 0$ (theorem 6.11)
- if $c_1 = c_2 = K$, then $K \le f(x) \le K$ for all $x \in [a, b] \implies f(x) = K$ for all $x \in [a, b] \implies f'(c) = 0$ for all $c \in (a, b)$

Mean value theorem

Theorem 6.15 Mean value theorem. Let the function $f: [a, b] \to \mathbb{R}$ be continuous and differentiable on (a, b), then there exists some $c \in (a, b)$ such that

$$f(b) - f(a) = f'(c)(b - a).$$

proof:

- define $g: [a, b] \to \mathbf{R}$ with $g(x) = f(x) f(b) + \frac{f(b) f(a)}{b a}(b x)$
- since g(a) = g(b) = 0, by theorem 6.14, there exists $c \in (a,b)$ such that

$$g'(c) = 0 = f'(c) - \frac{f(b) - f(a)}{b - a} \implies f(b) - f(a) = f'(c)(b - a)$$

Theorem 6.16 If the function $f: I \to \mathbf{R}$ is differentiable and f'(x) = 0 for all $x \in I$, then f is constant.

proof: let $a, b \in I$ with a < b, then f is continuous on [a, b] and differentiable on $(a, b) \implies \exists c \in (a, b)$ such that f(b) - f(a) = f'(c)(b - a) = 0 (since f'(x) = 0 for all $x \in I$) $\implies f(b) = f(a)$

Theorem 6.17 Let $f: I \rightarrow \mathbf{R}$ be a differentiable function.

- The function f is increasing if and only if $f'(x) \ge 0$ for all $x \in I$.
- The function f is decreasing if and only if $f'(x) \leq 0$ for all $x \in I$.

proof: we prove the first statement

- suppose $f'(x) \ge 0$ for all $x \in I$, let $a, b \in I$ with a < b, then f is continuous on [a, b] and differentiable on $(a, b) \implies \exists c \in (a, b) \text{ s.t. } f(b) f(a) = f'(c)(b a)$ (theorem 6.15) and $f'(c) \ge 0 \implies f(b) f(a) \ge 0 \implies f(a) \le f(b)$
- suppose f is increasing, let $c \in I$, then we can find a sequence $(x_n)_{n=1}^{\infty}$ with either $x_n < c$ or $x_n > c$ for all $n \in \mathbb{N}$ such that $x_n \to c$

- if $x_n < c$ for all $n \in \mathbf{N} \implies f(x_n) \leq f(c)$ for all $n \in \mathbf{N}$, and hence

$$f'(c) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c} = \lim_{n \to \infty} \frac{f(x_n) - f(c)}{x_n - c} \ge 0$$

- if $x_n > c$ for all $n \in \mathbf{N} \implies f(x_n) \ge f(c)$ for all $n \in \mathbf{N}$, and hence

$$f'(c) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c} = \lim_{n \to \infty} \frac{f(x_n) - f(c)}{x_n - c} \ge 0$$

in either case, we have $f'(c) \ge 0$

Taylor's theorem

Definition 6.18 We say the function $f: I \to \mathbb{R}$ is *n*-times differentiable on $J \subseteq I$ if $f', f'', \ldots, f^{(n)}$ exist at every point in J, where $f^{(n)}$ denotes the *n*th derivative of f.

Theorem 6.19 Taylor. Suppose the function $f: [a, b] \to \mathbf{R}$ is continuous and has n continuous derivatives on [a, b] such that $f^{(n+1)}$ exists on (a, b). Given $x_0, x \in [a, b]$, there exists some $c \in (x_0, x)$ such that

$$f(x) = \sum_{k=0}^{n} \frac{1}{k!} f^{(k)}(x_0)(x - x_0)^k + \frac{f^{(n+1)}(c)}{(n+1)!} (x - x_0)^{n+1}.$$

We denote

$$P_n(x) = \sum_{k=0}^n \frac{1}{k!} f^{(k)}(x_0) (x - x_0)^k \quad \text{and} \quad R_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!} (x - x_0)^{n+1}$$

as the nth order Taylor polynomial and the nth order remainder of f, respectively.

proof: let $x, x_0 \in [a, b]$ and $x \neq x_0$ (if $x = x_0$ then any c satisfies the theorem)

• let $M_{x,x_0} = \frac{f(x) - P_n(x)}{(x-x_0)^{n+1}}$, then we have

$$f(x) = P_n(x) + M_{x,x_0}(x - x_0)^{n+1}$$

- note that for all $0 \le k \le n$, we have $f^{(k)}(x_0) = P^{(k)}_n(x_0)$
- let $g(s) = f(s) P_n(s) M_{x,x_0}(s x_0)^{n+1}$, then we have

$$g(x_0) = f(x_0) - P_n(x_0) - M_{x,x_0}(x_0 - x_0)^{n+1} = 0$$

$$g'(x_0) = f'(x_0) - P'_n(x_0) - M_{x,x_0}(n+1)(x_0 - x_0)^n = 0$$

$$\vdots$$

$$g^{(n)}(x_0) = f^{(n)}(x_0) - P^{(n)}_n(x_0) - M_{x,x_0}(n+1)!(x_0 - x_0) = 0$$

• by theorem 6.15:

$$g(x_0) = g(x) = 0 \implies \exists x_1 \text{ between } x_0 \text{ and } x \text{ s.t. } g'(x_1) = 0$$
$$g'(x_0) = g'(x_1) = 0 \implies \exists x_2 \text{ between } x_0 \text{ and } x_1 \text{ s.t. } g''(x_2) = 0$$
$$\vdots$$

$$g^{(n-1)}(x_0) = g^{(n-1)}(x_{n-1}) = 0 \implies \exists x_n \text{ between } x_0 \text{ and } x_{n-1} \text{ s.t. } g^{(n)}(x_n) = 0$$
$$g^{(n)}(x_0) = g^{(n)}(x_n) = 0 \implies \exists c \text{ between } x_0 \text{ and } x_n \text{ s.t. } g^{(n+1)}(c) = 0$$

• note that

$$\frac{d^{n+1}}{ds^{n+1}}M_{x,x_0}(s-x_0)^{n+1} = M_{x,x_0}(n+1)! \quad \text{and} \quad P_n^{(n+1)}(c) = 0$$

• we have the (n+1)-times derivative of g at c given by

$$0 = g^{(n+1)}(c) = f^{(n+1)}(c) - M_{x,x_0}(n+1)! \implies M_{x,x_0} = \frac{f^{(n+1)}(c)}{(n+1)!}$$

• hence, we have

$$f(x) = P_n(x) + M_{x,x_0}(x - x_0)^{n+1}$$
$$= P_n(x) + \frac{f^{(n+1)}(c)}{(n+1)!}(x - x_0)^{n+1}$$

Theorem 6.20 Second derivative test. Suppose the function $f: (a, b) \to \mathbf{R}$ has two continuous derivatives. If $x_0 \in (a, b)$ such that $f'(x_0) = 0$ and $f''(x_0) > 0$, then f has a strict relative minimum at x_0 .

proof:

- it is easy to show that f'' is continuous and $f''(x_0) > 0 \implies$ there exists some $\delta > 0$ such that for all $c \in (x_0 \delta, x_0 + \delta)$, we have f''(c) > 0
- then for all $x \in (x_0 \delta, x_0 + \delta)$, by theorem 6.19, there exists some c_0 between x and x_0 such that

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{1}{2}f''(c_0)(x - x_0)^2$$

• c_0 between x and $x_0 \implies c_0 \in (x_0 - \delta, x_0 + \delta) \implies f''(c) > 0$, and since $f'(x_0) = 0$, we have

$$f(x) - f(x_0) = \frac{1}{2}f''(c_0)(x - x_0)^2 > 0 \implies f(x) > f(x_0)$$