5. Continuous functions

e cluster points of sets

e limits of functions and sequential properties
o left and right limits

e continuous functions

e operations that preserves continuity

e extreme value theorem

e intermediate value theorem

e uniform and Lipschitz continuity
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Cluster points of sets

Definition 5.1 Let S C R. We say that the point ¢ € R is a cluster point of S if for
all § > 0, we have (¢ —d,c+ ) NS\ {c} # 0, i.e., for all § > 0, there exists some
x € S, such that 0 < |z — ¢| < 4.

examples:
e S={1/n|n € N} has a cluster point c=0

e S =(0,1) has a set of cluster points given by [0, 1]

S = Q has a set of cluster points given by R

S = {0} has no cluster points

e S = Z has no cluster points
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Theorem 5.2 Let S C R. Then c is a cluster point of S if and only if there exists a
sequence (z,,),~, of elements in S\ {c} such that lim,, o z, = c.

proof:
e suppose c is a cluster point of S, then V§ > 0, 3z € S such that 0 < |z —¢| < ¢
- Vn € N, choose z,, € S such that 0 < |z, — [ < &

- %%0 = |z, —¢| >0 = x, > ¢

e suppose there exists a sequence (z,,)--; with z,, € S\ {c} for all n € N such
that z, — ¢, letd >0

-z, — cwith 2, € S\ {¢} = 3IM € N such that Vn > M, 0 < |z, —c| < 0

— choose x = )y, then we have 0 < |z — ¢| < § = S has cluster point ¢
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Limits of functions

Definition 5.3 Let f: S — R be a function and c be a cluster point of S C R. Suppose
there exists an L € R, and for all € > 0, there exists some § > 0 such that for all z € S
and 0 < |z — ¢| < 4, we have |f(z) — L| < e. We then say f(z) converges to L as x
goes to ¢, and we write

fz) =L as z—ec

We say L is a limit of f(x) as x goes to ¢, and if L is unique, we write

lim f(x) = L.

Tr—cC

Remark 5.4 The function f: .S — R does not converge to L € R as x goes to a cluster
point ¢ of S implies that there exists some € > 0, such that for all § > 0, there exists
somez € S and 0 < |x —¢| <9, so that |f(z) — L| > e.
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Theorem 5.5 Let f: S — R be a function and ¢ be a cluster point of S C R. If
f(xz) — Ly and f(x) — Lo as x — ¢, then L; = Lo.

proof: let ¢ > 0

o f(z) = Ly asx — ¢ = 301 > 0 such that for all z € S and 0 < |z — ¢| < 61,
[f(z) = La] < e/2

e f(x) > Lyasx — ¢ = T3 > 0 such that for all z € S and 0 < |z — ¢| < J9,
|f(z) — La| < €/2

e choose § = min{dy, d2}, then for all z € S and 0 < |z — ¢| < 0, we have
|L1 = Lo| = |L1 = f(z) + f(z) = Lo| < [f(2) = Li| + | f(2) — Lo| <€/24€/2=¢

= [1=1Lo
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Example 5.6 Let f(z) = ax +b. Then, for all ¢ € R, we have lim,_,. f(z) = ac+b.

proof: let ¢ > 0, choose § = Wlﬁ then for all z € R and 0 < |z — ¢| < §, we have

la]

|f(x) — (ac+b)| = |(ax + b) — (ac+ )| = |a||z — ¢| < |a|d = |a\+16§€

Example 5.7 Let f: (0,00) — R with f(z) = \/z. Then, for all ¢ > 0, we have
lim, . f(z) = v/c.

proof: let € > 0, choose § = €,/c, then for all z > 0 and 0 < |z — ¢| < §, we have

f(a?)—\/6|=|f—\/5|=‘(ﬁ_\/‘/2£‘/f;ﬁ) e S L Y
1 z#0

Example 5.8 Let f(x) = { . Then, lim,_,o f(x) =1 (# f(0)).

2 =0

proof: let € > 0, choose § = 1, then Vz satisfies 0 < |z| < 0, we have x #0 — Vz
satisfies 0 < |z| < §, we have |f(z) — 1| =|1—-1]=0<e¢

Continuous functions

5-6



Theorem 5.9 Let f: S — R be a function and ¢ be a cluster point of S C R. Then,
the following statements are equivalent:

e The function f(x) converges to L € R as z goes to ¢, i.e., lim,_,. f(x) = L.

e For all sequences (z,,),-; in S\ {c} such that lim,,_,o 2, = ¢, we have
limy, o0 f(zn) = L.

proof:

e suppose lim,_,. f(z) = L, let € >0
— 36 > 0, such that for all zx € S and 0 < |z — ¢| < J, we have |f(z) — L| < e
- Zp— ¢z, €S\ {c} = IM eNsuchthatVn > M, 0< |z, —¢|<d =
Vn > M, we have |f(x,) — L| <e, i.e., f(z,) = L
e suppose for all sequences in S\ {c} s.t. x,, — ¢, we have f(z,) — L
— assume lim, . f(z) # L = Je > 0s.t. V§ > 0, there exists some = € S and
0<|z—c|<d,sothat |f(x)—L|>e€

— choose a sequence ()2, s.t. Vn € N, z,, € S\ {c}, 0 < |z, — ¢| < % and
|f(x,) —L| >eforallneN

- however, L -0 = 2, 5 ¢ = f(z,) > L = IM €Nst. Vn> M,
|f(zn) — L| < €, which is a contradiction
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Theorem 5.10 For all ¢ € R, we have lim,_,. 2% = ¢%.

proof: let (z,),., be a sequence in R\ {c} such that z,, — ¢, then according to
theorem 3.24, we have 22 — ¢ = lim, .. 2> = ¢? (theorem 5.9)

Theorem 5.11 The limit lim,_,sin(1/x) does not exist, but lim,_,o zsin(1/z) = 0.

proof:

e we first show that lim, gz sin(1/z) = 0: let (z,),.; be a sequence in R\ {0}
such that x,, — 0; since 0 < |z, sin(1/x,)| < |x,| for all n € N, and z,, — 0, we
have |z, sin(1/z,)] - 0 = lim, oz sin(l/z) =0

e we now show that lim,_,osin(1/x) does not exist:

— choose a sequence (zn),zo:l where z,, = ﬁ then we have z,, — 0
o
n=1"’

sin(1/2,) = sin (W) _ Lyt

— consider the sequence (sin(1/zy,)) we have

= (sin(1/z,)),~, does not converge —> lim,_,osin(1/x) does not exist
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Sequential properties

Theorem 5.12 Let f,g: S — R be functions and ¢ be a cluster point of S C R.
Suppose f(z) < g(x) for all x € S, and we have lim,_,. f(z) and lim,_,. g(z) both
exist, then lim,_,. f(z) < lim,_,. g(z).

proof: let (z,),~, be a sequence in S\ {c} such that z,, — ¢

e lim, . f(z) and lim,_,. g(z) exist = (f(xn)),—; and (g(z,)),—, converges

o let f(zn) — L1, g(xn) — Lo, since f(z) < g(x) for all z € S, we have L; < Lo,
i.e., limy_. f(z) < limg. g(z)

similarly, we can prove the following theorems using the properties of sequences:

Theorem 5.13 Let f: S — R be a function and ¢ be a cluster point of S C R.
Suppose the limit lim,_,. f(z) exists, and there exists a,b € R such that a < f(z) < b
for all z € S\ {c}, then a < lim,_,. f(z) <b.
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Theorem 5.14 Let ¢ be a cluster point of S C R, and f,g,h: S — R be functions
such that f(z) < g(z) < h(z) for all z € S\ {c}. Suppose lim,_,. f(z) = limy—. h(x),
then lim, . g(x) = lim, . f(z) = lim, . h(z).

Theorem 5.15 Let ¢ be a cluster point of S C R, and f,g: S — R be functions such
that limg_. f(z) and lim,_,. g(x) both exist, we have:

o lim, .(f(z) + g(x)) = limg—yc f(x) + limy . g(x);
o limy.(f(2) - g(2)) = limg . f(2) - limg—c g(2);
o if limy . g(z) # 0 and g(x) # 0 for all x € S\ {c}, then

lim f(zx) _ limg ¢ f(z)
a—c g(x)  limgeg(z)’

Theorem 5.16 Let ¢ be a cluster point of S C R and f: S — R be a function such
that lim,_,. f(z) exists, then we have lim,_,. |f(z)| = | limy—. f(x)|.
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Left and right limits

Definition 5.17 Let S C R and f: S — R be a function.

Suppose ¢ is a cluster point of SN (—o0,c), we say f(z) converges to L as x — ¢, if
for all € > 0, there exists a § > 0 such that for all z € S and ¢ — § < x < ¢, we have
|f(x) — L] < e. We call such a limit the left limit of f at ¢, denoted lim,_, .- f(x).

Suppose c is a cluster point of SN (c,00), we say f(z) converges to L as x — ¢, if
for all € > 0, there exists a 6 > 0 such that for all z € S and ¢ < x < ¢+ §, we have
|f(x) — L| < e. We call such a limit the right limit of f at ¢, denoted lim,_,.+ f(x).

Example 5.18 Consider the function f given by

f(x):{ 1 >0

0 =<0,

we have lim,_,y- f(x) =0 and lim,_,q+ f(x) = 1, even if f(0) is undefined.
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Continuous functions

Definition 5.19 Let S C R and ¢ € S. We say the function f is continuous at c if
for all € > 0, there exists a § > 0 such that for all z € S and |z — ¢| < J, we have
|f(z) = flo)] <e

We say the function f is continuous on the set U for U C S if f is continuous at every
point of U.

Remark 5.20 The function f is not continuous at point ¢ € S if there exists some
e > 0 such that for all 6 > 0, there exists some x € S and |z — ¢| < J, so that

|f(z) = f(e)| > e

Continuous functions 5-12



Example 5.21 The function f(z) = ax + b is continuous on R.

proof: let c € R, € > 0, choose § = Ia\ﬁ then for all z € R and |z — ¢| < §, we have

(@) — 1(0)| = az + b — ac — b] = Jallz — | < [als = %

<
jal+1°7°¢

Example 5.22 The function f given by

is not continuous at ¢ = 0.

proof: choose e =1 and let § > 0, then x = §/2 satisfies |z| < ¢, but

[f(z) = fO) =1 -0[=12>¢

Continuous functions
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Theorem 5.23 Let S C R be a set, ¢ € S be a point, and f: S — R be a function.

e If ¢ is not a cluster point of S, then the function f is continuous at c.

e If ¢ is a cluster point of .S, then the function f is continuous at c if and only if
lim, . f(x) = f(c).

e The function f is continuous at ¢ if and only if for all sequences (xy,),-; in S
with lim,, o 2, = ¢, we have lim,, o f(z,,) = f(c).

proof: to show the first statement, let € > 0
e c € S and cis not a cluster point of S = 3§ >0s.t. (c—3d,¢c+9)NS = {c}

e then for all z € S such that |z — ¢| < d, we have z = ¢, and hence,
[f(z) = Fle)l =1f(e) = f(e)| =0 <e

we now show the second statement:

e suppose f is continuous at ¢, let € > 0
— f is continuous at ¢ == 3§ > 0 such that for all z € S and |z — ¢| < §, we have

[f(@) = fle)] <e
—thenVz € Sst. 0<|z—c| <4, |f(z)— fo)] <e = limg. f(x) = f(c)
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e suppose lim, . f(z) = f(c), let e >0
- f(z) = f(c) asx — ¢ = 36 > 0 such that forall z € Sand 0 < |z —¢| < J, we

have [f(z) — f(c)| < e

— then for all z € S such that |z — ¢| < 0: if = ¢, we have

[f(@) = flO)l =1f(c) = flo)| =0 <e
ifx#c,wehave 0<|z—¢c|<d = |f(z)— flo)] <e
— put together, we conclude that the function f is continuous at ¢
we now show the third statement

e suppose f is continuous at ¢, let (z,,),-; be a sequence in S, z, = ¢, let € >0
— [ is continuous at ¢ = 3¢ > 0 such that for all x € S and |z — ¢| < §, we have
[f(z) = flo)] <e
- 2, >c¢ = IM €N suchthatVn > M, |z, —¢| <é = Vn > M,
[f(zn) = flo)] <€ = (f(zn))nzy = f(0)
e suppose for all (z,,)72; in S such that z, — ¢, we have f(z,) — f(c)
— assume f is not continuous at ¢ = Je > 0, V§ > 0, Iz € S such that |[x — | < 4,
but [f(z) — flc)| > €
— choose z,, € S such that Vn € N, 0 < |z, — ¢| < L but [f(z,) — f(z)] > €
-150 = z,5¢ = f(z,) = f(c) = IM € N such that Vn > M,
|f(zn) — f(c)] < €, which is a contradiction
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Continuous functions

Theorem 5.24 The functions sinz and cos z are continuous functions on R.

proof:
e recall the following properties of sinx and cosz for all z € R:
- sin?(z) + cos?(x) =1 = |sinz| <1 and |cosz| <1
— |sinz| < |x]
— sin(a + b) = cos(a) sin(b) + sin(a) cos(b)
— sin(a) — sin(b) = 2sin (452) cos (%£2)

e we first show that sinz is continuous, let ¢ € R, let € > 0, choose § = ¢, then for
all x € R such that [z — ¢| < §, we have

. . . (T —cC z+c . (T —cC |z — |
| sinz — sin ¢| ‘2s1n( 3 )cos( 5 ). _2‘511&( 5 )) <2 3 |z —c| <e

e we now show that cosx is continuous, let ¢ € R, let (z,,),2; be a sequence with
Tn — ¢, then we have x, + 5 — ¢+ 7, and hence,

T . T
lim cosz, = hm sin (mn + —) = sin <c+ —) =cosc

5-16



Theorem 5.25 Dirichlet function. The Dirichlet function given by

)1 zeqQ
o=y e

is not continuous on all of R.

proof: let c € R

e if c € Q, then for all n € N, there exists z,, ¢ Q such that ¢ < z, < c+ %;
% — 0 = z, — ¢, however,

Tim f(wa) =0 # f(c) =1

= (f(zn)),—, does not converge to f(c)

e if ¢ ¢ Q, then for all n € N, there exists x,, € Q such that ¢ < x,, < ¢+ %;
% — 0 = z, — ¢, however,

Jim f(zn) =17 f(e) =0

= (f(zn)),—, does not converge to f(c)
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Operations that preserves continuity

Theorem 5.26 Let f,g: S — R be functions on S C R and are continuous at ¢ € S.

e The function f + g is continuous at c.
e The function f - g is continuous at c.

o If g(x) # 0 for all x € S, then the function f/g is continuous at c.

proof: we show that the function f + g is continuous at ¢, the other two statements
can be proved similarly; let (x,,).>; be a sequence in S with z,, — ¢

e fis continuous at ¢ = lim, o0 f(2n) = f(c)
e g is continuous at ¢ = limy,_,o0 g(xn) = g(c)

e hence, limy, oo (f(zn) + g(xn)) = f(c) + g(c) = f+ g is continuous at ¢

Theorem 5.27 Let f: B — R and g: A — B be functions on A,B C R. If g is
continuous at ¢ € A and f is continuous at g(c) € B, then f o g is continuous at c.

proof: let (x,),. | be a sequence in A and z,, » ¢ = g(z,) = g(c) =
f(g(zyn)) = f(g9(c)) = fogis continuous at ¢
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Theorem 5.28 Let f be a polynomial function of the form
f(x) :apa?p—i----—i-alx—i—ao.

Then, the function f is continuous on R.

proof: let c € R, let ().~ be a sequence in R and z,, — ¢, then we have

nh_)rglo flzy) = Jgrgo(apxg + -+ a1z, + ao)
=ap lim 2f +--- 4+ a; lim x, + ag
n—oo n—oo

=apc’ + -+ aic+ayg = f(c)

Example 5.29 Theorems 5.26 and 5.27 allows us to show that some given function is
continuous without a huge € — § proof, for example:

2

e The function 1/22 is continuous on (0, cc), since 22 is continuous on (0, ).

: 2. . : : .
e The function (cos(1/z?%))” is continuous on (0,c0), since cosz is continuous on
R, and 22 is continuous on (0, 00).
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Extreme value theorem

Definition 5.30 A function f: S — R is bounded if there exists some B > 0 such
that for all z € S, we have |f(z)| < B.

Theorem 5.31 If the function f: [a,b] — R is continuous then f is bounded.

proof:
e suppose f is unbounded, then VB > 0, 3x € [a, b] such that |f(x)| > B

e let (x,,),2, be a sequence in [a,b] such that for all n € N, |f(z,)| > n

(n)peqisin [a,b] = (zp),— is bounded = there exists a subsequence
(@n;);=; (theorem 3.37) that converges to c € R

e a<z,<b = a<umz, <b = cé€la,b

[ is continuous on [a,b] = f(zp,) = f(c) = (f(zn,))se; is bounded

however, |f(xn,)| > ni = (n;);2, is bounded, which is a contradiction
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Definition 5.32 Let f: S — R be a function. We say the function f achieves an
absolute minimum at ¢ if f(z) > f(c) for all z € S. We say the function f achieves
an absolute maximum at d if f(x) < f(d) for all z € S.

Theorem 5.33 Extreme value theorem. Let f: [a,b] — R be a function on a closed,
bounded interval [a, b]. If the function f is continuous on [a, b], then f achieves absolute
maximum and absolute minimum on [a, b].

proof: we show the case for absolute maximum

e [ is continuous on [a,b] = f is bounded = the set E = {f(z) | = € [a,b]}
is bounded = sup F € R exists

e sup F is the supremum of {f(x) | = € [a,b]} = Vz € [a,b], f(z) <supF, and,
there exists some sequence (f(zy))—; with z,, € [a,b] such that f(z,) — sup E

o (x,);2isin [a,b] = there exists a subsequence (x,);-, such that z,, — d
and d € [a,b] = f(zn,) = f(d) (since f is continuous)

o f(zy) > supE = f(x,,) > supE = supE = f(d) = there exists a
point d € [a, b] such that f(x) < f(d) for all z € [a, D]
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Remark 5.34 To apply the extreme value theorem, the function f has to be continuous
on a closed, bounded interval.

If the function f: [a,b] — R is not continuous, consider the function given by

which neither achieves an absolute maximum nor an absolute minimum on [0, 1].

If the function f: S — R is continuous but S not closed and bounded, consider the

function given by
1 1
f('r)zi_ ) 52(071)7

r 1—=x

which neither achieves an absolute maximum nor an absolute minimum on [0, 1].
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Intermediate value theorem

Theorem 5.35 Let f: [a,b] — R be a continuous function. If f(a) < 0 and f(b) > 0,
then there exists some ¢ € (a,b) such that f(c) = 0.

proof: let a; = a, by =D, for all n € N, given a, and b,, define a, 1 and b, as:
® i1 = Gy, byyy = 2ofbn if f(9tin) >0
o apiq = 2t by = by, if f(2F) <0

then the sequences (ay,),-; and (by),-, has the following properties:
e 0 <ay<ant1 <bpy1 <b, <bforallne N = (an),, and (by), -, are

monotone and bounded = (ay),—; and (b,),~, converge, let a,, — ¢, b, — d

o f(an) <0, f(by) >0 for all n € N, since f is continuous, ¢,d € [a,b] =
limy, 00 f(an) = f(c) <0 and limy, 00 f(br) = f(d) >0

bn— bn—1—an—1 b— 1
.bn+1—an+1: nzan: n 22” :..-:Zna :}bn—anzﬁ(b—a)

= limy o0 (by — an) = limy, 00 271%1(5 —a) =0=1limy_00 by — limy, o0 ap,
— lim, o0 b, = lim,, ,oa, — c=d
put together, we have f(c) <0, f(d) >0, and f(c) = f(d) = f(c)=f(d)=0
= Jc € (a,b) such that f(c) =0
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Theorem 5.36 Bolzano's intermediate value theorem. Let f: [a,b] — R be a contin-
uous function. Suppose y € R such that f(a) < y < f(b) o f(b) <y < f(a), then
there exists a ¢ € (a, b) such that f(c) =v.

proof: we consider the case for f(a) < y < f(b), the other case is similar
e let g: [a,b] — R be a function given by g(x) = f(z) — y, then g is continuous on
[a, b] (theorem 5.26)

o fla)<y<f(b) = ()
such that g(c) = f(¢)—y =

= fla) =y <0, 9(b) = f(0) ~y >0 = 3Jc€ (a,D)
0 (theorem 5.35) = dc € (a,b) such that f(c) =y

Theorem 5.37 Let f: [a,b] — R be a continuous function. Suppose the function f
achieves absolute minimum at ¢ € [a, b], and achieves absolute maximum at d € [a, b].
Then, we have f([a,b]) = [f(c), f(d)], i.e., every value between the absolute minimum
value and the absolute maximum value is achieved.

proof:
e according to theorem 5.33, we have f([a,b]) C [f(c), f(d)]
e according to theorem 5.36, we have [f(c), f(d)] € f([¢,d]) € f([a,b])
e hence, f([a,b]) = [f(c), f(d)]
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Remark 5.38 Similarly, theorem 5.36 is false if the function f is not continuous.

Example 5.39 The polynomial given by f(z) = 22°2! 4 22920 1-9.032 + 1 has at least
one real root.

proof: we have f(0) =1 >0 and f(—1) = —8.03 < 0, hence, by theorem 5.36, there

exists some ¢ € (—1,0) such that f(c) =0
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Uniform continuity

Example 5.40 The function f(z) = 1 is continuous on (0,1).

proof: let ¢ € (0,1) and € > 0, choose § = mln{Q, , then Vz € (0, 1) such that
|z —¢| < d, we have

o [z —lel<lw—c[ <6< 3

l
o
AN
B
|
o
ﬂ Hr—’

1 2
Enp
lz] = c

T

e hence, ‘%—%‘ =7

Remark 5.41 Example 5.40 shows that in the definition of function continuity, the
number § can depend on both the number € and the point c.

Definition 5.42 Let f: S — R be a function. We say the function f is uniformly
continuous on S if for all € > 0, there exists some § > 0 such that for all z,c € S and
|z —¢| < d, we have |f(z) — f(c)| <e.

Remark 5.43 In the definition of uniform continuity, the number § only depends on e.
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Example 5.44 The function f(x) = 22 is uniformly continuous on [0, 1].

proof: let ¢ > 0, choose 0 = §, then for all z,c € [0,1] and |z — c[ < J, we have
|z 4+ ¢| <2, and hence,

If(z) = fle)| = a2 =P =|z+clzr—c|<|z+¢d<20=2-e=¢

Remark 5.45 Let f: S — R be a function. We say the function f is not uniformly
continuous on S if there exists some € > 0 such that for all § > 0, there exists some
xz,c€ S and |z —¢c| < §sothat |f(z) — f(c)] > e

Example 5.46 The function f(z) = 1 is not uniformly continuous on (0, 1).

proof: choose € = 2, let § > 0, choose ¢ = min {5, %} T = % then we have
e z,c€ (0,1) and |x—c|:§§%<5

1_ 1| _lz= _c. .2 _1 _
it =hm =5 Fd=22=c
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Example 5.47 The function given by f(z) = x* is not uniformly continuous on R.

)

proof: choose ¢ = 2, let § > 0, choose ¢ = %, xr = c+ g, then we have

e z,cc R and |x—c|:g<5

o 22— =|ztcl|lr—c=(2c+3) - 5=(3+9) :2+%>2:e

[\G][S%)

Theorem 5.48 Let f: [a,b] — R be a function. Then, the function f is continuous on
[a, b] if and only if f is uniformly continuous on [a, b].

proof:

e suppose f is uniformly continuous on [a,b]: let ¢ € [a,b], € > 0, then according to
uniform continuity, 36 > 0 such that for all = € [a,b] and |z — ¢| < §, we have

[f(z) = fle)] <€

e suppose f is continuous on [a, b]

— assume f is not uniformly continuous on [a, b], then Je > 0 such that Vé > 0, there
exists x, ¢ € [a,b] such that |z — ¢| < § but |f(z) — f(c)] > €
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— choose sequences (zn)pry and (c,),—; such that for all n € N, z,,, ¢, € [a, b],
| — cn| < nv but [f(z,) — f(ca)| > €

— since x, € [a,b] for all n € N, there exists a subsequence (2, );-, of (z,),—, such
that x,,, — ¢ and ¢ € [a,b] (theorem 3.37)

— take subsequence (cy,, )i, of (¢,),—, according to the indexes n; of (z,,);=,, then

Cn,

7

oo
€ [a,b] for all n € N = there exists a subsequence (cn) such that
i)

Cn,, —~dand de [a, b]

o0
— take subsequence (xn)
J A
j=1
then z,, — csince x,,, = ¢
J

oo
of (zn,);=; according to the indexes n;; of (cm_) ,
)i= _ ) e

-0< |{En11 - Cnij =0 s

1 1 :
< = and . =0 = limj_ |an — Cny,

nlj

lim; Tn, = lim; o0 Cn;, = C= d

— since f is continuous on [a,b] and x,, — ¢, ¢,, — ¢, we have
J J

lim f(zy, ) = lim f(cn, ) = f(c)

]*)OO ‘]‘)

=  0=|f(c) = f(o)| = lim [f(wn, ) — flen, )l =€
j—o0 7 7
which is a contradiction
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Lipschitz continuity

Definition 5.49 Let f: S — R be a function. We say the function f is Lipschitz
continuous on S if there exists some K > 0 such that for all x,y € S, we have

[f(@) = fy)] < Kz —yl.

Remark 5.50 Geometrically, the function f is Lipschitz continuous if and only if all
lines intersects the graph of f in at least two distinct points has slope in absolute value
less than or equal to K.

Theorem 5.51 Let f: S — R be a function. If the function f is Lipschitz continuous,
then f is uniformly continuous.

proof: let ¢ > 0
e f is Lipschitz continuous = JK > 0 such that for all x,y € S, we have

[f(2) = f(y)| < Kz —y|
e choose § = ¢/(K + 1), then for all z,y € S and |z — y| < J, we have

K
1) = F)] < Ko =yl < Ko = =~

e<e
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Example 5.52 The function f(z) = \/z is Lipschitz continuous on [1,00), but is not
Lipschitz continuous on [0, c0).

proof:
e consider the function f: [1,00) — R given by f(z) =/, then Vz,y € [1,00):
—z>1lLy>1 = o+,y>2

— hence,
3 - =yl
@) = FWI = VE = Vil = 2 <

= f is Lipschitz continuous with K = 1/2

e consider the function g: [0,00) — R given by g(z) = v/z, let K > 0, choose

I:O,y:ﬁ,then

'f(xx) ‘ ’\/5_ ‘ \;g—\/K?H>\/ﬁ—K

= [f(x) = f(y)| > K|z —y]

Continuous functions 5-31



