
5. Continuous functions

• cluster points of sets

• limits of functions and sequential properties

• left and right limits

• continuous functions

• operations that preserves continuity

• extreme value theorem

• intermediate value theorem

• uniform and Lipschitz continuity
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Cluster points of sets

Definition 5.1 Let S ⊆ R. We say that the point c ∈ R is a cluster point of S if for
all δ > 0, we have (c − δ, c + δ) ∩ S \ {c} ̸= ∅, i.e., for all δ > 0, there exists some
x ∈ S, such that 0 < |x− c| < δ.

examples:

• S = {1/n | n ∈ N} has a cluster point c = 0

• S = (0, 1) has a set of cluster points given by [0, 1]

• S = Q has a set of cluster points given by R

• S = {0} has no cluster points

• S = Z has no cluster points
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Theorem 5.2 Let S ⊆ R. Then c is a cluster point of S if and only if there exists a
sequence (xn)

∞
n=1 of elements in S \ {c} such that limn→∞ xn = c.

proof:

• suppose c is a cluster point of S, then ∀δ > 0, ∃x ∈ S such that 0 < |x− c| < δ

– ∀n ∈ N, choose xn ∈ S such that 0 < |xn − c| < 1
n

– 1
n → 0 =⇒ |xn − c| → 0 =⇒ xn → c

• suppose there exists a sequence (xn)
∞
n=1 with xn ∈ S \ {c} for all n ∈ N such

that xn → c, let δ > 0

– xn → c with xn ∈ S \ {c} =⇒ ∃M ∈ N such that ∀n ≥ M , 0 < |xn − c| < δ

– choose x = xM , then we have 0 < |x− c| < δ =⇒ S has cluster point c
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Limits of functions

Definition 5.3 Let f : S → R be a function and c be a cluster point of S ⊆ R. Suppose
there exists an L ∈ R, and for all ϵ > 0, there exists some δ > 0 such that for all x ∈ S
and 0 < |x− c| < δ, we have |f(x)− L| < ϵ. We then say f(x) converges to L as x
goes to c, and we write

f(x) → L as x → c.

We say L is a limit of f(x) as x goes to c, and if L is unique, we write

lim
x→c

f(x) = L.

Remark 5.4 The function f : S → R does not converge to L ∈ R as x goes to a cluster
point c of S implies that there exists some ϵ > 0, such that for all δ > 0, there exists
some x ∈ S and 0 < |x− c| < δ, so that |f(x)− L| ≥ ϵ.
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Theorem 5.5 Let f : S → R be a function and c be a cluster point of S ⊆ R. If
f(x) → L1 and f(x) → L2 as x → c, then L1 = L2.

proof: let ϵ > 0

• f(x) → L1 as x → c =⇒ ∃δ1 > 0 such that for all x ∈ S and 0 < |x− c| < δ1,
|f(x)− L1| < ϵ/2

• f(x) → L2 as x → c =⇒ ∃δ2 > 0 such that for all x ∈ S and 0 < |x− c| < δ2,
|f(x)− L2| < ϵ/2

• choose δ = min{δ1, δ2}, then for all x ∈ S and 0 < |x− c| < δ, we have

|L1 −L2| = |L1 − f(x) + f(x)−L2| ≤ |f(x)−L1|+ |f(x)−L2| < ϵ/2+ ϵ/2 = ϵ

=⇒ L1 = L2
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Example 5.6 Let f(x) = ax+ b. Then, for all c ∈ R, we have limx→c f(x) = ac+ b.

proof: let ϵ > 0, choose δ = ϵ
|a|+1 , then for all x ∈ R and 0 < |x− c| < δ, we have

|f(x)− (ac+ b)| = |(ax+ b)− (ac+ b)| = |a||x− c| < |a|δ =
|a|

|a|+ 1
ϵ ≤ ϵ

Example 5.7 Let f : (0,∞) → R with f(x) =
√
x. Then, for all c > 0, we have

limx→c f(x) =
√
c.

proof: let ϵ > 0, choose δ = ϵ
√
c, then for all x > 0 and 0 < |x− c| < δ, we have

|f(x)−
√
c| = |

√
x−

√
c| =

∣∣∣∣ (√x−
√
c)(

√
x+

√
c)√

x+
√
c

∣∣∣∣ = ∣∣∣∣ x− c√
x+

√
c

∣∣∣∣ ≤ |x− c|√
c

<
δ√
c
< ϵ

Example 5.8 Let f(x) =

{
1 x ̸= 0

2 x = 0
. Then, limx→0 f(x) = 1 ( ̸= f(0)).

proof: let ϵ > 0, choose δ = 1, then ∀x satisfies 0 < |x| < δ, we have x ̸= 0 =⇒ ∀x
satisfies 0 < |x| < δ, we have |f(x)− 1| = |1− 1| = 0 < ϵ
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Theorem 5.9 Let f : S → R be a function and c be a cluster point of S ⊆ R. Then,
the following statements are equivalent:

• The function f(x) converges to L ∈ R as x goes to c, i.e., limx→c f(x) = L.

• For all sequences (xn)
∞
n=1 in S \ {c} such that limn→∞ xn = c, we have

limn→∞ f(xn) = L.

proof:

• suppose limx→c f(x) = L, let ϵ > 0

– ∃δ > 0, such that for all x ∈ S and 0 < |x− c| < δ, we have |f(x)− L| < ϵ

– xn → c, xn ∈ S \ {c} =⇒ ∃M ∈ N such that ∀n ≥ M , 0 < |xn − c| < δ =⇒
∀n ≥ M , we have |f(xn)− L| < ϵ, i.e., f(xn) → L

• suppose for all sequences in S \ {c} s.t. xn → c, we have f(xn) → L

– assume limx→c f(x) ̸= L =⇒ ∃ϵ > 0 s.t. ∀δ > 0, there exists some x ∈ S and
0 < |x− c| < δ, so that |f(x)− L| ≥ ϵ

– choose a sequence (xn)
∞
n=1 s.t. ∀n ∈ N, xn ∈ S \ {c}, 0 < |xn − c| < 1

n , and
|f(xn)− L| ≥ ϵ for all n ∈ N

– however, 1
n → 0 =⇒ xn → c =⇒ f(xn) → L =⇒ ∃M ∈ N s.t. ∀n ≥ M ,

|f(xn)− L| < ϵ, which is a contradiction
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Theorem 5.10 For all c ∈ R, we have limx→c x
2 = c2.

proof: let (xn)
∞
n=1 be a sequence in R \ {c} such that xn → c, then according to

theorem 3.24, we have x2n → c2 =⇒ limx→c x
2 = c2 (theorem 5.9)

Theorem 5.11 The limit limx→0 sin(1/x) does not exist, but limx→0 x sin(1/x) = 0.

proof:

• we first show that limx→0 x sin(1/x) = 0: let (xn)
∞
n=1 be a sequence in R \ {0}

such that xn → 0; since 0 ≤ |xn sin(1/xn)| ≤ |xn| for all n ∈ N, and xn → 0, we
have |xn sin(1/xn)| → 0 =⇒ limx→0 x sin(1/x) = 0

• we now show that limx→0 sin(1/x) does not exist:

– choose a sequence (xn)
∞
n=1 where xn = 2

(2n−1)π , then we have xn → 0

– consider the sequence (sin(1/xn))
∞
n=1, we have

sin(1/xn) = sin

(
(2n− 1)π

2

)
= (−1)

n+1

=⇒ (sin(1/xn))
∞
n=1 does not converge =⇒ limx→0 sin(1/x) does not exist
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Sequential properties

Theorem 5.12 Let f, g : S → R be functions and c be a cluster point of S ⊆ R.
Suppose f(x) ≤ g(x) for all x ∈ S, and we have limx→c f(x) and limx→c g(x) both
exist, then limx→c f(x) ≤ limx→c g(x).

proof: let (xn)
∞
n=1 be a sequence in S \ {c} such that xn → c

• limx→c f(x) and limx→c g(x) exist =⇒ (f(xn))
∞
n=1 and (g(xn))

∞
n=1 converges

• let f(xn) → L1, g(xn) → L2, since f(x) ≤ g(x) for all x ∈ S, we have L1 ≤ L2,
i.e., limx→c f(x) ≤ limx→c g(x)

similarly, we can prove the following theorems using the properties of sequences:

Theorem 5.13 Let f : S → R be a function and c be a cluster point of S ⊆ R.
Suppose the limit limx→c f(x) exists, and there exists a, b ∈ R such that a ≤ f(x) ≤ b
for all x ∈ S \ {c}, then a ≤ limx→c f(x) ≤ b.
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Theorem 5.14 Let c be a cluster point of S ⊆ R, and f, g, h : S → R be functions
such that f(x) ≤ g(x) ≤ h(x) for all x ∈ S \{c}. Suppose limx→c f(x) = limx→c h(x),
then limx→c g(x) = limx→c f(x) = limx→c h(x).

Theorem 5.15 Let c be a cluster point of S ⊆ R, and f, g : S → R be functions such
that limx→c f(x) and limx→c g(x) both exist, we have:

• limx→c(f(x) + g(x)) = limx→c f(x) + limx→c g(x);

• limx→c(f(x) · g(x)) = limx→c f(x) · limx→c g(x);

• if limx→c g(x) ̸= 0 and g(x) ̸= 0 for all x ∈ S \ {c}, then

lim
x→c

f(x)

g(x)
=

limx→c f(x)

limx→c g(x)
;

Theorem 5.16 Let c be a cluster point of S ⊆ R and f : S → R be a function such
that limx→c f(x) exists, then we have limx→c |f(x)| = | limx→c f(x)|.
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Left and right limits

Definition 5.17 Let S ⊆ R and f : S → R be a function.

Suppose c is a cluster point of S ∩ (−∞, c), we say f(x) converges to L as x → c−, if
for all ϵ > 0, there exists a δ > 0 such that for all x ∈ S and c − δ < x < c, we have
|f(x)− L| < ϵ. We call such a limit the left limit of f at c, denoted limx→c− f(x).

Suppose c is a cluster point of S ∩ (c,∞), we say f(x) converges to L as x → c+, if
for all ϵ > 0, there exists a δ > 0 such that for all x ∈ S and c < x < c + δ, we have
|f(x)− L| < ϵ. We call such a limit the right limit of f at c, denoted limx→c+ f(x).

Example 5.18 Consider the function f given by

f(x) =

{
1 x > 0

0 x < 0,

we have limx→0− f(x) = 0 and limx→0+ f(x) = 1, even if f(0) is undefined.
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Continuous functions

Definition 5.19 Let S ⊆ R and c ∈ S. We say the function f is continuous at c if
for all ϵ > 0, there exists a δ > 0 such that for all x ∈ S and |x − c| < δ, we have
|f(x)− f(c)| < ϵ.

We say the function f is continuous on the set U for U ⊆ S if f is continuous at every
point of U .

Remark 5.20 The function f is not continuous at point c ∈ S if there exists some
ϵ > 0 such that for all δ > 0, there exists some x ∈ S and |x − c| < δ, so that
|f(x)− f(c)| ≥ ϵ.
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Example 5.21 The function f(x) = ax+ b is continuous on R.

proof: let c ∈ R, ϵ > 0, choose δ = ϵ
|a|+1 , then for all x ∈ R and |x− c| < δ, we have

|f(x)− f(c)| = |ax+ b− ac− b| = |a||x− c| < |a|δ =
|a|

|a|+ 1
ϵ ≤ ϵ

Example 5.22 The function f given by

f(x) =

{
1 x ̸= 0

2 x = 0

is not continuous at c = 0.

proof: choose ϵ = 1 and let δ > 0, then x = δ/2 satisfies |x| < δ, but

|f(x)− f(0)| = |1− 0| = 1 ≥ ϵ
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Theorem 5.23 Let S ⊆ R be a set, c ∈ S be a point, and f : S → R be a function.

• If c is not a cluster point of S, then the function f is continuous at c.

• If c is a cluster point of S, then the function f is continuous at c if and only if
limx→c f(x) = f(c).

• The function f is continuous at c if and only if for all sequences (xn)
∞
n=1 in S

with limn→∞ xn = c, we have limn→∞ f(xn) = f(c).

proof: to show the first statement, let ϵ > 0

• c ∈ S and c is not a cluster point of S =⇒ ∃δ > 0 s.t. (c− δ, c+ δ) ∩ S = {c}
• then for all x ∈ S such that |x− c| < δ, we have x = c, and hence,

|f(x)− f(c)| = |f(c)− f(c)| = 0 < ϵ

we now show the second statement:

• suppose f is continuous at c, let ϵ > 0

– f is continuous at c =⇒ ∃δ > 0 such that for all x ∈ S and |x− c| < δ, we have
|f(x)− f(c)| < ϵ

– then ∀x ∈ S s.t. 0 < |x− c| < δ, |f(x)− f(c)| < ϵ =⇒ limx→c f(x) = f(c)
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• suppose limx→c f(x) = f(c), let ϵ > 0

– f(x) → f(c) as x → c =⇒ ∃δ > 0 such that for all x ∈ S and 0 < |x− c| < δ, we
have |f(x)− f(c)| < ϵ

– then for all x ∈ S such that |x− c| < δ: if x = c, we have

|f(x)− f(c)| = |f(c)− f(c)| = 0 < ϵ

if x ̸= c, we have 0 < |x− c| < δ =⇒ |f(x)− f(c)| < ϵ
– put together, we conclude that the function f is continuous at c

we now show the third statement

• suppose f is continuous at c, let (xn)
∞
n=1 be a sequence in S, xn → c, let ϵ > 0

– f is continuous at c =⇒ ∃δ > 0 such that for all x ∈ S and |x− c| < δ, we have
|f(x)− f(c)| < ϵ

– xn → c =⇒ ∃M ∈ N such that ∀n ≥ M , |xn − c| < δ =⇒ ∀n ≥ M ,
|f(xn)− f(c)| < ϵ =⇒ (f(xn))

∞
n=1 → f(c)

• suppose for all (xn)
∞
n=1 in S such that xn → c, we have f(xn) → f(c)

– assume f is not continuous at c =⇒ ∃ϵ > 0, ∀δ > 0, ∃x ∈ S such that |x− c| < δ,
but |f(x)− f(c)| ≥ ϵ

– choose xn ∈ S such that ∀n ∈ N, 0 ≤ |xn − c| < 1
n but |f(xn)− f(x)| ≥ ϵ

– 1
n → 0 =⇒ xn → c =⇒ f(xn) → f(c) =⇒ ∃M ∈ N such that ∀n ≥ M ,
|f(xn)− f(c)| < ϵ, which is a contradiction
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Theorem 5.24 The functions sinx and cosx are continuous functions on R.

proof:

• recall the following properties of sinx and cosx for all x ∈ R:

– sin2(x) + cos2(x) = 1 =⇒ | sinx| ≤ 1 and | cosx| ≤ 1

– | sinx| ≤ |x|
– sin(a+ b) = cos(a) sin(b) + sin(a) cos(b)

– sin(a)− sin(b) = 2 sin
(
a−b
2

)
cos
(
a+b
2

)
• we first show that sinx is continuous, let c ∈ R, let ϵ > 0, choose δ = ϵ, then for
all x ∈ R such that |x− c| < δ, we have

| sinx− sin c| =
∣∣∣2 sin(x− c

2

)
cos

(x+ c

2

)∣∣∣ ≤ 2
∣∣∣sin(x− c

2

)∣∣∣ ≤ 2
|x− c|

2
= |x− c| < ϵ

• we now show that cosx is continuous, let c ∈ R, let (xn)
∞
n=1 be a sequence with

xn → c, then we have xn + π
2 → c+ π

2 , and hence,

lim
n→∞

cosxn = lim
n→∞

sin
(
xn +

π

2

)
= sin

(
c+

π

2

)
= cos c
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Theorem 5.25 Dirichlet function. The Dirichlet function given by

f(x) =

{
1 x ∈ Q

0 x /∈ Q

is not continuous on all of R.

proof: let c ∈ R

• if c ∈ Q, then for all n ∈ N, there exists xn /∈ Q such that c < xn < c+ 1
n ;

1
n → 0 =⇒ xn → c, however,

lim
n→∞

f(xn) = 0 ̸= f(c) = 1

=⇒ (f(xn))
∞
n=1 does not converge to f(c)

• if c /∈ Q, then for all n ∈ N, there exists xn ∈ Q such that c < xn < c+ 1
n ;

1
n → 0 =⇒ xn → c, however,

lim
n→∞

f(xn) = 1 ̸= f(c) = 0

=⇒ (f(xn))
∞
n=1 does not converge to f(c)
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Operations that preserves continuity

Theorem 5.26 Let f, g : S → R be functions on S ⊆ R and are continuous at c ∈ S.

• The function f + g is continuous at c.

• The function f · g is continuous at c.

• If g(x) ̸= 0 for all x ∈ S, then the function f/g is continuous at c.

proof: we show that the function f + g is continuous at c, the other two statements
can be proved similarly; let (xn)

∞
n=1 be a sequence in S with xn → c

• f is continuous at c =⇒ limn→∞ f(xn) = f(c)

• g is continuous at c =⇒ limn→∞ g(xn) = g(c)

• hence, limn→∞(f(xn) + g(xn)) = f(c) + g(c) =⇒ f + g is continuous at c

Theorem 5.27 Let f : B → R and g : A → B be functions on A,B ⊆ R. If g is
continuous at c ∈ A and f is continuous at g(c) ∈ B, then f ◦ g is continuous at c.

proof: let (xn)
∞
n=1 be a sequence in A and xn → c =⇒ g(xn) → g(c) =⇒

f(g(xn)) → f(g(c)) =⇒ f ◦ g is continuous at c
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Theorem 5.28 Let f be a polynomial function of the form

f(x) = apx
p + · · ·+ a1x+ a0.

Then, the function f is continuous on R.

proof: let c ∈ R, let (xn)
∞
n=1 be a sequence in R and xn → c, then we have

lim
n→∞

f(xn) = lim
n→∞

(apx
p
n + · · ·+ a1xn + a0)

= ap lim
n→∞

xpn + · · ·+ a1 lim
n→∞

xn + a0

= apc
p + · · ·+ a1c+ a0 = f(c)

Example 5.29 Theorems 5.26 and 5.27 allows us to show that some given function is
continuous without a huge ϵ− δ proof, for example:

• The function 1/x2 is continuous on (0,∞), since x2 is continuous on (0,∞).

• The function (cos(1/x2))
2
is continuous on (0,∞), since cosx is continuous on

R, and x2 is continuous on (0,∞).
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Extreme value theorem

Definition 5.30 A function f : S → R is bounded if there exists some B ≥ 0 such
that for all x ∈ S, we have |f(x)| ≤ B.

Theorem 5.31 If the function f : [a, b] → R is continuous then f is bounded.

proof:

• suppose f is unbounded, then ∀B ≥ 0, ∃x ∈ [a, b] such that |f(x)| > B

• let (xn)
∞
n=1 be a sequence in [a, b] such that for all n ∈ N, |f(xn)| > n

• (xn)
∞
n=1 is in [a, b] =⇒ (xn)

∞
n=1 is bounded =⇒ there exists a subsequence

(xni)
∞
i=1 (theorem 3.37) that converges to c ∈ R

• a ≤ xn ≤ b =⇒ a ≤ xni ≤ b =⇒ c ∈ [a, b]

• f is continuous on [a, b] =⇒ f(xni) → f(c) =⇒ (f(xni))
∞
i=1 is bounded

• however, |f(xni)| > ni =⇒ (ni)
∞
i=1 is bounded, which is a contradiction
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Definition 5.32 Let f : S → R be a function. We say the function f achieves an
absolute minimum at c if f(x) ≥ f(c) for all x ∈ S. We say the function f achieves
an absolute maximum at d if f(x) ≤ f(d) for all x ∈ S.

Theorem 5.33 Extreme value theorem. Let f : [a, b] → R be a function on a closed,
bounded interval [a, b]. If the function f is continuous on [a, b], then f achieves absolute
maximum and absolute minimum on [a, b].

proof: we show the case for absolute maximum

• f is continuous on [a, b] =⇒ f is bounded =⇒ the set E = {f(x) | x ∈ [a, b]}
is bounded =⇒ supE ∈ R exists

• supE is the supremum of {f(x) | x ∈ [a, b]} =⇒ ∀x ∈ [a, b], f(x) ≤ supE, and,
there exists some sequence (f(xn))

∞
n=1 with xn ∈ [a, b] such that f(xn) → supE

• (xn)
∞
n=1 is in [a, b] =⇒ there exists a subsequence (xni)

∞
i=1 such that xni → d

and d ∈ [a, b] =⇒ f(xni) → f(d) (since f is continuous)

• f(xn) → supE =⇒ f(xni) → supE =⇒ supE = f(d) =⇒ there exists a
point d ∈ [a, b] such that f(x) ≤ f(d) for all x ∈ [a, b]
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Remark 5.34 To apply the extreme value theorem, the function f has to be continuous
on a closed, bounded interval.

If the function f : [a, b] → R is not continuous, consider the function given by

f(x) =

{
1
2 x = 0 or x = 1

x x ∈ (0, 1),

which neither achieves an absolute maximum nor an absolute minimum on [0, 1].

If the function f : S → R is continuous but S not closed and bounded, consider the
function given by

f(x) =
1

x
− 1

1− x
, S = (0, 1),

which neither achieves an absolute maximum nor an absolute minimum on [0, 1].

Continuous functions 5-22



Intermediate value theorem

Theorem 5.35 Let f : [a, b] → R be a continuous function. If f(a) < 0 and f(b) > 0,
then there exists some c ∈ (a, b) such that f(c) = 0.

proof: let a1 = a, b1 = b, for all n ∈ N, given an and bn, define an+1 and bn+1 as:

• an+1 = an, bn+1 =
an+bn

2 , if f
(
an+bn

2

)
≥ 0

• an+1 =
an+bn

2 , bn+1 = bn, if f
(
an+bn

2

)
< 0

then the sequences (an)
∞
n=1 and (bn)

∞
n=1 has the following properties:

• a ≤ an ≤ an+1 ≤ bn+1 ≤ bn ≤ b for all n ∈ N =⇒ (an)
∞
n=1 and (bn)

∞
n=1 are

monotone and bounded =⇒ (an)
∞
n=1 and (bn)

∞
n=1 converge, let an → c, bn → d

• f(an) ≤ 0, f(bn) ≥ 0 for all n ∈ N, since f is continuous, c, d ∈ [a, b] =⇒
limn→∞ f(an) = f(c) ≤ 0 and limn→∞ f(bn) = f(d) ≥ 0

• bn+1 − an+1 =
bn−an

2 = bn−1−an−1

22
= · · · = b−a

2n =⇒ bn − an = 1
2n−1 (b− a)

=⇒ limn→∞(bn − an) = limn→∞
1

2n−1 (b− a) = 0 = limn→∞ bn − limn→∞ an
=⇒ limn→∞ bn = limn→∞ an =⇒ c = d

put together, we have f(c) ≤ 0, f(d) ≥ 0, and f(c) = f(d) =⇒ f(c) = f(d) = 0
=⇒ ∃c ∈ (a, b) such that f(c) = 0

Continuous functions 5-23



Theorem 5.36 Bolzano’s intermediate value theorem. Let f : [a, b] → R be a contin-
uous function. Suppose y ∈ R such that f(a) < y < f(b) or f(b) < y < f(a), then
there exists a c ∈ (a, b) such that f(c) = y.

proof: we consider the case for f(a) < y < f(b), the other case is similar

• let g : [a, b] → R be a function given by g(x) = f(x)− y, then g is continuous on
[a, b] (theorem 5.26)

• f(a) < y < f(b) =⇒ g(a) = f(a)− y < 0, g(b) = f(b)− y > 0 =⇒ ∃c ∈ (a, b)
such that g(c) = f(c)− y = 0 (theorem 5.35) =⇒ ∃c ∈ (a, b) such that f(c) = y

Theorem 5.37 Let f : [a, b] → R be a continuous function. Suppose the function f
achieves absolute minimum at c ∈ [a, b], and achieves absolute maximum at d ∈ [a, b].
Then, we have f([a, b]) = [f(c), f(d)], i.e., every value between the absolute minimum
value and the absolute maximum value is achieved.

proof:

• according to theorem 5.33, we have f([a, b]) ⊆ [f(c), f(d)]

• according to theorem 5.36, we have [f(c), f(d)] ⊆ f([c, d]) ⊆ f([a, b])

• hence, f([a, b]) = [f(c), f(d)]
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Remark 5.38 Similarly, theorem 5.36 is false if the function f is not continuous.

Example 5.39 The polynomial given by f(x) = x2021 + x2020 + 9.03x+ 1 has at least
one real root.

proof: we have f(0) = 1 > 0 and f(−1) = −8.03 < 0, hence, by theorem 5.36, there
exists some c ∈ (−1, 0) such that f(c) = 0
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Uniform continuity

Example 5.40 The function f(x) = 1
x is continuous on (0, 1).

proof: let c ∈ (0, 1) and ϵ > 0, choose δ = min
{

c
2 ,

c2

2 ϵ
}
, then ∀x ∈ (0, 1) such that

|x− c| < δ, we have

• ||x| − |c|| ≤ |x− c| < δ ≤ c
2 =⇒ − c

2 < |x| − c =⇒ 1
|x| <

2
c

• hence,
∣∣ 1
x − 1

c

∣∣ = |x−c|
|x|c < δ

|x|c < 2δ
c2

≤ 2
c2

· c2

2 ϵ = ϵ

Remark 5.41 Example 5.40 shows that in the definition of function continuity, the
number δ can depend on both the number ϵ and the point c.

Definition 5.42 Let f : S → R be a function. We say the function f is uniformly
continuous on S if for all ϵ > 0, there exists some δ > 0 such that for all x, c ∈ S and
|x− c| < δ, we have |f(x)− f(c)| < ϵ.

Remark 5.43 In the definition of uniform continuity, the number δ only depends on ϵ.
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Example 5.44 The function f(x) = x2 is uniformly continuous on [0, 1].

proof: let ϵ > 0, choose δ = ϵ
2 , then for all x, c ∈ [0, 1] and |x− c| < δ, we have

|x+ c| ≤ 2, and hence,

|f(x)− f(c)| = |x2 − c2| = |x+ c||x− c| < |x+ c|δ ≤ 2δ = 2 · ϵ = ϵ

Remark 5.45 Let f : S → R be a function. We say the function f is not uniformly
continuous on S if there exists some ϵ > 0 such that for all δ > 0, there exists some
x, c ∈ S and |x− c| < δ so that |f(x)− f(c)| ≥ ϵ.

Example 5.46 The function f(x) = 1
x is not uniformly continuous on (0, 1).

proof: choose ϵ = 2, let δ > 0, choose c = min
{
δ, 12
}
, x = c

2 , then we have

• x, c ∈ (0, 1) and |x− c| = c
2 ≤ δ

2 < δ

•
∣∣ 1
x − 1

c

∣∣ = |x−c|
|x||c| =

c
2 · 2

c2
= 1

c ≥ 2 = ϵ
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Example 5.47 The function given by f(x) = x2 is not uniformly continuous on R.

proof: choose ϵ = 2, let δ > 0, choose c = 2
δ , x = c+ δ

2 , then we have

• x, c ∈ R and |x− c| = δ
2 < δ

• |x2 − c2| = |x+ c||x− c| = (2c+ δ
2) ·

δ
2 = (4δ +

δ
2) ·

δ
2 = 2 + δ2

4 ≥ 2 = ϵ

Theorem 5.48 Let f : [a, b] → R be a function. Then, the function f is continuous on
[a, b] if and only if f is uniformly continuous on [a, b].

proof:

• suppose f is uniformly continuous on [a, b]: let c ∈ [a, b], ϵ > 0, then according to
uniform continuity, ∃δ > 0 such that for all x ∈ [a, b] and |x− c| < δ, we have
|f(x)− f(c)| < ϵ

• suppose f is continuous on [a, b]

– assume f is not uniformly continuous on [a, b], then ∃ϵ > 0 such that ∀δ > 0, there
exists x, c ∈ [a, b] such that |x− c| < δ but |f(x)− f(c)| ≥ ϵ
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– choose sequences (xn)
∞
n=1 and (cn)

∞
n=1 such that for all n ∈ N, xn, cn ∈ [a, b],

|xn − cn| < 1
n , but |f(xn)− f(cn)| ≥ ϵ

– since xn ∈ [a, b] for all n ∈ N, there exists a subsequence (xni
)
∞
i=1 of (xn)

∞
n=1 such

that xni → c and c ∈ [a, b] (theorem 3.37)

– take subsequence (cni
)
∞
i=1 of (cn)

∞
n=1 according to the indexes ni of (xni

)
∞
i=1, then

cni
∈ [a, b] for all n ∈ N =⇒ there exists a subsequence

(
cnij

)∞
j=1

such that

cnij
→ d and d ∈ [a, b]

– take subsequence
(
xnij

)∞
j=1

of (xni
)
∞
i=1 according to the indexes nij of

(
cnij

)∞
j=1

,

then xnij
→ c since xni

→ c

– 0 ≤ |xnij
− cnij

| < 1
nij

and 1
nij

→ 0 =⇒ limj→∞ |xnij
− cnij

| = 0 =⇒
limj→∞ xnij

= limj→∞ cnij
=⇒ c = d

– since f is continuous on [a, b] and xnij
→ c, cnij

→ c, we have

lim
j→∞

f(xnij
) = lim

j→∞
f(cnij

) = f(c)

=⇒ 0 = |f(c)− f(c)| = lim
j→∞

|f(xnij
)− f(cnij

)| ≥ ϵ,

which is a contradiction
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Lipschitz continuity

Definition 5.49 Let f : S → R be a function. We say the function f is Lipschitz
continuous on S if there exists some K ≥ 0 such that for all x, y ∈ S, we have
|f(x)− f(y)| ≤ K|x− y|.

Remark 5.50 Geometrically, the function f is Lipschitz continuous if and only if all
lines intersects the graph of f in at least two distinct points has slope in absolute value
less than or equal to K.

Theorem 5.51 Let f : S → R be a function. If the function f is Lipschitz continuous,
then f is uniformly continuous.

proof: let ϵ > 0

• f is Lipschitz continuous =⇒ ∃K ≥ 0 such that for all x, y ∈ S, we have
|f(x)− f(y)| ≤ K|x− y|

• choose δ = ϵ/(K + 1), then for all x, y ∈ S and |x− y| < δ, we have

|f(x)− f(y)| ≤ K|x− y| < Kδ =
K

K + 1
ϵ < ϵ

Continuous functions 5-30



Example 5.52 The function f(x) =
√
x is Lipschitz continuous on [1,∞), but is not

Lipschitz continuous on [0,∞).

proof:

• consider the function f : [1,∞) → R given by f(x) =
√
x, then ∀x, y ∈ [1,∞):

– x ≥ 1, y ≥ 1 =⇒
√
x+

√
y ≥ 2

– hence,

|f(x)− f(y)| = |
√
x−√

y| = |x− y|√
x+

√
y
≤ 1

2
|x− y|

=⇒ f is Lipschitz continuous with K = 1/2

• consider the function g : [0,∞) → R given by g(x) =
√
x, let K ≥ 0, choose

x = 0, y = 1
K2+1

, then∣∣∣∣f(x)− f(y)

x− y

∣∣∣∣ = ∣∣∣∣√x−√
y

x− y

∣∣∣∣ = √
y

y
=

1
√
y
=
√

K2 + 1 >
√
K2 = K

=⇒ |f(x)− f(y)| > K|x− y|
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