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Series

Definition 4.1 Given a sequence (z,,),-, the formal object >">° ; x,, is called a series.

n=1"

A series converges if the sequence (sy,),._; defined by
m
Sm = :g:: Tp =21+ "+ Tm

converges. The numbers s,, are called partial sums. If the series converges, we write
oo

E T, = lim s,,.
m—0o0

In this case, we treat > > | x,, as a number.

If the sequence (sy,),._, diverges, we say the series is divergent. In this case, > 7 | z,
is simply a formal obJect and not a number.

e series need not start at n =1
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Example 4.2 The series Y 2 | n(n+1) converges.

proof: the sequence of partial sums (sy,),~_; is given by:

“ 1
O S sy
- n n+l1
n=1
1 1 1 1 1 1 1
—1—-4--—4+--= -—
2 2 3 3 4 m m+41
1
=1-—
m+1
hence, s, — 1 = 300 1n(n1+1) converges and > > 1n(n+1):1
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Theorem 4.3 If |r| < 1, then > °° /7™ converges and > o0 (r" = .

proof:

e the sequence of partial sums (s,,)o_; is given by:

— i n __ (Zzl:() rn) (1 - T') . Zzlzo(rn — 7«-”+1) B 1— Tm-i—l
Sm = r’= — —
L=r 1—r 1—7r

n=0

o |[r| <1 = r"™ — 0 (theorem 3.16) = s, —

1—r

Remark 4.4 Series of the form > >° ; ar™ with a,r € R are called geometric series.
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Theorem 4.5 Let (2,,),-, be a sequence and let M € N. Then, > >°, ,, converges
if and only if "7 , x, converges.

proof:

e for all m > M, we have

m M-1 m
DT = it Y
n=1 n=1 n=M

e suppose » 7, x, converges, we have

m m M-1 m M-1
lim E T, = lim E Ty — g T, | = lim E Tn | — Tn
m—00 m—00 m—0o0
n=M n=1 n=1 n=1 n=1
e suppose » 2, x, converges, we have
m m M—-1 m M-1
lim E T, = lim g Ty + g T, | = lim E Tn | + E Tn
m—00 m—00 m—00
n=1 n=M n=1 n=M n=1
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Cauchy series

Definition 4.6 The series > 7, x,, is Cauchy if the sequence of partial sums (sy,)>_;
is Cauchy.

Theorem 4.7 The series > 7 | x,, is Cauchy if and only if >"° | x,, is convergent.

proof: according to theorem 3.45
e suppose > o7 &y, is Cauchy = ()5, is Cauchy = (S,)00_; is

convergent = > >° | x,, is convergent

e suppose » 7, xp is convergent == (sp,),-_, is convergent == (S, )oo_; IS
Cauchy = >°°, x, is Cauchy

n=1
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Theorem 4.8 The series Y | x,, is Cauchy if and only if for all € > 0, there exists an
M € N such that for all m > M and k > m, we have ‘Zi:m_ﬂ xn) < e.

proof: let ¢ > 0

)
m=1

e suppose » o7, &y, is Cauchy = (3" | )
that Vm, k > M (assume k > m), we have

is Cauchy = dM € N such

m k

S -3

n=1 n=1

e suppose JM € N such that for all £ > m > M, ‘Zﬁzmﬂ Tn| < €, then we have

m k k
E Ty — E Tn|l = E Tn| <€,
n=1 n=1 n=m-+1

ie., (0 xy)_ is Cauchy = Y >° | @, is Cauchy
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Theorem 4.9 If the series Zzo:l T, converges then lim,,_,o, x, = 0.

proof: let € >0, Y 77 | x, converges = > | x, is Cauchy = 3IM;, € N such
that Vk > m > M, we have ‘Zﬁzmﬂ x| < € (theorem 4.8); choose M = My + 1,
then Vm > M, by taking k = m > m — 1 > My, we have

m
>, o

n=m—1+1

|[2m — 0] =

<e = lim x,=0
n—o0

Remark 4.10 The converse of theorem 4.9 does not hold.

Theorem 4.11 If || > 1 then the series > ;™ diverges.

proof: If |r| > 1, then lim,_,o 7" # 0, according to theorem 4.9, >>° /7™ diverges

Corollary 4.12 The series Y, ar™ with o, € R converges if and only if |r| < 1.
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Theorem 4.13 The harmonic series > ° does not converge.

—1n

proof: we show that a subsequence of (s,,) > _; is unbounded
e consider the subsequence (syi);~, given by

2 1 11 1 | 1 |
SQi:Zﬁ::l_'— 3 + g“rz + g“!‘""f’g + -+ m‘f"F?

n=1

i 2k
1
-1y > g

k=1n=2k-141

[ 2
1+> > 2%—1+Z2k — 2 1) +1)

k=1n=2k=-141

v

k—1

_1+Z22k _1+Z

e (1+1/2)2, is unbounded = (s9i);; is unbounded = (S, )po_; is
unbounded — > >, % does not converge
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Linearity of series

Theorem 4.14 Let « € R and > 7 |, and )7, y,, be convergent series. Then the
series > >° | (axy + yp) converges and

oo [e.e] [e.e]
Z(amn +yn) = aZmn + Zyn
n=1 n=1 n=1

proof: consider the partial sums of > > (oxy, + yn), we have

m m m
Z(amn +yn) = aan —|—Zyn
n=1 n=1

n=1
m m il
— Jlim > ez, +y) =a lim Yoa, - lin 3oy,
n=1 n=1 =l
o) i~ >
n=1 n=1 n=1
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Series

Absolute convergence

Theorem 4.15 If x,, > 0 for all n € N, then the series Zfﬁzl xy, converges if and only
if the sequence of partial sums (s;,),-_; is bounded.

proof:
® suppose » -, xp converges = (Sp,)o_; converges = (Sy,).-_; is bounded

® suppose (sm)gle is bounded, since x,, > 0 for all n € N, we have

m m
Sm = E Tn < 5 Tpn + Tntl = Smt1,
n=1 n=1

i.e., (Sm)pe_; is monotone increasing = (sp,),._, converges = » >° . 1z,
converges

Definition 4.16 The series ) ° | x,, converges absolutely if >, |z,| converges.
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Theorem 4.17 If the series Y~ | x,, converges absolutely then Y >° | x,, converges.

proof:
e we first prove the following claim by induction:

Lemma 4.18 For all z1,...,2, € R, we have |37 | z;| < D7 |zl

— suppose n = 2, we have the triangle inequality |x; + x2| < |z1]| + |z2]

— suppose n > 2, and |>_1 | ;| < S0 || holds, we have
n+1 n+1

n n
Do <D wml el <Yl + e = Y il
=1 =1 =1 =1

e > > | x, converges absolutely = > °°  |x,| converges = let € > 0,
IMENst.VE>m>M, |[SF el =8 ] <e

n=m-+

<

k
S Zn:erl ‘.Z'n‘ <€ —

e hence, for all k > m > M, we have ‘Zﬁ:mﬂ Tn,

o0
Y o Ty CONverges

Remark 4.19 The converse of theorem 4.17 does not hold.
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Comparison test

Theorem 4.20 Comparison test. Suppose 0 < x,, < y,, for all n € N.

o If > | y, converges then Y 7, x;,, converges.

o If "  x, diverges then Y > |y, diverges.

proof:
e suppose » >y, converges = (3", y,) ~_, is bounded = 3B >0 s.t.
VmeN, |yl => 01 yn < B = ¥m € N, we have

m m
OSanSZynSB

= (30 @) o_, is bounded = 3", x;, converges (theorem 4.15)
e suppose y o x, diverges = (31" | x,) ~_, is unbounded (theorem 4.15)
—> VB >0, 3m € N such that |} " | z,| = > ", z,, > B, hence, for this m,

m m
Zyn > an > B
n=1 n=1

= (301 ¥n),o_, is unbounded = Y™, y, diverges
Series 4-13



Theorem 4.21 For p € R, the series > o7 converges if and only if p > 1.

n= lnl0
proof:
e suppose > >, np converges, assume p <1, then we have 0 < = S —5: the series
Soo0 L diverges = > %, -L diverges (theorem 4.20), which is a contradiction

m 1

e suppose p > 1, let 5, = > " | %
— we first show that s,,, < som for all m € N: by induction, we have 2™ > m for all
meN = s, =", L <32 L_g.

n=1 np — n=1 np
: 1 .
— we now show that som is bounded by 1+ —=—5:
om
1
Som = —
2m P
n=1
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Series

m 2k m
1
_ —p(k—=1) 9k _ (9k—1
<14y (2k_1)p_1+k§:1217 28— 2"+ 1) + 1)

k=1 n:2k*1+1

m m—1
=143 270Dk Z 4 3 9=k
k=1 k=0
<14 27 =14 3 (2—(p—1))’“
k=0 =0
1
=l

where the last equality is from the fact that p — 1 > 0, and using the properties of
geometric series (theorem 4.3)

— put together, we have 0 < s, < som <1+ ;—5=5—7 = (Sm)pm— is monotone
increasing and bounded = (s,,),»_; converges = > >, -L converges
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Ratio test

Theorem 4.22 Ratio test. Suppose xz,, # 0 for all n and the limit

L= lim ot
n380 [an]

exists.

o If L > 1 then Y >°  x, diverges.

o If L <1 then > > x, converges absolutely.

proof:

e suppose L > 1, then M € N such that Vn > M, % >1 = Vn>M,

|Tpi1| > |zn| = limpoo 2y #0 = Y 7 x,, diverges (theorem 4.9)

e suppose L < 1, let L<a<1
— dM € N such that VYn > M, %Sa = VYn>M, |y < alz,| =

20| < @lzn_1| < QP|zp_o| < < a"Mzy| = |2 <" Mzy|, V0> M
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— consider the partial sums of the series > | |z, |, assume m > M, we have

— hence, the sequence of partial sums (3" |z,|)

m
> el
n=1

M-1 m M-1 s
= 2 fal 2 fonl < D fanl+ D
M—-1 M—-1

Z |zn] + Z " Mlzy| = Z |xn|+|xM|Za

n=M

—~ [z m|
= E |xn|+ )
— 11—«

IN

where the last equality is from the properties of geometric series and 0 < o < 1

_, Is monotone Increasing and
m=1

bounded = >"°° | |z,| converges = > > ,, converges absolutely

Remark 423 If L =

2

o0
nln

diverges, and » 7

—5 converges.

1in theorem 4.22 then the test doesn’t apply. For example,
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4-17



Example 4.24 The series ) 7, (n—1)" converges absolutely.

2+1
proof:
Cut1 i n?
5 = — < — = lim 2 L < lim
n® +1 ns+1 n n—00 (71—221 n—o00 (n 4 1)

2:

Example 4.25 The series ) %T converges absolutely for all z € R.

proof:

2]

n—oon + 1

=0<1

n—0o0
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Root test

Theorem 4.26 Root test. Let ) 7 | x,, be a series and suppose that the limit

L= lim |z,|""
n—oo

exists.
o If L >1 then > ° x, diverges.

o If L <1 then > > x, converges absolutely.

proof:

e suppose L > 1, then IM € N s.t. Vn > M, |z,|'/" > 1 = Vn > M,
= limy oo 2y #0 = Y 7, z, diverges (theorem 4.9)

Tn| >1

e suppose L < 1, let L<a <1
— 3M € N such that Vn > M, |xn|1/"§a = VYn>M, |z,| <a"
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— consider the partial sums of the series > | |z, |, assume m > M, we have

m M-1 m M-1 00
2 fonl = D fzal + 2 fzal < D lonl + 2 lel
n=1 = n=M = n=M

M-1 M-1
< D loal + > o -2 lxnl+ZaM+"
n=M
M—

1 [eS)
=) feal+aM > a”
n=0

n=1

M-1 aM
= Z ‘x”| + 1 )
—
n=1

where the last equality is from the properties of geometric series and 0 < a < 1

— hence, the sequence of partial sums (3" ; |xn|)m | is monotone increasing and
bounded = 7 | |z,| converges = >, x,, converges absolutely

Remark 4.27 Similarly, if L = 1 in theorem 4.26 then the test doesn't apply.
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Alternating series

Theorem 4.28 Let (x,), , be a monotone decreasing sequence with lim,,_,, z,, = 0.
Then the series > > | (—1)"x;,, converges.

proof: consider the partial sums of Y ° | (—1)"z,, given by s, => " | (—1)"zp
e (z,),2, is monotone decreasing and z, -0 = Vn e N, z, > 2,41 >0

e we first show that the subsequence (s2;,),-_; converges, notice that

2m

Som = Z (—D)"zp, = —21+ 22 — 23+ - — Tam—1 + Tom (4.1)

n=1

— rearranging the terms in (4.1), since 41 < x,, Vn € N, we have

Som = (T2 — 21) + (T4 — 23) + -+ + (T2 — T2m—1)
> (x2 — 1) + (23 — x2) + - - + (T2 — Tam—1) + (T2m+t2 — Tam41)

= 52(m+1)

= (S2m),e_; is monotone decreasing

Series 4-21



— rearranging the terms in (4.1) differently, since x,, > x,+1 > 0, Vn € N, we have

Som = —x1 + (T2 — x3) + (¥4 — @5) + -+ + (T2m—2 — Tam—1) + Tam > —21

= (S2m),u_, is bounded below
— put together, we conclude that (sa.,),-_, converges, let so,,, —

e we now show that (s,,)-_, also converges to z, let € > 0

Series

Som — x| < €/2

- Soym — x = dM; € N such that Ym > My,

- x, > 0 = 3IM; € N such that Vm > My, |z;,| < €/2
let M = max{2M; + 1, My}, then Vm > M, m > 2M; + 1 and m > My

— if mis even — 5 > Mj, hence
S — x| = |s2.m — x| <€/2<¢

m=1 > Af, hence

2

— if mis odd, then m — 1 iseven and m — 1 > 2M; —
[Sm — x| = [Sm—1 — T+ Zpm| = ‘32_771,2—1 —x—i—xm’

< ‘52% —x‘ +lrm| <€/2+€/2=c¢

put together, we have (sp,),~_, converges = > >, (—1)"x, converges
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Corollary 4.29 The series > J converges but does not converge absolutely.

proof:

e since (%)Zozl is monotone decreasing with lim,HOO% =0, it follows immediately
—1 n
from theorem 4.28 that >~ | (T) converges

n n'’

e since > 7, ‘( L' ’ S0 L, and 302 | L diverges, we conclude that

Yo (771) does not converge absolutely
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Rearrangements

Theorem 4.30 Suppose y 7 | x,, converges absolutely and >~ >° | z,, = z. Leto: N —
N be a bijective function. Then, the series Y >, Ty (n) IS absolutely convergent and
S, Ty(n) = . In other words, absolute convergence implies, if we rearrange the
sequence, the new series will still converge to the same value of the original series.

proof:

o we first show > 0% | @, | converges, i.e., (301 [Ty(m)) is bounded

o
m=1
= 302 | |zn| converges = (30", |zy|),_, is bounded = 3B > 0 such that
VvmeN, Y |z, < B

- VmeN, {1,...,m} is a finite set = Ik € N such that

o({1,...,m}) C{1,... Kk},

hence,
m k
Z‘xa(n)‘: Z |z SZIxn| <B
n=1 ne€o({1,...,m}) n=1

= VmeN, > " | |Z,(n)| is bounded
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e we now show that Y " | 2,¢,) =z, let € > 0
- >z, =2 = IM, € N such that for all k > m > M, we have

m k
Zznfz <¢/2 and Z Tn| < €/2
n=1 n=m-+1

— theset {1,..., My} is finite = 3IM € N, M > M, such that
{1,..., My} Co({1,...,M}),
hence, for all m > M, let p = max(c({1,...,m})) > My, we have
o{l,....m}H={1,..., Mo} U{My+1,...,p}

— consider the partial sums of 2211 To(a), for all m > M, we have

= E mn—m:

m M, p
Zxa(n)—x ixn—x—i— Z Tn
n=1 n=1

n€o({1,...,m}) n=Moy+1
My D

< an*er Z Tn| <€/2+€/2=c¢
n=1 n=Muy+1

. m oo
= limpmsoo ),y To(n) =T = Yo To(n) =T
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