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Sequences and limits

Definition 3.1 A sequence (of real numbers) is a function z: N — R. To denote a

sequence we write (xy,)- |, where z,, is the nth element in the sequence.

e sequence need not start at n =1, e.g., the sequence z: {n € Z|n>m} — Ris

denoted (z,,)0",.

Definition 3.2 A sequence (z,),-, is bounded if there exists some B > 0 such that
|xn| < B for all n € N.

examples:

e the sequence (%)Zozl is bounded since % <1 foralln

e the sequence (n),~ ; is not bounded since for all B > 0 there exists some n > B
according to the Archimedian property

Sequences



Definition 3.3 A sequence ().~ , is said to converge to z € R if for all € > 0, there
exists an M € N such that for all n > M, we have |z, — z| < €.

The number x is called a limit of the sequence. If the limit x is unique, we write

r = lim xz,.
n—oo

A sequence that converges is said to be convergent, and otherwise is divergent.

Remark 3.4 A sequence (x,),-, is divergent if for all z € R, there exists some € > 0,
such that for all M € N, there exists an n > M, so that |z,, — z| > €.

Theorem 3.5 Let z,y € R. If for all ¢ > 0, |z — y| < ¢, then x = y.

proof: assume z #y = |z —y| > 0; take e = 3|z —y| = |z —y| < 3]z —y|
= |z —y| < 0, which is a contradiction

Theorem 3.6 If (z,,),~ , converges to x and y, then z = y, i.e., a convergent sequence
has a unique limit.
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proof: let ¢ > 0
o (xy);”, converges to x = IM; € N, Vn > M, |z, — x| < €/2

o (z);2, converges toy = IMy € N, Vn > My, |z, —y| <¢/2
o let M = My + M>, then M > My and M > M>, then we have
|z — x| <€/2 and |zp —y| < €/2,

hence,

|z —y|=|(x —zm) + (xpr — y)|
<l|z—zm|+ |y —2M]
<€/2+¢€/2

=c

e according to theorem 3.5, we have x =y

Remark 3.7 Sometimes we write ‘'z, — = as n — oo’ to mean z = lim,, .o ,,. We
may also avoid the ‘as n — oo’ part if the limiting process is clear from the context.
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Example 3.8 Given the sequence (z,,),-, with z,, = ¢ € R for all n € N, we have
lim,, 00 Tp, = C.

proof: let ¢ > 0, M =1, then for all n > M, we have |z, —c¢|=|c—¢c|=0<e¢

Example 3.9 The sequence (%)ZO: converges to x = 0, i.e., limy, % =0.

1

proof: let € > 0, choose an M € N such that M > 1/e (such an M exists according
to the Archimedian property), then for all n > M, we have |1 — 0| = |1| < §; <e

o0
Example 3.10 The sequence (m)n=1 converges to z = 0.

proof: let ¢ > 0 choose M € N such that M > e~!/2, then for all n > M, we have
1 1

< — <
2n M

1 1
n?+2n 4100 ‘_n2+2n+100

Sequences

3-5



Example 3.11 The sequence (xy,),-; where z,, = (—1)" is divergent.

proof: let x € R, M € N, then

xar — zarsn| = [(-1)Y = (=M =2

= 2=|(ay—2)+ (@ —2py1)| <l|zm — 2|+ |xp41 —
= Jzy—2z[>1 or |xpgr—z|>1,

i.e., let e =1, n = M, we have either |z, — x| > €or |z,41 —z| > €

Theorem 3.12 If (z,,),- ; is convergent, then (z,),~ is bounded.

proof:

® suppose (:cn)zozl converges to x, let ¢ = 1, then there exists some M € N such
that foralln > M, |z, —z| <1 = =, < |z| +1
e let B = max{|z1], |x2|, ..., |xpm]|, |x| + 1}, since x,, < |xy,| for alln € N, n < M,

and z,, < |z| + 1 for all n > M, we have B > |z,]| for alln € N

Sequences



Monotone sequences

Definition 3.13

e A sequence (zy),- is monotone increasing if z,, <z, for all n € N.

e A sequence (z,),. is monotone decreasing if =, > z, for all n € N.

e If (z,),- is either monotone increasing or monotone decreasing, we say the
sequence (z,,),2, is monotone (or monotonic).

examples:

o . .
e the sequence (%)nzl is monotone decreasing

e the sequence (—1)™ is monotone increasing

e the sequence ((—1)"); is not monotone
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Theorem 3.14 A monotone sequence (z,,),-, converges if and only if it is bounded.

o0

e If the sequence (z,,),

is monotone increasing and bounded, then
lim z, = sup{z, | n € N}.
n—oo

e If the sequence (x,,),. ; is monotone decreasing and bounded, then

lim z,, = inf{x, | n € N}.
n—o0

proof: we prove for monotone increasing sequences, the other case is similar

e suppose (1)~ is convergent, according to theorem 3.12, it is bounded
e suppose (z,),-; is monotone increasing and bounded
- (zn),2, is monotone increasing = x, < T4 foralln € N

— (@), is bounded => the set {z,, | n € N} has supremum z = sup{z,, | n € N}

— let € > 0, according to theorem 2.17, there exists some M € N such that
r—e<xp <z then for all n > M, we have

r—e<zazy<zp<z<z+e = |z, —z|<e¢
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Example

recall the following lemma from example 1.8 for the proof of the next theorem:

Lemma 3.15 Bernoulli’s inequality. If x > —1 then (x +1)" > 1+ nx for all n € N.

Theorem 3.16 If ¢ € (0,1) then the sequence (¢");”; converges and lim,,_,, ¢" = 0.

, 1
n)OO

n—1 does not converge.

If ¢ > 1, the sequence (¢

proof:

e if ¢ > 1, we show that the sequence (¢")> ; is unbounded (and hence does not
converge):
— let B > 0, then there exists some n € N, n > % such that

A"=(c=1)+1)">1+n(c—1)>n(c—1)>B

(the first inequality is because of lemma 3.15)
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e if c € (0,1), we first show that (¢");” ; is monotone decreasing and bounded (and

hence, convergent), i.e., show that Al <er<cforallneN by induction:
— suppose n =1 = ¢? < ¢ < ¢, the first inequality holds since 0 < ¢ < 1

— suppose . > 1, and "1 < ¢™ < ¢, then we have ¢"T2 < " Tl < ¢ < ¢
let lim,,_yoo ¢ = L, we now show that L =0
— let € > 0, then there exists some M & N such that for all n > M such that

1
lc" — L] < 5(1 —c)e

— hence, we have

(1—¢)|L| = |L - cL|
— (L = MH) 4 (M D)
<|L — M 4 ¢|cM — I
<|L—cMH 4+ |cM — L

< %(1 —c)e+ %(1 —c)e
= (1 - 6)67

i.e., |L| < e for all € > 0 (according to theorem 2.14) — |L|<0 = L =0
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Subsequences

Definition 3.17 Let ()~ ; be a sequence and (n;);°, be a strictly increasing sequence

of natural numbers. The sequence (@n,)seq is called a subsequence of (z,),” ;.

example: consider the sequence (z,,),-, = (n),~,, i.e., 1,2,3,4,...
e the following are subsequences of (), ;:
- 1,3,5,7,9,11,..., described with ()2, = (T2i-1);o;

- 2,4,6,8,10,12, ..., described with (z,,);o, = (z2:);o;

- 2,3,5,7,11,13, ..., described with (z,,);—, where n; are primes

e the following are not subsequences of (z,,),~;:
- 1,1,1,1,1,1,...

- 1,1,3,3,5,5,...
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Theorem 3.18 If lim,, o x,, = x, then all subsequences of (z,,),- ; converge to z.

proof:

o let (zy,);o, be a subsequence of ()77,
e let € > 0, then there exists some My € N such that |z, — z| < € for all n > M)
o let M = My, then for all ¢ > M, since n; > i > M = My, we have

|Tn, — x| <€

Remark 3.19 Theorem 3.18 implies that the sequence ((—1)"),"; is divergent.
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Sequences

Inequalities involving limits

Theorem 3.20 The sequence (z,,),-; converges with lim, . 2, = x if and only if

the sequence (|z, — x|),—, converges with lim, . |z, — x| = 0.

proof: let ¢ > 0
e suppose lim,, o T, = z, then IMjy € N such that Vn > My, |z, — z| < ¢; let
M = My, then ¥Vn > M = My, |z, — 2 — 0| = |z, — x| <€
e suppose lim, o0 |2, — x| =0, then IM € N, Vn > M, |z, —z — 0| < ¢, i.e.,
|zy, — x| <€

o0

o2 (bn)o2y, and (zy);2 be sequences

Theorem 3.21 Squeeze theorem. Let (ay)
such that

an < x, < by

for all n € N. Suppose that (a,),-, and (b,),-; converge and

lim a, =z = lim b,.
n—oo n—oo

Then (z,,),2; converges and lim,, o T, = .
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proof: let ¢ > 0

e a, > x —> IM; € N such that Vn > My, |a, — x| < €
e b, > x = IMs € N such that Vn > Mo, |b, — z| <€

e a,<x,<b, = a,—z<1)

—z<b,—z

take M = max{M;i, Ms}, then Vn > M, we have

—e<ap—cr<zxp—ax<by—x<€e = |r,—x|<e€

2

Example 3.22 The sequence (

n > : : n?
m) L converges with hmn_>oo ey

n—=

=1

proof:

e let € > 0, we have

n2

n2+n+1

2
.0—>03nd1—>O:> m

n

Sequences
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Cn24+n+1| " n2+n n
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Theorem 3.23 Let (z,,),~; and (yn),-, be sequences.

o If (z,,),2 and (yp )y converge and z,, <y, for all n € N, then we have

o If (z,,),- converges and a < z,, < b for all n € N, then a < lim;,_,00 z,, < b.

proof: we show the first statement since the second statement can then be proved by
considering sequences (yy ), and (z,),—; where y, = a <z, <b= 2z,

o let lim, o0 , = x and limy, 00 Y = Y, SUPpPOSE T > ¥y

er>y = x—y>0lete="5%>0

o z, >z = IM; € Nst.Vn>M, |z, —z| <

® Yy =y = IMp e Nsit.Vn> M, |y, —y| < F

let M = max{My, M}, we have zpy —x > =5 and yy — y < %57, hence,

r—y Tty r—y
> —_ = =
Ty > T 5 5 Y+ 5

> YM,

which contradicts to x,, < y,, for all n € N
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Operations involving limits

Theorem 3.24 Suppose lim,_, o , = & and limy,_, o0 Y = ¥.
e The sequence (Zy, + Yn)y is convergent and limy, o0 (Zy + yn) = = + y.
e For all c € R, the sequence (cxy,),- ; is convergent and lim,,_, czy, = cx.

e The sequence (Z,yn)ne; is convergent and limy, oo Zpyn = Ty.

oo
o If y, # 0 for all n € N and y # 0, then the sequence (%) ) is convergent and
n ) n=
proof:

e toshowzx, —»z, ¥y, >y = Tpn+yn, —>x+y, lete>0
- x, > & = IM; € N such that Vn > My, |z, — x| < ¢/2

- yp >y = IM, € N such that Vn > My, |y, — y| < €/2
— let M = max{M;j, M>}, then for all n > M, we have

[(@n +yn) — (@ +y)| < |zn —2[+yn —yl <€/2+€/2=¢
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e to show x,, > — cx,, - cx, let e >0
- x, > = IM € N such that VYn > M, |z, — ar:|<|

— then for all n > M, we have |cz,, — cx| = |c||z, — x| < BT

e we show that x, = =, yp >y = Zpyn — V-
- Zp =T = |z, —2|—0

— hence, we have

cH—l6

el o ¢

cH»l

Yn =Yy = |yn —y| — 0, and (y,,),—, is bounded, i.e., B >0, |y,| < B

0 < |znyn — 2yl = |TnYn + 2Yn — TYn — Y|
== |(xn - I)yn + (yn - y)I|

< an — 2|[yn| + [yn —

hence, according to theorem 3.21, |z,y, — 2y| — 0

Sequences

yllz|

— y||z|

Tp—2| >0 = |2, —2z|B—0,
lyn —y| = 0 = |yn — yl|z| = O, then |z, — z|B + |y, —

yllz] =0
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e toprove z, > &, yp = Yy (yp #0 foralln e N, y #0) = %%ﬁ,wefirst

show that there exists some b > 0 such that |y, | > b:
- Iete:%,then Ynp >y = IM eNst.Vn> M, |y, —y| < ‘—gl

— then for all n > M, we have

Y Y
WL o=l il oll = ol > 2
(the second inequality is from the reverse triangle inequality)
— take b = min{|y1|,...,|yml, |y|/2}, we have |y,| > b foralln e N
we then show that <yi) converges with lim,, . yi = %: note that
"/ n=1
11 - - -
0< ‘: Yn y': yn — Y < |Yn yl’
Yn Y Yny |ynl |yl bly|

< =

[yn —y| 1 1 1 1
and y, >y = bl — 0, hence, o Y — 0, t.e., ™ —

put together, x, — x and yi — % — ;—” — i
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Theorem 3.25 If ().~ is a convergent sequence with lim,, o, z, = z, and z,, > 0
for all n € N, then the sequence (,/wn)zo:l is convergent and lim,, o0 \/ZTr, = /7.

proof:
e suppose z = 0, let € > 0, then we have z,, -0 = dM € N s.t. Vn > M,
|tn — 0| = |zn| < € = VYn > M, |\/Zn — VT| = |/Tn| < Ve < €

e suppose = > 0, we have

(Van = VO + Vo) | _ e —o] _ |wn =2l
Va4 Ve VantVE T Vi

0< [Vay — V| =

hence, z, > 2 = |z, — 2| >0 = ‘:””7\/;1'%0 = [\/Tn — Vx| =0

Remark 3.26 Suppose the sequence (xn)le is convergent and lim,, oo z, = . One
can prove that lim, . xfj =gk by induction. Moreover, if z,, > 0 for all n € N, one
can also prove that lim,,_, &z, = ¥/x.
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Theorem 3.27 If (z,,)77, is convergent and lim,,_,o 2, = z, then (|z,,]),, is conver-
gent and limy, o0 |2y| = |2].

proof: let ¢ >0
e r, - x — IM € N such that Vn > M, |z, —z| < ¢

e by reverse triangle inequality, for all n > M, we have

|n| = |2]| < |2n — 2] <€
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Some special sequences

Theorem 3.28 If p > 0 then lim,, ;.o n P = 0.

proof: let € > 0, choose M € N such that M > (1/€)"/P, then for all n > M,
[n™P — 0| =1/nP <1/MP <e

Theorem 3.29 If p > 0 then lim,_,o p'/™ = 1.

proof:
o if p=1, limy oo p*/™ = limy, o0 11/ =1
e suppose p > 1
—p>1 = pt/r>1V/n=1 — pt/"—1>0

— according to the Bernoulli's inequality (example 1.8), we have

, n , ~1
1+ =1) =140V 1) = s pro1>0
n
-kl 50 = p/"-1-50 = p/" 1

e if0<p<1l = 1/p>1, hence, lim,_,00 p"/™ = lim,, ;00 W =1/1=1
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Theorem 3.30 The sequence (nl/”)zo: is convergent and lim,,_,oc n'/™ = 1.

1

proof:
e one can simply show that /™ > 1 by induction = n!'/? —1 >0

e according to the binomial theorem, for all ,y € R and n € N, we have
— |
(z+9)" = Xhoo ()" *y", where () = gy

1/n

eletx=1 y=n"/"—1, forall n > 1, we have

n=(1+n"_1)" = znj (Z) (¥ —1)f > <g> (/" — 1)

k=0

n! 1/n 2_1 1/n 2
= n272!(n_2)!(n —1) —gn(n—l)(n -1)
2 1/n
— >n/"—=1>0
n—1
— /" 150 = n'/" 51
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Limit superior and limit inferior

Definition 3.31 Let (a:n)ff:l be a bounded sequence. Define, if the limits exist,

(inf{xg | K > n}).

limsupz, = lim (sup{zy | k >n}) and liminfz, = lim
n—00 n—00 n—00 n—00

They are called the limit superior and limit inferior, respectively.

Theorem 3.32 Let (x,,),.; be a bounded sequence, and let
an, =sup{xi | k >n} and b, =inf{xy | k > n}.

Then:

e The sequence (ay),- ; is monotone decreasing and bounded.
e The sequence (b,),~; is monotone increasing and bounded.

e We have liminf,, ;o x, < limsup,,_, ., Zn.
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proof:

e we first prove the following lemma:

Lemma 3.33 Let AL BC R, A,B # 0, and A, B are bounded. If A C B then we
have inf B < inf A < sup A < sup B.

- AC B = sup B is an upper bound of A = sup A <sup B
— similarly, inf B is an lower bound of A = inf B < inf A
- AB#0) = infA<supA = infB<infA<supA<supB

e we now show the first two statements in the theorem
— (xn),—, is bounded = there exists some B > 0 such that —B < z,, < B

— foralln € N, we have {z, | k >n+ 1} C {xy | k > n} C {z, | n € N}, according
to lemma 3.33, this implies that

-B S bn S bn+1 S Ap+1 S ap S B,

i.e., (an), - is bounded monotone decreasing and (b,,),-; is bounded monotone
increasing (= (an),., and (b,),—, converge)

e according to the previous inequalities, we have b, < a, foralln e N =
limy, 00 by, < limy, 500 @y, (theorem 3.23), i.e., liminf,, o 2, < limsup,,_, . =y
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Example 3.34 We have limsup,,_,,, (—1)" =1 and liminf,,_,o, (—1)" = —1.

proof: Vn € N, the set {(—1)" |k >n} = {-1,1} = sup{(-1)" |k >n} =1,
inf{(-1)* | k >n} = -1 = limsup, .., (—1)" =1 and liminf, o (—1)" = —1

Example 3.35 We have lim supnﬁoo% = liminfnﬁooi =0.

proof: for all n € N, we have sup{1/k | k > n} = 1/k and inf{1/k | k > n} =0,
hence,

1
limsup— = lim — =0 and liminf— = lim 0=0
n—soo N n—00 n—oo N n—oo
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Bolzano-Weierstrass theorem

Theorem 3.36 Let (xn)zo:l be a bounded sequence. Then, there exists subsequences
($n1);>i1 and (xml)fil such that

lim z,, =limsupx, and lim z,,, =liminfx,.
1—00 n—00 1—00 n—r00

proof: let a,, = sup{zy | k > n}
e a; =sup{xg | k>1} = 3In; >1suchthata — 1<z, <a
® ap, 11 =sup{xg |k>n1+1} = Ing >ny st an, 41 — % < Tpy < Gyl
® ap, 11 =sup{xg |k >na+ 1} = Ing >ny s.t. apy41 — % < Tng < Gpgtil
e repeatedly, we can find a sequence of integers n; < ng < --- such that

An;_1+1 — ; < Ty, < An;_1+1

(defining ng = 0)

° (am_1+1)z1 is a subsequence of (ay),, and lim,_,~ a, = limsup,,_, . x
= limy o0 @, ,+1 = limsup,,_,, zn = limy, o Ty, = limsup,,_,, Tn

e similarly, we can find a subsequence of (x,),. ; that converges to liminf, . =,
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Theorem 3.37 Bolzano-Weierstrass. Every bounded sequence consisting of real num-
bers has a convergent subsequence.

Theorem 3.38 Let (x,),., be a bounded sequence. Then, (z,),-; converges if and
only if liminf,,_,. , = limsup,,_, ., Zn.

proof:

e suppose lim,_,- Zn = x, then the subsequences that converge to limsup,, ,.,
and liminf,, o, z,, must converge to x (theorem 3.18)

e suppose limsup,,_,., ©, = liminf, , x, =z, for all n € N, according to the
squeeze theorem,

inf{zy | k >n} <z, <sup{zy |k >n} = lim z, =2
n—o0
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Cauchy sequences

Definition 3.39 A sequence (x,,),- ; is Cauchy if for all ¢ > 0, there exists an M € N
such that for all n,k > M, we have |z, — x| < e.

Remark 3.40 A sequence (z,),-, is not Cauchy if there exists some ¢ > 0, such that
for all M € N, there exists some n, k > M, so that |z, — x| > €.

Example 3.41 The sequence (%):}:1 is Cauchy.

proof: let € > 0, choose M € N such that M > 2/¢, then for all n,k > M, we have

2<
M

1 1

—'S < €

| =

1
—+
n

n k

Example 3.42 The sequence ((—1)").~, is not Cauchy.

proof: let e=1, M e N, n =M, k=M +1, then |(—1)" — (-1)F| =2 >
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Theorem 3.43 If the sequence (x,,),- is Cauchy, then (x,),-, is bounded.

proof:
o let e=1, (z,)5o, is Cauchy = 3IM € N such that Vn,k > M, |z, — x| <1

elethk=M = Yn>M, |z, —axm| <1 = Vn>DM, |z,| <|zpm|+1

e take B = max{|z1|,|z2],...,|xm], |xp]| + 1}, then |z,| < B foralln e N

Theorem 3.44 If the sequence (z,,), ; is Cauchy and a subsequence (z, );=, converges,
then (z,,),-, converges.

proof: let ¢ >0

o0

o (z).7, is Cauchy = 3M; € N such that Vn,k > M, |z, — zi| < €/2
o let lim; yo0 Tp, = ¢ == IM> € N such that Vi > My, |z, — x| <€/2
o let M = max{Mi, Ma}, then Vk > M, ny, > k > M, ni > k > Mo, hence,

|z — x| <ok — Xn, | + |20, — 2| <€/24+€/2=¢
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Theorem 3.45 Completeness of the real numbers. A sequence of real numbers (x,,),7

is Cauchy if and only if the sequence (z,,),., is convergent.

proof:

e suppose (), is Cauchy = (z,,),-, is bounded (theorem 3.43) = there
exists convergent subsequence of (z,,),-; (theorem 3.37) = (z,),~, is
convergent (theorem 3.44)

e suppose lim,_, T, = z, let € > 0, then IM € N, Vn > M, |z, — x| < €/2; let
k> M, then |z, — x| < |z, —z|+ |z — 2| <€/2+€/2=¢

Remark 3.46 We say a set is Cauchy-complete, or just complete, if all Cauchy
sequence of elements in the set converges to some point in the set. Theorem 3.45
indicates that R is complete.

Remark 3.47 The set Q is not complete. Since Q does not have the least upper bound
property, then, e.g., sup{z, | n € N}, sup{zy | k > n}, etc., might not exist in Q.

Sequences 3-30



