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Ordered sets

Definition 2.1 An ordered set is a set S with a relation < called an ‘ordering’ such
that:

1. Trichotomy. For all x, y ∈ S, either x < y, x = y, or x > y.

2. Transitivity. If x, y, z ∈ S have x < y and y < z, then x < z.

examples:

• Z is an ordered set with ordering m > n ⇐⇒ m− n ∈ N

• Q is an ordered set with ordering p > q ⇐⇒ p− q = m/n for some m,n ∈ N

• Q×Q is an ordered set with dictionary ordering (q, r) > (s, t) ⇐⇒ q > s, or
q = s and r > t

• the set P(N) with ordering defined by A ≺ B if A ⊆ B is not an ordered set
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Least upper bound property

Definition 2.2 Let S be an ordered set and let E ⊆ S, then:

• If there exists some b ∈ S such that x ≤ b for all x ∈ E, then E is bounded
above and b is an upper bound of E.

• If there exists some c ∈ S such that x ≥ c for all x ∈ E, then E is bounded
below and c is a lower bound of E.

• If there exists an upper bound b0 of E such that b0 ≤ b for all upper bounds b of
E, then b0 is the least upper bound or the supremum of E, written as

b0 = supE.

• If there exists a lower bound c0 of E such that c0 ≥ c for all lower bounds c of E,
then c0 is the greatest lower bound or the infimum of E, written as

c0 = inf E.
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examples:

• S = Z and E = {−2,−1, 0, 1, 2}, then inf E = −2 and supE = 2

• S = Q and E = {q ∈ Q | 0 ≤ q < 1}, then inf E = 0 and supE = 1 /∈ E, i.e.,
the supremum or infimum need not be in E

• S = Z and E = N, then inf E = 1 but supE does not exist

Definition 2.3 Least upper bound property. An ordered set S has the least upper bound
property if every E ⊆ S which is nonempty and bounded above has a supremum in S.

example: −N = {−1,−2,−3, . . .}, to show this (informally), suppose E ⊆ −N is
bounded above, then −E ⊆ N is bounded below and according to the well ordering
principle, −E has a least element x ∈ −E, and thus −x = supE
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Theorem 2.4 If x ∈ Q and

x = sup{q ∈ Q | q > 0, q2 < 2},

then x ≥ 1 and x2 = 2.

proof: let E = {q ∈ Q | q > 0, q2 < 2}
• x ≥ 1 since 1 ∈ E =⇒ supE ≥ 1

• we show x2 ≥ 2 by contradiction: suppose x2 < 2, let h = min{1
2 ,

2−x2

2(2x+1)}
– since x ≥ 1 and x2 < 2, we have 0 < h ≤ 1/2 < 1

– h < 1 =⇒ (x+ h)
2
= x2 + 2hx+ h2 < x2 + 2hx+ h

– since h ≤ 2−x2

2(2x+1) , we have

(x+ h)
2
< x2 + (2x+ 1)h ≤ x2 +

1

2
(2− x2) < x2 + 2− x2 = 2 =⇒ x+ h ∈ E

– h > 0 =⇒ x+ h > x, but x+ h ∈ E =⇒ x is not an upper bound for E, i.e.,
x ̸= supE, which is a contradiction

Real numbers 2-5



• we now show x2 ≯ 2 by contradiction: suppose x2 > 2, let h = x2−2
2x

– since x2 > 2 and x ≥ 1, we have h > 0

– h > 0 =⇒ (x− h)
2
= x2 − 2hx+ h2 > x2 − 2hx = x2 − (x2 − 2) = 2

– let q ∈ E, then q2 < 2 < (x− h)
2, hence

(x− h)
2 − q2 = ((x− h) + q)((x− h)− q) > 0 =⇒ (x− h)− q > 0,

i.e., x− h > q for all q ∈ E =⇒ x− h is an upper bound for E

– h > 0 =⇒ x > x− h =⇒ x ̸= supE, which is a contradiction

• therefore, x2 = 2
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Theorem 2.5 The set E = {q ∈ Q | q > 0, q2 < 2} does not have a supremum in Q.

proof (by contradiction): suppose there exists some x ∈ Q such that x = supE

• by theorem 2.4, we have x ≥ 1 and x2 = 2

• in particular, x > 1 since if x = 1 =⇒ x2 = 1 ̸= 2

• x ∈ Q =⇒ there exist m,n ∈ N (m > n) such that x = m/n, i.e., m = nx ∈ N

• let S = {k ∈ N | kx ∈ N} ⊆ N, then S ̸= ∅ since n ∈ S

• by the well ordering property, there is a least element k0 ∈ S

• let k1 = k0(x− 1) = k0x− k0 ∈ Z, in particular, k1 ∈ N since x > 1 =⇒ k1 > 0

• x2 = 2 =⇒ x < 2 as otherwise x2 ≥ 4, hence

k1 = k0(x− 1) < k0(2− 1) = k0 =⇒ k1 /∈ S

• k1 = k0(x− 1) =⇒ k1x = k0x
2 − k0x, since x2 = 2, we have

k1x = 2k0 − k0x = k0 − k0(x− 1) = k0 − k1 ∈ N =⇒ k1 ∈ S,

which is a contradiction
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Fields

Definition 2.6 A set F is a field if it has two operations: addition (+) and multiplication
(·) with the following properties.

(A1) If x, y ∈ F then x+ y ∈ F .

(A2) Commutativity. For all x, y ∈ F , x+ y = y + x.

(A3) Associativity. For all x, y, z ∈ F , (x+ y) + z = x+ (y + z).

(A4) There exists an element 0 ∈ F such that 0 + x = x = x+ 0 for all x ∈ F .

(A5) For all x ∈ F , there exists a y ∈ F such that x+ y = 0, denoted by y = −x.

(M1) If x, y ∈ F then x · y ∈ F .

(M2) Commutativity. For all x, y ∈ F , x · y = y · x.
(M3) Associativity. For all x, y, z ∈ F , (x · y) · z = x · (y · z).
(M4) There exists an element 1 ∈ F such that 1 · x = x = x · 1 for all x ∈ F .

(M5) For all x ∈ F \ {0}, there exists an x−1 ∈ F such that x · x−1 = 1.

(D) Distributativity. For all x, y, z ∈ F , (x+ y) · z = x · z + y · z.
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examples:

• Q is a field

• Z is not a field since it fails (M5)

• Z2 = {0, 1} where 1 + 1 = 0 (mod 2) is a field

• Z3 = {0, 1, 2} with c = a+ b (mod 3), i.e.,

2 + 1 = 3 = 0 and 2 · 2 = 4 = 3 + 1 = 1,

is a field

Theorem 2.7 If x ∈ F where F is a field then 0x = 0.

proof: xx = (x+ 0)x = xx+ 0x =⇒ 0x = 0

Real numbers 2-9



Definition 2.8 A field F is an ordered field if F is also an ordered set with ordering
< and satisfies:

1. For all x, y, z ∈ F , x < y =⇒ x+ z < y + z.

2. If x > 0 and y > 0 then xy > 0.

If x > 0 we say x is positive, and if x ≥ 0 we say x is nonnegative.

examples:

• Q is an ordered field

• Z2 = {0, 1} where 1 + 1 = 0 is not a ordered field
(if 0 > 1 =⇒ 0+1 > 1+1 =⇒ 1 > 0; if 1 > 0 =⇒ 1+1 > 1+0 =⇒ 0 > 1)
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Theorem 2.9 Let F be an ordered field and x, y, z, w ∈ F , then:

• If x > 0 then −x < 0 (and vice versa).

• If x > 0 and y < z then xy < xz.

• If x < 0 and y < z then xy > xz.

• If x ̸= 0 then x2 > 0.

• If 0 < x < y then 0 < 1/y < 1/x.

• If 0 < x < y then x2 < y2.

• If x ≤ y and z ≤ w then x+ z ≤ y + w.

Theorem 2.10 Let x, y ∈ F where F is an ordered field. If x > 0 and y < 0 or x < 0
and y > 0, then xy < 0.

proof:

• x > 0, y < 0 =⇒ x > 0, −y > 0 =⇒ −xy > 0 =⇒ xy < 0

• x < 0, y > 0 =⇒ −x > 0, y > 0 =⇒ −xy > 0 =⇒ xy < 0
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Theorem 2.11 Greatest lower bound. Let F be an ordered field with the least upper
bound property. If A ⊆ F is nonempty and bounded below, then inf A exists in F .

proof: let B = {−x | x ∈ A}
• A ⊆ F bounded below =⇒ ∃a ∈ F , ∀x ∈ A, a ≤ x =⇒ ∃a ∈ F , ∀x ∈ A,
−a ≥ −x =⇒ ∃a ∈ F , ∀x ∈ B, −a ≥ x =⇒ B ⊆ F has an upper bound −a
(this also shows that if a is a lower bound of A then −a is an upper bound of B)

• F has the least upper bound property =⇒ supB ∈ F

• let c = supB, then c ≥ x, ∀x ∈ B =⇒ −c ≤ −x, ∀x ∈ B =⇒ −c ≤ x,
∀x ∈ A =⇒ −c ∈ F is an lower bound of A

• we also have c ≤ −a with a being a lower bound of A =⇒ −c ≥ a =⇒ −c ∈ F
is the greatest lower bound of A, i.e., −c = inf A ∈ F
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Real nubmers

Theorem 2.12 There exists a “unique” ordered field, labeled R, such that Q ⊆ R and
R has the least upper bound property.

• one can construct R using Dedekind cuts or as equivalence classes of Cauchy
sequences.

Theorem 2.13 There exists a unique r ∈ R such that r ≥ 1 and r2 = 2, i.e.,
√
2 ∈ R

but
√
2 /∈ Q.

proof: let E = {x ∈ R | x > 0, x2 < 2} ⊆ R

• we have x < 2 for all x ∈ E (since if x ≥ 2 =⇒ x2 ≥ 4) =⇒ E is bounded
above =⇒ supE exists in R

• let r = supE, using the same proof for theorem 2.4 we have r ≥ 1 and r2 = 2

• to show the uniqueness, suppose r̃ ≥ 1, r̃2 = 2, then

r2 − r̃2 = 0 =⇒ (r + r̃)(r − r̃) = 0 =⇒ r − r̃ = 0 =⇒ r = r̃

(since r ≥ 1, r̃ ≥ 1 =⇒ r + r̃ > 0)
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Theorem 2.14 If x ∈ R satisfies x < ϵ for all ϵ ∈ R, ϵ > 0, then x ≤ 0.

proof by contradiction:

• suppose x > 0 satisfies x ≤ ϵ for all ϵ > 0

• x > 0 =⇒ 2x > x > 0 =⇒ x > x/2 > 0

• take ϵ = x/2 we have x > ϵ > 0, which is a contradiction
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Archimedian property

Theorem 2.15 Archimedian property. If x, y ∈ R and x > 0, then there exists an
n ∈ N such that nx > y.

proof by contradiction:

• suppose nx ≤ y for all n ∈ N =⇒ ∀n ∈ N, n ≤ y/x =⇒ N is bounded above
by y/x =⇒ there exists supN ∈ R

• let a = supN =⇒ a− 1 < a is not an upper bound of N =⇒ ∃m ∈ N,
a− 1 < m =⇒ a < m+ 1 ∈ N =⇒ a is not an upper bound of N, which is a
contradiction

Theorem 2.16 Density of Q. If x, y ∈ R and x < y then there exists some r ∈ Q such
that x < r < y.

proof:

• first suppose 0 ≤ x < y, by the Archimedian property, we have

n(y − x) > 1 =⇒ ny > nx+ 1

for some n ∈ N
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• let S = {k ∈ N | k > nx} ⊆ N, by Archimedian property, there exists some
p ∈ N such that p > nx =⇒ S ̸= ∅

• by the well ordering property, there is a least element m ∈ S such that m > nx

• m ∈ N =⇒ m ≥ 1

• if m = 1, then m− 1 = 0 =⇒ nx ≥ m− 1 = 0 since x ≥ 0

• if m > 1, then m− 1 ∈ N but m− 1 /∈ S since m > m− 1 is the least element
=⇒ nx ≥ m− 1 =⇒ m ≤ nx+ 1 < ny

• hence, we have
nx < m < ny =⇒ x < m/n < y

for some m,n ∈ N, i.e., there exists an r = m/n ∈ Q such that x < r < y

• now suppose x < 0, if x < 0 < y then simply take r = 0; if x < y ≤ 0, we have
0 ≤ −y < −x, thus there exists some r̃ ∈ Q such that

−y < r̃ < −x =⇒ x < −r̃ < y

(by the first case), i.e., we have x < r < y by taking r = −r̃
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Theorem 2.17 Suppose S ⊆ R is nonempty and bounded above. Then, x = supS if
and only if:

1. x is an upper bound of S.

2. For all ϵ > 0, there exists some y ∈ S such that x− ϵ < y ≤ x.

proof:

• first suppose x = supS

– obviously, x is an upper bound of S

– for all ϵ > 0, we have x > x− ϵ =⇒ x− ϵ is not an upper bound of S, i.e., there
exists some y ∈ S such that x− ϵ < y ≤ x

• now suppose x is an upper bound of S, and satisfies x− ϵ < y ≤ x for all ϵ > 0
and for some y ∈ S, we only need to show that for all z that is an upper bound of
S, we have x ≤ z

– assume there exists an upper bound z of S smaller than x, i.e., y ≤ z < x for all
y ∈ S

– take ϵ = x− z > 0 (since x > z) =⇒ x ≥ y > x− ϵ = x− x+ z = z =⇒ y > z
for some y ∈ S, i.e., z is not an upper bound of S, which is a contradiction

Real numbers 2-17



Theorem 2.18 Let S = {1− 1
n | n ∈ N}, then supS = 1.

proof:

• if n ∈ N, then 1− 1
n < 1 =⇒ 1 is an upper bound of S

• let ϵ > 0, then by the Archimedian property, for some n ∈ N, we have

nϵ > 1 =⇒ ϵ >
1

n
=⇒ −ϵ < − 1

n
=⇒ 1− ϵ < 1− 1

n
≤ 1

by theorem 2.17, we have supS = 1

Remark 2.19 We have similar property as theorem 2.17 for infimum. Suppose S ⊆ R
is nonempty and bounded below, then x = inf S if and only if:

• x is a lower bound of S.

• For all ϵ > 0, there exists some y ∈ S such that x ≤ y < x+ ϵ.
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Using supremum and infimum

Definition 2.20 For x ∈ R and A ⊆ R, define

x+A = {x+ a | a ∈ A}, xA = {xa | a ∈ A}.

Theorem 2.21 Let A ⊆ R be nonempty, we have:

• If x ∈ R and A is bounded above, then sup(x+A) = x+ supA.

• If x > 0 and A is bounded above, then sup(xA) = x supA.

proof:

• suppose x ∈ R and A is bounded above:
– for all a ∈ A, we have a ≤ supA =⇒ x+ a ≤ x+ supA, i.e., the set x+A is

bounded by x+ supA

– let ϵ > 0, for some b ∈ A, we have

supA− ϵ < b ≤ supA =⇒ (x+ supA)− ϵ < x+ b ≤ x+ supA,

i.e., sup(x+A) = x+ supA
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• suppose x > 0 and A is bounded above:

– for all a ∈ A, a ≤ supA =⇒ xa ≤ x supA, i.e., the set xA is bounded by x supA
– let ϵ > 0 =⇒ ϵ/x > 0, for some b ∈ A, we have

supA− ϵ/x < b ≤ supA =⇒ x supA− ϵ < xb ≤ x supA,

i.e., sup(xA) = x supA

Remark 2.22 Similarly, we can also show that:

• If x ∈ R and A is bounded below, then inf(x+A) = x+ inf A.

• If x > 0 and A is bounded below, then inf(xA) = x inf A.

• If x < 0 and A is bounded below, then sup(xA) = x inf A.

• If x < 0 and A is bounded above, then inf(xA) = x supA.

Theorem 2.23 Let A,B ⊆ R where x ≤ y for all x ∈ A, y ∈ B, then supA ≤ inf B.

proof: for all x ∈ A, y ∈ B, x ≤ y =⇒ B is bounded below by x =⇒ x ≤ inf B
=⇒ A is bounded above by inf B =⇒ supA ≤ inf B
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Absolute value

Definition 2.24 If x ∈ R, we define the absolute value of x as

|x| =

{
x x ≥ 0

−x x < 0.

Theorem 2.25

• |x| ≥ 0, and, |x| = 0 if and only if x = 0.

• | − x| = |x| for all x ∈ R.

• |xy| = |x||y| for all x, y ∈ R.

• |x|2 = x2 for all x ∈ R.

• |x| ≤ y if and only if −y ≤ x ≤ y.

• −|x| ≤ x ≤ |x| for all x ∈ R.
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Triangle inequality

Theorem 2.26 Triangle inequality. For all x, y ∈ R,

|x+ y| ≤ |x|+ |y|.

proof: let x, y ∈ R

• x+ y ≤ |x|+ |y|

• −x+−y ≤ | − x|+ | − y| = |x|+ |y| =⇒ −(|x|+ |y|) ≤ x+ y

• hence, we have

−(|x|+ |y|) ≤ x+ y ≤ |x|+ |y| =⇒ |x+ y| ≤ |x|+ |y|

Corollary 2.27 Reverse triangle inequality. For all x, y ∈ R,∣∣|x| − |y|
∣∣ ≤ |x− y|.
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Uncountabality of the real numbers

Definition 2.28 Let x ∈ (0, 1] and let d−i ∈ {0, 1, . . . , 9}. We say that x is represented
by the digits {d−i | i ∈ N}, i.e., x = 0.d−1d−2 · · · , if

x = sup{10−1d−1 + 10−2d−2 + · · ·+ 10−nd−n | n ∈ N}.

example: 0.2500 · · · = sup{ 2
10 ,

2
10 + 5

100 ,
2
10 + 5

100 + 0
1000 , . . .} = sup{1

5 ,
1
4} = 1

4

Theorem 2.29

• For all set of digits {d−i | i ∈ N}, there exists a unique x ∈ [0, 1] such that
x = 0.d−1d−2 · · · .

• For all x ∈ (0, 1], there exists a unique sequence of digits d−i such that
x = 0.d−1d−2 · · · and

0.d−1d−2 · · · d−n < x ≤ 0.d−1d−2 · · · d−n + 10−n, for all n ∈ N. (2.1)

• the second part indicates that the digital representation of 1/2 is 0.4999 · · ·
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Theorem 2.30 Cantor. The set (0, 1] is uncountable.

proof (by contradiction):

• assume (0, 1] is countable, then there exists a bijection x : N → (0, 1], let

x(n) = 0.d
(n)
−1d

(n)
−2 · · · , n ∈ N,

where d
(n)
−i denotes the ith decimal of the real number x(n) ∈ (0, 1], and let

e−i =

{
1 d

(i)
−i ̸= 1

2 d
(i)
−i = 1

(2.2)

• let y = 0.e−1e−2 · · · , since all e−i are nonzero, e−1, e−2, . . . satisfies (2.1);
according to theorem 2.29, we have 0.e−1e−2 · · · being the unique decimal
representation of y

• again according to theorem 2.29 and all e−i are nonzero, we have y ∈ (0, 1] =⇒
∃m ∈ N, y = x(m) = 0.d

(m)
−1 d

(m)
−2 · · · = 0.e−1e−2 · · · , however, we have

e−m ̸= d
(m)
−m since (2.2), i.e., for all m ∈ N, x(m) ̸= y, which is a contradiction

Corollary 2.31 The set of real numbers R is uncountable.
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