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Ordered sets

Definition 2.1 An ordered set is a set S with a relation < called an ‘ordering’ such
that:

1. Trichotomy. For all z,y € S, either x <y, x =y, or x > y.
2. Transitivity. If x,y,z € S have z < y and y < z, then x < z.

examples:

e Z is an ordered set with orderingm >n<=m —n N
e Q is an ordered set with ordering p > ¢ <= p — ¢ = m/n for some m,n € N

e Q x Q is an ordered set with dictionary ordering (g,7) > (s,t) <= ¢ > s, or
gq=sandr >t

e the set P(IN) with ordering defined by A < B if A C B is not an ordered set
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Least upper bound property

Definition 2.2 Let S be an ordered set and let £ C S, then:

o If there exists some b € S such that z < b for all x € E, then E is bounded
above and b is an upper bound of F.

o If there exists some ¢ € S such that > ¢ for all x € F, then E is bounded
below and c is a lower bound of .

o If there exists an upper bound by of E such that by < b for all upper bounds b of
E, then by is the least upper bound or the supremum of E, written as

bp =sup F.

e If there exists a lower bound ¢y of E such that ¢y > ¢ for all lower bounds ¢ of E,
then ¢q is the greatest lower bound or the infimum of E, written as

Cco = inf F.
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examples:
e S=Zand E={-2,-1,0,1,2}, then inf E = —2 and sup £ = 2

e S=Qand E={qeQ|0<g< 1} theninfE=0andsupE =1¢ E, i.e.,
the supremum or infimum need not be in £

e S=7and F =N, then inf £ = 1 but sup £ does not exist

Definition 2.3 Least upper bound property. An ordered set .S has the least upper bound
property if every 2 C S which is nonempty and bounded above has a supremum in S.

example: —N = {—1,—-2,—3,...}, to show this (informally), suppose £ C —N is
bounded above, then —FE C N is bounded below and according to the well ordering
principle, —F has a least element x € —F, and thus —x =sup £
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Theorem 2.4 If x € Q and

z=sup{ge Q[ q>0, ¢> <2},

then 2 > 1 and 22 = 2.

proof: let E={q€Q|q¢>0, ¢>?<2}
exr>1sincele F = supk >1

e we show z2 > 2 by contradiction: suppose 22 < 2, let h = min{%, 2(2#:121)}
sincex >1and 22 <2, wehave 0 <h <1/2<1

h<l = (z+h)?=a>+2hx+h><a2®+2hz+h

2—

2
_2—z"
(o s1) Ve have

since h <
1
(I+h)2<x2+(2x+1)h§x2+§(2—x2)<m2+2—x2=2 = xz+heckE

- h>0 = z+h>z butx+heFE = xisnot an upper bound for E, i.e.,
x # sup E, which is a contradiction
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z2—2
2z

e we now show 22 % 2 by contradiction: suppose 22 > 2, let h =
— sincex®>2and x> 1, we have h > 0

- h>0 = (z—h)> =22 —2ha+h>> 2% —2he =22 — (22 —2) =2
—let g€ E, then ¢2 <2 < (x—h)Q, hence
(z—h)?—¢*=(z—h)+q)((x—h)—q) >0 = (x—h)—q¢>0,
i.e., t —h>qforallge E = x — his an upper bound for E

- h>0 = z>x—h = x # supFE, which is a contradiction

e therefore, 22 = 2
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Theorem 2.5 Theset E = {q € Q| ¢ >0, ¢*> < 2} does not have a supremum in Q.

proof (by contradiction): suppose there exists some z € Q such that x =sup £
e by theorem 2.4, we have z > 1 and 22 =2
e in particular, x > 1 sinceifr =1 = 22 =1 #*2
e r € Q = there exist m,n € N (m > n) such that x = m/n, i.e., m =nx € N
elet S={keN|kxeN}CN,then S#0sincenes
e by the well ordering property, there is a least element ko € S
o let ky = ko(xz — 1) = kox — ko € Z, in particular, k; € Nsincex >1 = k1 >0

e 12 =2 = 1z < 2 as otherwise 2 > 4, hence
ki =ko(zr—1)<ko2—-1)=ky = k1 ¢S
o ki =ko(x — 1) = ki = kox? — kox, since 22 = 2, we have
kix =2ky — kox = ko —ko(x — 1) =ko—k1 e N = k1 €5,

which is a contradiction
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Fields

Definition 2.6 A set F'is a field if it has two operations: addition (+) and multiplication
(+) with the following properties.

Al) If z,y € F thenx +y € F.
A2) Commutativity. For all z,y € F', x +y =y + .
A4) There exists an element 0 € F suchthat 0+ z=x =2+ 0 forall z € F.

(

(

(A3) Associativity. For all z,y,z € F, (x+y)+z=xz+ (y + 2).
(

(A5

)
)
)
) For all z € F, there exists a y € F such that x +y = 0, denoted by y = —xz.
(M1) If 2,y € F then z -y € F.
(M2) Commutativity. For all z,y € F, z-y =1y - x.
(M3) Associativity. For all z,y,z € F, (x-y)-z=z-(y - 2).
(M4) There exists an element 1 € F suchthat 1 -2 =x =z -1forallz € F.
(M5) For all z € F'\ {0}, there exists an 2! € F such that z - 71 = 1.

)

(D) Distributativity. For all z,y,z € F, (x+vy)-z=xz-z2+7y- 2.
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examples:
e Qs a field

e Z is not a field since it fails (M5)
e Zy ={0,1} where 1 +1 =0 (mod 2) is a field
o Z3=1{0,1,2} with c =a+ b (mod 3), i.e.,
241=3=0 and 2-2=4=3+1=1,

is a field

Theorem 2.7 If x € F where F' is a field then 0z = 0.

proof: zz = (x +0)r =22+ 0r = 0z =0
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Definition 2.8 A field F' is an ordered field if F' is also an ordered set with ordering
< and satisfies:

1. Forallz,y,z€e F,a <y = x+z2<y+=z.
2. If z >0 and y > 0 then zy > 0.

If x > 0 we say z is positive, and if x > 0 we say = is nonnegative.

examples:
e Q is an ordered field

e Zy=1{0,1} where 1 +1 =0 is not a ordered field
(if0>1 = 04+1>141 = 1>0;if1>0 = 1+1>14+0 = 0>1)
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Theorem 2.9 Let F' be an ordered field and x,y, z,w € F, then:
e If z >0 then —x < 0 (and vice versa).
e If x> 0and y < z then zy < zz.
o If £ <0 andy < z then xy > xz.
o If £ # 0 then 22 > 0.
e lf0<z<ythen0<1l/y<1/z.
o If 0 <z <y then 22 < 9.

o Ifx <yand z<wthenz+ 2z <y+w.

Theorem 2.10 Let z,y € F where F is an ordered field. If z >0and y <0orz <0
and y > 0, then zy < 0.

proof:
e 2>0,y<0 = 2z2>0, - y>0 = —2y>0 = 2y <0
e <0, y>0 = —2z>0,y>0 = —zy>0 = zy <0
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Theorem 2.11 Greatest lower bound. Let F' be an ordered field with the least upper
bound property. If A C F' is nonempty and bounded below, then inf A exists in F.

proof: let B ={—x |z € A}
e AC F bounded below = da€e F, Ve € A, a<zx = da€ F,Vx € A,
—a>—x = da€eF,VxeB, —a>x = B C F has an upper bound —a
(this also shows that if a is a lower bound of A then —a is an upper bound of B)

e [ has the least upper bound property = sup B € F'

e letc=supB,thenc>z, Ve B — —c<—x,VxeéB — —c<uz,
Ve € A =— —c € Fis an lower bound of A

e we also have ¢ < —a with a being a lower bound of A = —c>a = —c€F
is the greatest lower bound of A, i.e., —c=infA € F

Real numbers



Real nubmers

Theorem 2.12 There exists a “unique” ordered field, labeled R, such that Q C R and
R has the least upper bound property.

e one can construct R using Dedekind cuts or as equivalence classes of Cauchy
sequences.

Theorem 2.13 There exists a unique € R such that > 1 and r? = 2, i.e., V2eR

but\/§¢Q.

proof: let E={zcR|z>0, 22 <2} CR
e we have z < 2 for all x € E (since if z > 2 = 22 > 4) = E is bounded
above — sup F exists in R

e let r = sup F, using the same proof for theorem 2.4 we have r > 1 and 2 = 2
e to show the uniqueness, suppose 7 > 1, 72 = 2, then

P =0 = r+fM)r-7F)=0 = r—7F=0 = r=r

(sincer>1,7>1 = r+7>0)
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Theorem 2.14 If x € R satisfies x < e forall e € R, € > 0, then 2 < 0.

proof by contradiction:

e suppose = > 0 satisfies z < e for all ¢ > 0
er>0 = 2r>2>0 = z>2/2>0

e take € = /2 we have = > € > 0, which is a contradiction
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Real numbers

Archimedian property

Theorem 2.15 Archimedian property. If z,y € R and = > 0, then there exists an
n € N such that nx > .

proof by contradiction:
e suppose nz <y foralln e N = Vn e N, n<y/x = N is bounded above
by y/x = there exists supN € R
e leta=supN = a—1 < aisnot an upper bound of N = dm € N,

a—1l<m = a<m+1€N = ais not an upper bound of N, which is a
contradiction

Theorem 2.16 Density of Q. If z,y € R and x < y then there exists some r € Q such
that x <r <y.

proof:

e first suppose 0 < x < y, by the Archimedian property, we have
nly—xz)>1 = ny>nr+1

for some n € N



let S ={k e N|k>nx} CN, by Archimedian property, there exists some
p€ Nsuchthatp >nr = S #0

by the well ordering property, there is a least element m € S such that m > nx
meN — m>1
fm=1thenm—-1=0 — nr>m—-—1=0sincex >0

if m>1, thenm—1¢& N but m—1¢ S since m >m — 1 is the least element
— nx>m—1 = m<nr+1<ny

hence, we have
nt<m<ny = x<m/n<y

for some m,n € N, i.e., there exists an r = m/n € Q such that z <r < y

now suppose x < 0, if z < 0 < y then simply take r = 0; if x <y <0, we have
0 < —y < —ux, thus there exists some 7 € Q such that

—yY<r<—r = <1<y

(by the first case), i.e., we have z < r < y by taking r = —7
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Theorem 2.17 Suppose S C R is nonempty and bounded above. Then, x = sup S if
and only if:

1. x is an upper bound of S.

2. For all € > 0, there exists some y € S such that x —e <y < .

proof:
e first suppose x = sup S
— obviously, x is an upper bound of S

— forall e >0, we have x > x — e = x — € is not an upper bound of S, i.e., there
exists some y € Ssuchthat z —e<y <=z

e now suppose x is an upper bound of S, and satisfies zt —e <y < z for all e > 0
and for some y € S, we only need to show that for all z that is an upper bound of
S, we have z < z

— assume there exists an upper bound z of S smaller than z, i.e., y < z < x for all
yes

—takee=xz—2>0(sincer>z2) = s >y>r—c=x—ax+2=2 = y>=z
for some y € S, i.e., z is not an upper bound of S, which is a contradiction
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Theorem 2.18 Let S = {1 — 1 | n € N}, thensup S = 1.

proof:
e if n € N, then 1—%<1 —> 1 is an upper bound of S

e let € > 0, then by the Archimedian property, for some n € N, we have
1 1 1

ne>1 —= e>— —= —e<— = 1l—-e<1—-—-<1
n n n

by theorem 2.17, we have sup S =1

Remark 2.19 We have similar property as theorem 2.17 for infimum. Suppose S C R
is nonempty and bounded below, then z = inf S if and only if:

e 7 is a lower bound of S.

e For all € > 0, there exists some y € S such that x <y < x +e.
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Using supremum and infimum

Definition 2.20 For z € R and A C R, define

r+A={r+a|ac A} rA={za|ac A}.

Theorem 2.21 Let A C R be nonempty, we have:

e If z € R and A is bounded above, then sup(z + A) = x + sup A.
e If x > 0 and A is bounded above, then sup(zA) = zsup A.

proof:
e suppose z € R and A is bounded above:

— forallae A, we have a <supA = x+a<x+supd,ie, thesetx+ Ais
bounded by = + sup A

— let € > 0, for some b € A, we have
supA—e<b<supA = (z+supA)—e<z+b<z+supA,

i.e., sup(x + A) =z +sup 4
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e suppose x > 0 and A is bounded above:

—forallae A, a<supA = xza < xsupA, i.e., the set A is bounded by xsup A
—lete>0 = ¢/x >0, for some b € A, we have

supA —e/x <b<supA = xsupA—e<ab<zsupA,

i.e., sup(zA) =xsup A

Remark 2.22 Similarly, we can also show that:

e If x € R and A is bounded below, then inf(x + A) = = + inf A.
e If x > 0 and A is bounded below, then inf(zA) = zinf A.
o If x <0 and A is bounded below, then sup(zA) = zinf A.
o If x <0 and A is bounded above, then inf(xA) = x sup A.

Theorem 2.23 Let A, B C R where x <y forallxz € A, y € B, then sup A < inf B.

proof: forallz € A, y€ B, x <y = B is bounded below by +t = z <inf B
= A is bounded above by inf B = sup A <inf B
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Absolute value

Definition 2.24 If z € R, we define the absolute value of z as

Theorem 2.25

e |x| >0, and, |z| = 0 if and only if z = 0.

| — 2| = |z| for all z € R.

|xy| = |z||y| for all z,y € R.

o |z|? =22 for all z € R.

|z| <y if and only if —y <z <y.

—lz| <z < |z| for all z € R.
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Triangle inequality

Theorem 2.26 Triangle inequality. For all x,y € R,

|z +y| < |z + |yl

proof: let z,y € R
e z+y< |z[+y|

o v+ —y<|—z[+|[-yl=lz|+ |y = —(z]+y]) <z+y
e hence, we have

—(zl+lyl) <z +y <lz[+ ]yl = |z +yl <lz[+]y]

Corollary 2.27 Reverse triangle inequality. For all z,y € R,

| = |yl| < |z —yl.
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Uncountabality of the real numbers

Definition 2.28 Let x € (0,1] and let d_; € {0, 1,...,9}. We say that x is represented
by the digits {d_; | i € N}, d.e., x = 0.d_yd_g- -, if

z=sup{107'd_; +107%d_o +--- +107"d_,, | n € N}.

. —_ 2 5 0 . 1 1y _ 1
example: 0.2500--- = sup{$, 75 + 105> 15 + 105 + 065> -} = SuP{3, 1} =1

Theorem 2.29

e For all set of digits {d_; | i € N}, there exists a unique = € [0, 1] such that
z=0.d_1d_o---.

e For all z € (0, 1], there exists a unique sequence of digits d_; such that
z =0.d_1d_9--- and

0.d_yd_g-dp <z <0d_yd_g-d_p+107", forallneN.  (2.1)

e the second part indicates that the digital representation of 1/2 is 0.4999- - -
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Theorem 2.30 Cantor. The set (0, 1] is uncountable.

proof (by contradiction):
e assume (0, 1] is countable, then there exists a bijection z: N — (0, 1], let

z(n) = O.d(_nl)d(_nz) -+, néeN,
(n)

where d'”/ denotes the ith decimal of the real number z(n) € (0, 1], and let

1 dY 1
e_;j = - 2.2
e let y=0.e_1e_o---, since all e_; are nonzero, e_1,e_o, ... satisfies (2.1);
according to theorem 2.29, we have 0.e_je_s--- being the unique decimal

representation of y

e again according to theorem 2.29 and all e_; are nonzero, we have y € (0,1] =
dm eN, y=xz(m)= O.d(_n})d(_fg) ... =0.e_1e_9---, however, we have
€ m # d(_rzg since (2.2), i.e., for all m € N, 2(m) # y, which is a contradiction

Corollary 2.31 The set of real numbers R is uncountable.
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