1. Basic set theory

- sets
- mathematical induction
- functions
- cardinality

Definition 1.1 A set is a collection of objects called elements or members. A set with no objects is called the **empty set** and is denoted by \emptyset (or sometimes by $\{\}$).

notation:

- $a \in S$ means that 'a is an element in S'
- $a \notin S$ means that 'a is not an element in S'
- \forall means 'for all'
- \exists means 'there exists'
- \exists ! means 'there exists a unique'
- \implies means 'implies'
- \iff means 'if and only if'

Definition 1.2

- A set A is a subset of a set B if $x \in A$ implies $x \in B$, denoted as $A \subseteq B$.
- Two sets A and B are equal if $A \subseteq B$ and $B \subseteq A$, denoted as A = B.
- A set A is a **proper subset** of B if $A \subseteq B$ and $A \neq B$, denoted as $A \subsetneq B$.

set building notation: we write

$$\{x \in A \mid P(x)\}$$
 or $\{x \mid P(x)\}$

to mean 'all $x \in A$ that satisfies property P(x)'

examples:

- $\mathbf{N} = \{1, 2, 3, 4, \ldots\}$: the set of natural numbers
- $\mathbf{Z} = \{0, 1, -1, 2, -2, 3, -3, \ldots\}$: the set of integers
- $\mathbf{Q} = \{m/n \mid m, n \in \mathbf{Z}, n \neq 0\}$: the set of rational numbers
- $\bullet~\mathbf{R}:$ the set of real numbers

it follows that $\mathbf{N} \subseteq \mathbf{Z} \subseteq \mathbf{Q} \subseteq \mathbf{R}$

Definition 1.3 Given sets A and B:

- The union of A and B is the set $A \cup B = \{x \mid x \in A \text{ or } x \in B\}$.
- The intersection of A and B is the set $A \cap B = \{x \mid x \in A \text{ and } x \in B\}$.
- The set difference of A and B is the set $A \setminus B = \{x \in A \mid x \notin B\}$.
- The complement of A is the set $A^c = \{x \mid x \notin A\}$.
- A and B are **disjoint** if $A \cap B = \emptyset$.

Theorem 1.4 De Morgan's Laws. If A, B, C are sets, then

- $(B \cup C)^c = B^c \cap C^c$;
- $(B \cap C)^c = B^c \cup C^c$;
- $A \setminus (B \cup C) = A \setminus B \cap A \setminus C$;
- $A \setminus (B \cap C) = A \setminus B \cup A \setminus C$.

we prove the first statement:

• let B, C be sets, we need to show that

 $(B \cup C)^c \subseteq B^c \cap C^c$ and $B^c \cap C^c \subseteq (B \cup C)^c$

•
$$x \in (B \cup C)^c \implies x \notin B \cup C \implies x \notin B$$
 and $x \notin C$
 $\implies x \in B^c$ and $x \in C^c \implies x \in B^c \cap C^c \implies (B \cup C)^c \subseteq B^c \cap C^c$

•
$$x \in B^c \cap C^c \implies x \in B^c \text{ and } x \in C^c \implies x \notin B \text{ and } x \notin C$$

 $\implies x \notin B \cup C \implies x \in (B \cup C)^c \implies B^c \cap C^c \subseteq (B \cup C)^c$

Mathematical induction

Axiom 1.5 Well ordering property. If the set $S \subseteq \mathbb{N}$ is nonempty, then there exists some $x \in S$ such that $x \leq y$ for all $y \in S$, *i.e.*, the set S always has a **least element**.

Theorem 1.6 Induction. Let P(n) be a statement depending on $n \in \mathbb{N}$. Assume that we have:

- 1. Base case. The statement P(1) is true.
- 2. Inductive step. If P(m) is true then P(m+1) is true.

Then, P(n) is true for all $n \in \mathbf{N}$.

proof:

- suppose $S \neq \emptyset$, then S has a least element $m \in S$
- since P(1) is true, we have $m \neq 1$, *i.e.*, m > 1
- since m is a least element, we have $m-1 \notin S \implies P(m-1)$ is true
- this implies that P(m) is true $\implies m \notin S$, which is a contradiction
- hence, $S = \emptyset$, *i.e.*, P(n) is true for all $n \in \mathbf{N}$

Basic set theory

Example 1.7 For all $c \in \mathbf{R}$, $c \neq 1$, and for all $n \in \mathbf{N}$,

$$1 + c + c^{2} + \dots + c^{n} = \frac{1 - c^{n+1}}{1 - c}.$$

proof:

- the base case (n = 1): the left hand side of the equation is 1 + c; the right hand side is $\frac{1-c^2}{1-c} = \frac{(1+c)(1-c)}{1-c} = 1 + c$, which equals to the left hand side
- the inductive step: assume that the equation is true for $k \in \mathbf{N}$, *i.e.*,

$$1 + c + c^{2} + \dots + c^{k} = \frac{1 - c^{k+1}}{1 - c},$$

we have

$$1 + c + c^{2} + \dots + c^{k} + c^{k+1} = \frac{1 - c^{k+1}}{1 - c} + c^{k+1}$$
$$= \frac{1 - c^{k+1} + c^{k+1} - c^{(k+1)+1}}{1 - c} = \frac{1 - c^{(k+1)+1}}{1 - c}$$

Example 1.8 Bernoulli's inequality. For all $c \ge -1$, $(1+c)^n \ge 1 + nc$ for all $n \in \mathbf{N}$.

proof:

- for the base case (n = 1), we have $(1 + c)^1 \ge 1 + 1 \cdot c$
- the inductive step: suppose $m \in \mathbf{N}$, m > 1 and $(1 + c)^m \ge 1 + mc$, then

$$(1+c)^{m+1} \ge (1+mc)(1+c) = 1 + (m+1)c + mc^2 \ge 1 + (m+1)c$$

Functions

Definition 1.9 If A and B are sets, a function $f: A \to B$ is a mapping that assigns each $x \in A$ to a unique element in B denoted f(x).

Definition 1.10 Consider a function $f: A \to B$. Define the **image** (or direct image) of a subset $C \subseteq A$ as

 $f(C) = \{ f(x) \in B \mid x \in C \}.$

Define the **inverse image** of a subset $D \subseteq B$ as

$$f^{-1}(D) = \{ x \in A \mid f(x) \in D \}.$$

examples:

•
$$f: \{1, 2, 3, 4\} \rightarrow \{a, b\}$$
 where $f(1) = f(2) = a$, $f(3) = f(4) = b$, we have $f(\{1, 2\}) = \{a\}$, $f^{-1}(\{b\}) = \{3, 4\}$

• $f: \mathbf{R} \to \mathbf{R}$ where $f(x) = \sin(\pi x)$, we have f([0, 1/2]) = [0, 1], $f^{-1}(\{0\}) = \mathbf{Z}$

Definition 1.11 Let $f: A \to B$ be a function.

- The function f is **injective** or **one-to-one** if $f(x_1) = f(x_2)$ implies $x_1 = x_2$.
- The function f is surjective or onto if f(A) = B.
- The function f is bijective if f is both surjective and injective. In this case, the function f⁻¹: B → A is the inverse function of f, which assigns each y ∈ B to the unique x ∈ A such that f(x) = y.
- if the function f is a bijection, then $f(f^{-1}(x)) = x$
- example: for the bijection $f \colon \mathbf{R} \to \mathbf{R}$ given by $f(x) = x^3$, we have $f^{-1}(x) = \sqrt[3]{x}$

Definition 1.12 Consider $f: A \to B$ and $g: B \to C$. The **composition** of the functions f and g is the function $g \circ f: A \to C$ defined as

$$(g \circ f)(x) = g(f(x)).$$

• example: if $f(x)=x^3$ and $g(y)=\sin(y),$ then $(g\circ f)(x)=\sin(x^3)$

Cardinality

Definition 1.13 We state that the two sets A and B have the same **cardinality** if there exists a bijection $f: A \rightarrow B$.

notation:

- |A| denotes the cardinality of the set A
- |A| = |B| if the sets A and B have the same cardinality
- |A| = n if $|A| = |\{1, \dots, n\}|$
- $\bullet \ |A| \leq |B| \text{ if there exists an injection } f \colon A \to B$
- $\bullet \ |A| < |B| \text{ if } |A| \leq |B| \text{ and } |A| \neq |B|$

Theorem 1.14

- If |A| = |B|, then |B| = |A|.
- If |A| = |B|, and |B| = |C|, then |A| = |C|.

proof:

- show that the inverse function $f^{-1} \colon B \to A$ of $f \colon A \to B$ is a bijection
- show that the composition $g\circ f\colon A\to C$ of functions $f\colon A\to B$ and $g\colon B\to C$ is a bijection

Theorem 1.15 Cantor-Schröder-Bernstein. If $|A| \leq |B|$ and $|B| \leq |A|$ then |A| = |B|.

Definition 1.16 The set A is countably finite if $|A| = |\mathbf{N}|$. Specifically, the set A is finite if $|A| = n \in \mathbf{N}$. The set A is countable if A is finite or countably infinite. Otherwise, we say A is uncountable.

Example 1.17 The set of even natural numbers and the set of odd natural numbers have the same cardinality as N, *i.e.*, $|\{2n \mid n \in \mathbf{N}\}| = |\{2n - 1 \mid n \in \mathbf{N}\}| = |\mathbf{N}|$.

proof: consider the bijection $f: \mathbf{N} \to \{2n \mid n \in \mathbf{N}\}$ given by f(n) = 2n and $g: \mathbf{N} \to \{2n-1 \mid n \in \mathbf{N}\}$ given by g(n) = 2n-1

Example 1.18 The set of all integers has the same cardinality as N, *i.e.*, $|\mathbf{Z}| = |\mathbf{N}|$.

proof: consider the bijection $f: \mathbf{Z} \to \mathbf{N}$ given by

$$f(n) = \begin{cases} 2n & n \ge 0\\ -(2n+1) & n < 0 \end{cases}$$

Definition 1.19 The **powerset** of a set A, denoted by $\mathcal{P}(A)$, is the set of all subsets of A, *i.e.*, $\mathcal{P}(A) = \{B \mid B \subseteq A\}$.

• for a finite set A of cardinality n, the cardinality of $\mathcal{P}(A)$ is 2^n

examples:

- $A = \emptyset$ then $\mathcal{P}(A) = \{\emptyset\}$
- $A = \{1\}$ then $\mathcal{P}(A) = \{\emptyset, \{1\}\}$
- $A = \{1, 2\}$ then $\mathcal{P}(A) = \{\emptyset, \{1\}, \{2\}, \{1, 2\}\}$

Theorem 1.20 Cantor. If A is a set, then $|A| < |\mathcal{P}(A)|$.

• therefore, $|\mathbf{N}| < |\mathcal{P}(\mathbf{N})| < |\mathcal{P}(\mathcal{P}(\mathbf{N}))| < \cdots$, *i.e.*, there are infinite number of infinite sets

proof:

we first show that $|A| \leq |\mathcal{P}(A)|$

- consider the function $f\colon A\to \mathcal{P}(A)$ given by $f(x)=\{x\}$
- the function f is a injection since

$$f(x_1) = f(x_2) \implies \{x_1\} = \{x_2\} \implies x_1 = x_2$$

we now show that $|A| \neq |\mathcal{P}(A)|$ by contradiction

- suppose $|A| = |\mathcal{P}(A)|$, then there is a surjection $g \colon A \to \mathcal{P}(A)$
- consider the set $B \subseteq A$ given by

$$B = \{x \in A \mid x \notin g(x)\} \in \mathcal{P}(A)$$

- since g is surjective and $B \in \mathcal{P}(A)$, there exists a $b \in A$ such that g(b) = B
- there are two cases
 - 1. $b \in B \implies b \notin g(b) \implies b \notin B$
 - 2. $b \notin B \implies b \notin g(b) \implies b \in B$

where in either case we obtain a contradiction

• hence, g is not surjective $\implies |A| \neq |\mathcal{P}(A)|$

Corollary 1.21 For all $n \in \mathbb{N} \cup \{0\}$, $n < 2^n$.