
1. Basic set theory

• sets

• mathematical induction

• functions

• cardinality
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Sets

Definition 1.1 A set is a collection of objects called elements or members. A set with
no objects is called the empty set and is denoted by ∅ (or sometimes by {}).

notation:

• a ∈ S means that ‘a is an element in S’

• a /∈ S means that ‘a is not an element in S’

• ∀ means ‘for all’

• ∃ means ‘there exists’

• ∃! means ‘there exists a unique’

• =⇒ means ‘implies’

• ⇐⇒ means ‘if and only if’
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Definition 1.2

• A set A is a subset of a set B if x ∈ A implies x ∈ B, denoted as A ⊆ B.

• Two sets A and B are equal if A ⊆ B and B ⊆ A, denoted as A = B.

• A set A is a proper subset of B if A ⊆ B and A ̸= B, denoted as A ⊊ B.

set building notation: we write

{x ∈ A | P (x)} or {x | P (x)}

to mean ‘all x ∈ A that satisfies property P (x)’

examples:

• N = {1, 2, 3, 4, . . .}: the set of natural numbers

• Z = {0, 1,−1, 2,−2, 3,−3, . . .}: the set of integers

• Q = {m/n | m,n ∈ Z, n ̸= 0}: the set of rational numbers

• R: the set of real numbers

it follows that N ⊆ Z ⊆ Q ⊆ R
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Definition 1.3 Given sets A and B:

• The union of A and B is the set A ∪B = {x | x ∈ A or x ∈ B}.

• The intersection of A and B is the set A ∩B = {x | x ∈ A and x ∈ B}.

• The set difference of A and B is the set A \B = {x ∈ A | x /∈ B}.

• The complement of A is the set Ac = {x | x /∈ A}.

• A and B are disjoint if A ∩B = ∅.

Theorem 1.4 De Morgan’s Laws. If A,B,C are sets, then

• (B ∪ C)c = Bc ∩ Cc;

• (B ∩ C)c = Bc ∪ Cc;

• A \ (B ∪ C) = A \B ∩A \ C;

• A \ (B ∩ C) = A \B ∪A \ C.
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we prove the first statement:

• let B,C be sets, we need to show that

(B ∪ C)c ⊆ Bc ∩ Cc and Bc ∩ Cc ⊆ (B ∪ C)c

• x ∈ (B ∪ C)c =⇒ x /∈ B ∪ C =⇒ x /∈ B and x /∈ C

=⇒ x ∈ Bc and x ∈ Cc =⇒ x ∈ Bc ∩ Cc =⇒ (B ∪ C)c ⊆ Bc ∩ Cc

• x ∈ Bc ∩ Cc =⇒ x ∈ Bc and x ∈ Cc =⇒ x /∈ B and x /∈ C

=⇒ x /∈ B ∪ C =⇒ x ∈ (B ∪ C)c =⇒ Bc ∩ Cc ⊆ (B ∪ C)c
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Mathematical induction

Axiom 1.5 Well ordering property. If the set S ⊆ N is nonempty, then there exists
some x ∈ S such that x ≤ y for all y ∈ S, i.e., the set S always has a least element.

Theorem 1.6 Induction. Let P (n) be a statement depending on n ∈ N. Assume that
we have:

1. Base case. The statement P (1) is true.

2. Inductive step. If P (m) is true then P (m+ 1) is true.

Then, P (n) is true for all n ∈ N.

proof:

• suppose S ̸= ∅, then S has a least element m ∈ S

• since P (1) is true, we have m ̸= 1, i.e., m > 1

• since m is a least element, we have m− 1 /∈ S =⇒ P (m− 1) is true

• this implies that P (m) is true =⇒ m /∈ S, which is a contradiction

• hence, S = ∅, i.e., P (n) is true for all n ∈ N
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Example 1.7 For all c ∈ R, c ̸= 1, and for all n ∈ N,

1 + c+ c2 + · · ·+ cn =
1− cn+1

1− c
.

proof:

• the base case (n = 1): the left hand side of the equation is 1 + c; the right hand

side is 1−c2

1−c = (1+c)(1−c)
1−c = 1 + c, which equals to the left hand side

• the inductive step: assume that the equation is true for k ∈ N, i.e.,

1 + c+ c2 + · · ·+ ck =
1− ck+1

1− c
,

we have

1 + c+ c2 + · · ·+ ck + ck+1 =
1− ck+1

1− c
+ ck+1

=
1− ck+1 + ck+1 − c(k+1)+1

1− c
=

1− c(k+1)+1

1− c
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Example 1.8 Bernoulli’s inequality. For all c ≥ −1, (1 + c)n ≥ 1 + nc for all n ∈ N.

proof:

• for the base case (n = 1), we have (1 + c)1 ≥ 1 + 1 · c

• the inductive step: suppose m ∈ N, m > 1 and (1 + c)m ≥ 1 +mc, then

(1 + c)m+1 ≥ (1 +mc)(1 + c) = 1 + (m+ 1)c+mc2 ≥ 1 + (m+ 1)c
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Functions

Definition 1.9 If A and B are sets, a function f : A → B is a mapping that assigns
each x ∈ A to a unique element in B denoted f(x).

Definition 1.10 Consider a function f : A → B. Define the image (or direct image) of
a subset C ⊆ A as

f(C) = {f(x) ∈ B | x ∈ C}.

Define the inverse image of a subset D ⊆ B as

f−1(D) = {x ∈ A | f(x) ∈ D}.

examples:

• f : {1, 2, 3, 4} → {a, b} where f(1) = f(2) = a, f(3) = f(4) = b, we have
f({1, 2}) = {a}, f−1({b}) = {3, 4}

• f : R → R where f(x) = sin(πx), we have f([0, 1/2]) = [0, 1], f−1({0}) = Z
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Definition 1.11 Let f : A → B be a function.

• The function f is injective or one-to-one if f(x1) = f(x2) implies x1 = x2.

• The function f is surjective or onto if f(A) = B.

• The function f is bijective if f is both surjective and injective. In this case, the
function f−1 : B → A is the inverse function of f , which assigns each y ∈ B to
the unique x ∈ A such that f(x) = y.

• if the function f is a bijection, then f(f−1(x)) = x

• example: for the bijection f : R → R given by f(x) = x3, we have f−1(x) = 3
√
x

Definition 1.12 Consider f : A → B and g : B → C. The composition of the functions
f and g is the function g ◦ f : A → C defined as

(g ◦ f)(x) = g(f(x)).

• example: if f(x) = x3 and g(y) = sin(y), then (g ◦ f)(x) = sin(x3)
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Cardinality

Definition 1.13 We state that the two sets A and B have the same cardinality if there
exists a bijection f : A → B.

notation:

• |A| denotes the cardinality of the set A

• |A| = |B| if the sets A and B have the same cardinality

• |A| = n if |A| = |{1, . . . , n}|

• |A| ≤ |B| if there exists an injection f : A → B

• |A| < |B| if |A| ≤ |B| and |A| ≠ |B|
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Theorem 1.14

• If |A| = |B|, then |B| = |A|.
• If |A| = |B|, and |B| = |C|, then |A| = |C|.

proof:

• show that the inverse function f−1 : B → A of f : A → B is a bijection

• show that the composition g ◦ f : A → C of functions f : A → B and g : B → C
is a bijection

Theorem 1.15 Cantor-Schröder-Bernstein. If |A| ≤ |B| and |B| ≤ |A| then |A| = |B|.

Definition 1.16 The set A is countably finite if |A| = |N|. Specifically, the set A
is finite if |A| = n ∈ N. The set A is countable if A is finite or countably infinite.
Otherwise, we say A is uncountable.
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Example 1.17 The set of even natural numbers and the set of odd natural numbers
have the same cardinality as N, i.e., |{2n | n ∈ N}| = |{2n− 1 | n ∈ N}| = |N|.

proof: consider the bijection f : N → {2n | n ∈ N} given by f(n) = 2n and
g : N → {2n− 1 | n ∈ N} given by g(n) = 2n− 1

Example 1.18 The set of all integers has the same cardinality as N, i.e., |Z| = |N|.

proof: consider the bijection f : Z → N given by

f(n) =

{
2n n ≥ 0

−(2n+ 1) n < 0
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Definition 1.19 The powerset of a set A, denoted by P(A), is the set of all subsets
of A, i.e., P(A) = {B | B ⊆ A}.

• for a finite set A of cardinality n, the cardinality of P(A) is 2n

examples:

• A = ∅ then P(A) = {∅}
• A = {1} then P(A) = {∅, {1}}
• A = {1, 2} then P(A) = {∅, {1}, {2}, {1, 2}}

Theorem 1.20 Cantor. If A is a set, then |A| < | P(A)|.

• therefore, |N| < | P(N)| < | P(P(N))| < · · · , i.e., there are infinite number of
infinite sets

proof:
we first show that |A| ≤ | P(A)|

• consider the function f : A → P(A) given by f(x) = {x}
• the function f is a injection since

f(x1) = f(x2) =⇒ {x1} = {x2} =⇒ x1 = x2
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we now show that |A| ≠ | P(A)| by contradiction

• suppose |A| = | P(A)|, then there is a surjection g : A → P(A)

• consider the set B ⊆ A given by

B = {x ∈ A | x /∈ g(x)} ∈ P(A)

• since g is surjective and B ∈ P(A), there exists a b ∈ A such that g(b) = B

• there are two cases

1. b ∈ B =⇒ b /∈ g(b) =⇒ b /∈ B

2. b /∈ B =⇒ b /∈ g(b) =⇒ b ∈ B

where in either case we obtain a contradiction

• hence, g is not surjective =⇒ |A| ≠ | P(A)|

Corollary 1.21 For all n ∈ N ∪ {0}, n < 2n.
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