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Sets

Definition 1.1 A set is a collection of objects called elements or members. A set with
no objects is called the empty set and is denoted by () (or sometimes by {}).

notation:

e ¢ € S means that ‘a is an element in S’
e a ¢ S means that ‘a is not an element in S’

V¥ means ‘for all’

d means ‘there exists’

e ! means ‘there exists a unique’
e —> means ‘implies’

e <> means 'if and only if’
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Definition 1.2
e Aset Ais asubset of aset Bif z € A implies x € B, denoted as A C B.
e Two sets A and B are equal if A C B and B C A, denoted as A = B.

e A set Ais a proper subset of B if AC B and A # B, denoted as A C B.

set building notation: we write
{reA|P(z)} or {z|P(z)}

to mean ‘all x € A that satisfies property P(x)’

examples:
e N ={1,2,3,4,...}: the set of natural numbers

e Z=1{0,1,-1,2,-2,3,-3,...}: the set of integers
e Q={m/n|m,neZ, n#0}: the set of rational numbers

e R: the set of real numbers
it followsthat NCZCQCR
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Definition 1.3 Given sets 4 and B:

e The union of A and Bistheset AUB ={x |z € Aorx € B}.

e The intersection of A and B is the set ANB={z |z € A and = € B}.

o The set difference of A and B istheset A\B={x € A|x ¢ B}.
e The complement of A is the set A= {x |z ¢ A}.
e A and B are disjoint if AN B = ().

Theorem 1.4 De Morgan's Laws. If A, B,C are sets, then
e (BUC)"=B°NCY
e (BNC) = B°UCY
e A\(BUC)=A\BnNA\C,
e A\(BNC)=A\BUA\C.
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we prove the first statement:

o let B, be sets, we need to show that

(BUC)"CB°NC° and B°NC°C (BUC)®

e 2 (BUC) = 2¢BUC = z¢ Bandzx¢C
= re€BandxeC® = z€B°NC° = (BUC)"C B°NC*®

ez EBNC* = ze€BandzreC® = x¢ Bandzx ¢ C
— ¢ BUC — z€ (BUC) = B°NC°C (BUQ)"
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Mathematical induction

Axiom 1.5 Well ordering property. If the set S C N is nonempty, then there exists
some x € S such that x <y for all y € S, i.e., the set S always has a least element.

Theorem 1.6 Induction. Let P(n) be a statement depending on n € N. Assume that
we have:

1. Base case. The statement P(1) is true.
2. Inductive step. If P(m) is true then P(m + 1) is true.

Then, P(n) is true for all n € N.

proof:
e suppose S # (), then S has a least element m € S

e since P(1) is true, we have m # 1, i.e., m > 1

e since m is a least element, we have m —1¢ S — P(m — 1) is true
e this implies that P(m) is true = m ¢ S, which is a contradiction

e hence, S =10, i.e., P(n) is true foralln € N
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Example 1.7 Forall ce R, ¢# 1, and for all n € N,

1— n-+1
Ltet 4ot =
—C

proof:
e the base case (n = 1): the left hand side of the equation is 1 + ¢; the right hand

side is 11165 = (H‘f)_(i_c) = 1+ ¢, which equals to the left hand side

e the inductive step: assume that the equation is true for £ € N, i.e.,

1_Ck+l
l4+ce+++cdF="——"-,
1—-c¢
we have
1_ck+1
1+c—|—02—|—---—|—ck+ck+1:174-0’”1
— C
1 — b+l k1 _ a(k+D)+1 1 — k+1)+1
N 1—c¢ N 1—c
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Example 1.8 Bernoulli’s inequality. For all ¢ > —1, (1 +¢)" > 1+ nc for all n € N.

proof:
e for the base case (n = 1), we have (1+¢)' >1+1-¢

e the inductive step: suppose m € N, m > 1 and (1 +¢)™ > 1+ me, then

1+ >0 +me)1+¢)=1+(m+1De+me?>14 (m+1)c
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Functions

Definition 1.9 If A and B are sets, a function f: A — B is a mapping that assigns
each x € A to a unique element in B denoted f(x).

Definition 1.10 Consider a function f: A — B. Define the image (or direct image) of
a subset C C A as
f(C)=A{f(z) e B|zeC}.

Define the inverse image of a subset D C B as

fHD) = {z € A f(z) € D}.

examples:
o [:{1,2,3,4} — {a,b} where f(1) = f(2) =a, f(3) = f(4) = b, we have
f{1,2}) = {a}, f71{b}) = {3.4}

e f: R — R where f(z) = sin(rx), we have f([0,1/2]) = [0,1], f~1({0}) = Z
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Definition 1.11 Let f: A — B be a function.
e The function f is injective or one-to-one if f(z1) = f(x2) implies z1 = 2.
e The function f is surjective or onto if f(A) = B.

e The function f is bijective if f is both surjective and injective. In this case, the
function f~1: B — A is the inverse function of f, which assigns each y € B to
the unique = € A such that f(z) = v.

e if the function f is a bijection, then f(f~1(x)) =

e example: for the bijection f: R — R given by f(z) = 23, we have f~1(z) = ¥z

Definition 1.12 Consider f: A — B and g: B — C. The composition of the functions
f and g is the function go f: A — C defined as

(g0 f)(z) = g(f(z)).

e example: if f(x) = 2% and g(y) = sin(y), then (go f)(z) = sin(x3)
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Cardinality

Definition 1.13 We state that the two sets A and B have the same cardinality if there
exists a bijection f: A — B.

notation:
o |A| denotes the cardinality of the set A

|A| = |B| if the sets A and B have the same cardinality

Al =nif |Al = [{1,...,n}|

|A| < |B] if there exists an injection f: A — B

|Al <|BJ if [A] < B and |A[ # |B]
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Theorem 1.14

o If |A| = |B|, then |B| = |A|.
o If |A| = |B|, and |B| = |C], then |A] = |C].

proof:
e show that the inverse function f~1: B — A of f: A — B is a bijection

e show that the composition go f: A — C of functions f: A— Band g: B— C
is a bijection

Theorem 1.15 Cantor-Schroder-Bernstein. If |A| < |B| and |B| < |A] then |A| = |B|.

Definition 1.16 The set A is countably finite if |A| = |N|. Specifically, the set A
is finite if |[A| = n € N. The set A is countable if A is finite or countably infinite.
Otherwise, we say A is uncountable.

Basic set theory 1-12



Example 1.17 The set of even natural numbers and the set of odd natural numbers
have the same cardinality as N, i.e., [{2n |n € N}| = |{2n — 1| n € N}| = |N|.

proof: consider the bijection f: N — {2n | n € N} given by f(n) = 2n and
g: N —{2n—1|n € N} given by g(n) =2n —1

Example 1.18 The set of all integers has the same cardinality as N, i.e., |Z| = |NJ.

proof: consider the bijection f: Z — N given by

2n n>0
f(n):{ —(2n+1) n<0
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Basic set theory

Definition 1.19 The powerset of a set A, denoted by P(A), is the set of all subsets
of A, i.e., P(A)={B| B C A}.

e for a finite set A of cardinality n, the cardinality of P(A) is 2"
examples:

o A= then P(A) = {0}

o A= {1} then P(A) = {0,{1}}

o A={1,2} then P(A) = {0, {1}, {2},{1,2}}

Theorem 1.20 Cantor. If A is a set, then |[A] < |P(A)].

e therefore, IN| < |P(N)| < | P(P(N))| < ---, i.e., there are infinite number of
infinite sets

proof:

we first show that |A| < |P(A)]
e consider the function f: A — P(A) given by f(z) = {x}
e the function f is a injection since

f(z1) = f(22) = {21} = {12} = 71 =122



we now show that |A| # | P(A)| by contradiction
e suppose |A| = |P(A)|, then there is a surjection g: A — P(A)

consider the set B C A given by

B={zeAlz¢g(x)}cP(A)
e since g is surjective and B € P(A), there exists a b € A such that g(b) = B

there are two cases
1. beB = b¢gb) = b¢ B

22b¢B = bé¢glb) = beB
where in either case we obtain a contradiction

e hence, g is not surjective = |A| # | P(4)]

Corollary 1.21 For all n € NU {0}, n < 2".
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