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1.1

1.1.1

Chapter 1

Introduction

Mathematical background

Probability theory

Basic concepts

In this course we will adhere to the Bayesian interpretation of probability, according to which
probabilities encode degrees of belief about events in the world and data are used to strengthen,
update, or weaken those degrees of belief. For example, if A stands for an event, then P(A | K)
stands for a person’s subjective belief in event A given a body of knowledge K. In defining
probability expressions, we often simply write P(A), leaving out the symbol K. However, when
the background information undergoes changes, we need to identify specifically the assumptions
that account for our beliefs and explicitly articulate K (or some of its elements).

In the Bayesian formalism, belief measures obey the three basic axioms of probability calculus:

e 0<P(A) <1,
o P(sure proposition) = 1,
e P(Aor B)=P(A) + P(B) if A and B are mutually exclusive.

The third axiom states that the belief assigned to any set of events is the sum of the beliefs
assigned to its nonintersecting components. Because any event A can be written as the union of
the joint events (A A B) and (A A —B), their associated probabilities are given by

P(A) = P(A, B) + P(A,-B), (1.1)

where P (A, B) is short for P(A A B). More generally, if {B1,...,B,} is a set of exhaustive and
mutually exclusive propositions, then P(A4) can be computed from P(A4, B;),i = 1,...,n, by
using the sum

P(4) = Zn:P(A,Bi), (1.2)

which has come to be known as the law of total probability. The operation of summing up
probabilities over all B; is also called marginalizing over B; and the resulting probability, P(A),
is called the marginal probability of A.

The basic expressions in the Bayesian formalism are statements about conditional probabilities
— for example, P(A | B), which specify the belief in A under the assumption that B is known
with absolute certainty. If P(A | B) = P(A), we say that A and B are independent, since our
belief in A remains unchanged upon learning the truth of B. If P(A | B,C) =P(A | C), we say
that A and B are conditionally independent given C'; that is, once we know C| learning B would
not change our belief in A. Bayesian philosophers see the conditional relationship as more basic
than that of joint events — that is, more compatible with the organization of human knowledge.
In this view, B serves as a pointer to a context or frame of knowledge, and A | B stands for
an event A in the context specified by B. Consequently, empirical knowledge invariably will be
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encoded in conditional probability statements, whereas belief in joint events will be computed
from those statements via the product

P(A,B) = P(A | B)P(B). (1.3)

A useful generalization of the product rule (1.3) is the chain rule formula. It states that if we
have a set of n events, Ey,..., E,, then the probability of the joint event (Ej,...,E,) can be
written as a product of n conditional probabilities:

P(Ey,...,En) =P(E)P(Ey | Ev)---P(E, | En-1,..., E1). (1.4)
The heart of Bayesian inference lies in the celebrated inversion formula — the Bayes’ theorem

P(e | H)P(H)

P(H |6) = =5

(1.5)
which states that the belief we accord a hypothesis H upon obtaining evidence e can be computed
by multiplying our previous belief P(H) by the likelihood P(e | H) that e will materialize if H
is true. This P(H | e) is sometimes called the posterior probability, and P(H) is called the prior
probability. The denominator P(e) of (1.5) hardly enters into consideration because it is merely
a normalizing constant.

Random variables and expectations

By a variable we will mean an attribute, measurement or inquiry that may take on one of several
possible values from a specified domain. If we have probabilities attached to the possible values
that a variable may attain, we will call that variable a random variable. Most of our analysis will
concern a finite set V' of random variables (also called partitions) where each variable X € V
may take on values from a finite domain dom(X). We will use capital letters X,Y,Z for
variable names and lowercase letters x,y, z as generic symbols for specific values taken by the
corresponding variables. Clearly, the statement X = x defines a set of exhaustive and mutually
exclusive events, one for each value of x.

In most of our discussions, we will not make notational distinction between variables and sets
of variables, because a set of variables essentially defines a compound variable whose domain is
the Cartesian product of the domains of the individual constituents in the set. Thus, if Z stands
for the set {X, Y}, then z stands for pairs (x,y) such that x € dom(X) and y € dom(Y’). When
the distinction between variables and sets of variables requires special emphasis, indexed letters
X1,...,X, will be used to represent individual variables. Besides, we shall consistently use the
abbreviation P(z) for the probabilities P(X = ), € dom(X).

When the values of a random variable X are real numbers, i.e., x € R, X is called a real
random variable; one can then define the mean or expected value of X as

E[X] =) 2P(x) (1.6)
x
and the conditional mean of X, given event Y =y, as
E[X |y =) aP(z|y). (1.7)

The expectation of any function g of X is defined as

E[g(X)] = Y _ g(x)P(x). (1.8)

In particular, the function g(X) = (X — E[X])? has received much attention; its expectation is
called the variance of X, denoted var(X);

mmm:EBX—EmWy (1.9)

We are often interested in the square root of the variance var(X), which is called the standard
deviation of the random variable X, denoted as

o(X) = y/var(X). (1.10)
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When function g is a two-variable function with ¢(X,Y) = (X —E[X])(Y —E[Y]), its expectation
is known as the covariance of X and Y,

cov(X,Y) = E[(X — E[X])(Y — E[Y])], (1.11)

and which is often normalized to yield the correlation coefficient

_ cov(X,Y)
p(X,)Y) = 70()()0(5/) (1.12)
and the regression coefficient (of X on Y')
B o(X) cov(X,Y)
r(X,Y) = p(X, Y)O'(Y) = Tar(y) (1.13)

The foregoing definitions apply to discrete random variables — that is, variables that take on
finite or denumerable sets of values on R. The treatment of expectation and correlation is more
often applied to continuous random variables, which are characterized by a density function p(x)
defined as follows:

Pla<X <b) = /bp(m) dz (1.14)

for any a,b € R,a < b. If X is discrete, then p(x) coincides with the probability function P(z),
once we interpret the integral through the translation

/OO p(x) de = ZP(m) (1.15)

— 00

This translation should be kept in mind whenever summation is used through the course. For
example, the expected value of a continuous random variable X can be transformed from (1.6)
to

E[X] :/ xp(z) dz, (1.16)

with analogous translations for the variance, correlation, and so forth.

Example 1.1  Gaussian distribution. A random variable X has a Gaussian distribution
with mean p and variance o2, denoted N '(u, 0?), if it has the density function

1 (z—p)?
e (1.17)

() = ——
A Gaussian distribution has a bell-like curve, where the mean parameter p controls the
location of the peak, that is, the value for which the Gaussian gets its maximum value. The
variance parameter o2 determines how peaked the Gaussian is: the smaller the variance,
the more peaked the Gaussian. A standard Gaussian is one with mean 0 and variance 1.
Figure 1.1 shows the density function of a few different Gaussian distributions.

More technically, the density function of Gaussian distribution is specified as an expo-
nential, where the expression in the exponent corresponds to the square of the number of
standard deviations o that x is away from the mean p. The probability of x decreases expo-
nentially with the square of its deviation from the mean, as measured in units of its standard
deviation.

Set conditional independence and graphoids

Let V = {V4,V5,...} be a finite set of variables and let X,Y, Z stand for any three subsets of
variables in V. The sets X and Y are said to be conditionally independent given Z if and only
if Pz | y,2) = P(x | 2) for all y,z that P(y,z) > 0 holds. In words, learning the value of YV’
does not provide additional information about X, once we know Z. We will use the notation
(X 1L Y | Z) to denote the conditional independence of X and Y given Z. Unconditional
independence (also called marginal independence) will be denoted by (X 1L Y | @), which says
P(z | y) = P(x) for all y that P(y) > 0 holds. Note that (X 1L Y | Z) implies the conditional



1.1.2

4 1 Introduction

0.5

0.1

T

Figure 1.1 Density function of three example Gaussian distributions.

independence of all pairs of variables V; € X and V; € Y, but the converse is not necessarily
true.

In the following we list some properties satisfied by the conditional independence relation
(X ULY|2):

o Symmetry: (X LY |Z) = (Y 1L X | Z).

o Decomposition: (X LYW |Z) = (X 1LY | Z).

o Weak union: (X LYW |Z) = (X LY | ZW).

o Contraction: (X LY | Z)& (X LW |ZY) = (X LYW | 2).

o Intersection’: (X LW |ZY)& (X LY | ZW) = (X LYW | Z).

These properties are called graphoid axioms and the proof of them can be derived from the
definition of conditional independence and the basic axioms of probability theory.

Graphs

A graph G consists of a set V of vertices (or nodes) and a set E of edges (or links) that connect
some pairs of vertices. The vertices in our graphs will correspond to variables, and the edges
will denote a certain relationship that holds in pairs of variables, the interpretation of which will
vary with the application. Two vertices connected by an edge are called adjacent.

Each edge in a graph can be either directed (marked by a single arrowhead on the edge), or
undirected (unmarked links). In some applications we will also use ‘bidirected’ edges to denote
the existence of unobserved common causes (sometimes called confounders). These edges will
be marked as dotted curved arcs with two arrowheads as shown in Figure 1.2(a). If all edges are
directed (as in Figure 1.2(b)), we then have a directed graph. If we strip away all arrowheads
from the edges in a graph G, the resultant undirected graph is called the skeleton of G. A
path in a graph is a sequence of edges (e.g., (W, Z2),(Z,Y),(Y,X),(X,Z)) in Figure 1.2(a))
such that each edge starts with the vertex ending the preceding edge. In other words, a path
is any unbroken, nonintersecting route traced out along the edges in a graph, which may go
either along or against the arrows. If every edge in a path is an arrow that points from the
first to the second vertex of the pair, we have a directed path. In Figure 1.2(a), for example, the
path (W, Z),(Z,Y)) is directed, but the paths (W, Z),(Z,Y), (Y, X)) and (W, Z), (Z, X)) are
not. If there exists a path between two vertices in a graph, then the two vertices are said to be
connected; else they are disconnected.

Directed graphs may include directed cycles (e.g., X — Y, Y — X), representing mutual
causation or feedback processed, but not self-loops (e.g., X — X). A graph (like the two in

Intersection is valid in strictly positive probability distributions.
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Figure 1.2 (a) A graph containing both directed and bidirected edges. (b) A
directed acyclic graph with the same skeleton as (a).

Figure 1.2) that contains no directed cycles in called acyclic. A graph that is both directed and
acyclic (Figure 1.2(b)) is called a directed acyclic graph (DAG), and such graphs will occupy
much of our discussion through the course. We make free use of the terminology of kinship
(e.g., parents, children, descendants, ancestors, spouses) to denote various relationships in a
graph. These kinship relations are defined along the full arrows in the graph, including arrows
that form directed cycles but ignoring bidirected and undirected edges. In Figure 1.2(a), for
example, Y has two parents (X and Z), three ancestors (X, Z, and W), and no children, while
X has no parents (hence, no ancestors), one spouse (Z), and one child (Y). A family in a graph
is a set of nodes containing a node and all its parents. For example, {W}, {Z, W}, {X}, and
{Y, Z, X} are the families in the graph of Figure 1.2(a).

A node in a directed graph is called a root if it has no parents and a sink if it has no children.
Every DAG has at least one root and at least one sink. A connected DAG in which every node
has at most one parent is called a tree, and a tree in which every node has at most one child is
called a chain. A graph in which every pair of nodes is connected by an edge is called complete.
The graph in Figure 1.2(a), for instance, is connected but not complete, because the pairs (W, X)
and (W,Y) are note adjacent.

Notation

Our notation is more or less standard, with a few exceptions. In this section we describe some
additional basic notation except those introduced in the previous sections; a more complete list
appears on page 101.

We use R to denote the set of real numbers, R to denote the set of nonnegative real numbers,
and Ry, to denote the set of positive real numbers. the set of real n-vectors is denoted R",
and the set of real m x n matrices is denoted R™*™. The symbol 1 denotes a vector all of whose
components are one (with dimension determined from context).

We use the notation f: R? — R? to mean that f is an R? valued function on some subset of
R?, specifically, its domain, which we denote dom(f). We can think of our use of the notation
f: RP — RY as a declaration of the function type, as in a computer language: f: RP — RY
means that the function f takes as argument a real p-vector, and returns a real g-vector. The
set dom(f), the domain of the function f, specifies the subset of R? of points x for which
f(z) is defined. As an example, we describe the logarithm function as log: R — R, with
dom(log) = Ry4. The notation log: R — R means that the logarithm function accepts and
returns a real number; dom(log) = R4 means that the logarithm is defined only for positive
numbers.
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Bibliography

Our introduction about probability theory is mostly based on | , §1.1], with some additional
information from | , §2.1]. Many excellent textbooks on the subject, e.g., | , ], or
the appendix to | ], can be referred to for additional mathematical machinery in probability.

The basic probability axioms introduced at the beginning of this chapter deviate a bit from the
standard statement, which can be found in the textbook | ].

The graphoid axioms listed in this chapter were first introduced in | | and | ] in a
slightly different form, and were independently proposed by Pearl and Paz | ] to characterize
the relationships between graphs and informational relevance. Geiger and Pearl | ] present

an in-depth analysis. The intuitive interpretation of the graphoid axioms is discussed in [ ,
p. 85].

Our brief discussion about the terminology of graphs is adapted from [ , §1.2.1]. A more
detailed introduction on graphs related to the topic of probabilistic graphical models can be
found in | ]. The excellent textbook | | specifically for graph theory can be referred to
for additional mathematical machinery.

The notation introduced in this chapter and will be used in the following chapters are mostly
based on | ]. Some notation related to probability are taken from those used in | ]
and [ I
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Exercises

1.1 The table below shows the joint distribution P(X = z,Y = y) of random variables X and Y.

‘ Yy Y2 Y3
1 |01 02 0.1
2 | 0.3 0.1 0.2

(a) Calculate P(X =z1), P(Y = gy2), and P(X =z, | Y = y1).

(b) Are random variables X and Y independent? If not, modify the probabilities of the joint
distribution so that X and Y are independent.

1.2 Markov inequality. Let X be a non-negative continuous random variable (dom(X) = R ), show
that for any ¢ > 0 the following inequality holds:

(x> < B
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Chapter 2

Bayesian classifiers

Probabilistic classification and Bayesian classifiers

Given a set of samples X and a set of class labels Y whose entries are normally considered as
nonnegative integers, i.e., dom(Y) C Z,. An ‘ordinary’ classifier is some function f: X —
Y that assigns each sample x a class label §. Probabilistic classifiers, instead of providing a
deterministic prediction on class label, predict the posterior probability P(y | z) for all y € Y
given x € X, and these posterior probabilities satisfy

S P(y|a) =1,

for all z € X. The similar ‘hard’ classification as in ordinary classifiers can then be calculated
by
9 = argmax P(y | z).
y
The formulation of the Bayesian classifier is based on the application of the Bayes rule to
estimate the posterior probability of each class given the sample z € X:

P(z | y)P(y)
P(z)

Note that the denominator P(z) is just a normalizing constant and is barely taken into account
in practice. The probability P(y) is known as the prior probability of the class labels. Therefore,
to estimate the posterior probability we only need to calculate the likelihood P(z | y) according
to the given data. Assuming that x is represented as a n-dimensional vector (z1,...,x,), with
each entry being a random variable X; denoting the ith feature of sample . Then according to
the chain rule (1.4), the likelihood term can be calculated as

P(z|y) =P(z1,...,2n | y)
= P(CU1 | y)P(x2 | xlvy)"'P(xn \ $n717~~7$1»y)~

Py |z) = (2.1)

(2.2)

Calculating (2.2) can be computationally expensive when n is large since the number of param-
eters in the likelihood term increase exponentially with the dimension of x. This will not only
imply a huge amount of memory to store all the parameters, but it will also be very difficult
to estimate all the probabilities from the data. Thus, the Bayesian classifier can only be of
practical use for relatively small problems in terms of the dimension of the feature vector of x.
An alternative is to consider some independence properties as in graphical models, in particular
that all features are independent given the class, resulting in the naive Bayesian classifier.

Naive Bayesian classifiers

The naive Bayesian classifier is based on the assumption that all the features of sample x are
independent given the class variable; that is, P(z; | z;,y) = P(x; | y) for all j # ¢. Under this
assumption, (2.2) can be written as:

n

P(z|y) =Pa1,...,zn | y) = [[Pxi | v). (2.3)
i=1
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@ @ @ @

Figure 2.1 Example of a naive Bayesian classifier.

Substituting the likelihood term (2.3) under the naive Bayesian classifier assumption into (2.1),
the posterior probability of class label y given sample z is

n

Py ) = 2Py [[ P ), (24)

i=1

where Z is the normalization factor with

Z=P(x)=) PyP(z|y) (2.5)

Y

so that the estimated posterior probabilities satisfy >, P(y [ z) = 1.

The naive Bayes formulation drastically reduces the complexity of the Bayesian classifier,
since in this case as the parameters for the model, we only require the prior probability of the
class,

(P(y1), P(y2), - ), (2.6)

which is a one dimensional vector with the dimension equals to the cardinality of Y'; and the n
conditional probabilities of each feature of sample x given the class y,

P(z1 | y1) P(x1 | y2)
: : ; (2.7)
P(xn | yl) P(In ‘ 92)

which is a two dimensional matrix with the dimension of n x card(Y). That is, the space
requirement is reduced from exponential to linear in the number of features. A graphical repre-
sentation of the naive Bayesian classifier is shown in Figure 2.1. This tree-like structure depicts
the property of conditional independence between all the features given the class — as there are
no arcs between the feature nodes.

To learn the parameters of a naive Bayesian classifier, the prior probabilities (2.6) of the class
variable Y can either be considered as uniformly distributed, i.e.,

1

P(y;) = m,

forall y; € Y,

or be determined by estimating the class probability from the training data:

# samples in class y;
P(y:) =

f 1Ny, €Y.
# samples in total ’ oraty

If all features of each sample = € X are represented with discrete random variables, each entry
of the likelihood matrix (2.7) can be directly learnt from the given data by calculating:

# samples in class y; with feature xy

Pz [ y:) =

)

# samples in class y;

forall k =1,...,n, y; € Y. As for handling continuous features, one trivial way would be using
binning to discretize the feature values, so that the likelihood term can still be learnt using the
above equations. However, the discretization may throw away discriminative information from
the data. Another common technique for handling continuous values is to assume a parame-
terized distribution for the features from the training dataset, such as Gaussian distribution,
multinomial distribution, or Bernoulli distribution, so that the learning of the likelihood matrix
(2.7) can be transformed to learning the parameters of the assumed distribution.



2.1.2

2.1 Probabilistic classification and Bayesian classifiers 13

Example 2.1  Gaussian naive Bayes. When dealing with continuous featured samples,
a typical assumption is that within each class, the values of each continuous feature are
Gaussian distributed, i.e.,

1 (xr — ,uk\y')
N — _ Tk T Phly:) E=1,...
p(zr | yi) %27T0-k|yi exp < 20—]%|yi , oy,

for all y; € Y, where ), and U,%l y; AT the mean and variance of the distribution of feature
xp within class y;, respectively. Then to estimate the likelihood term required for naive
Bayesian classifiers, we only need to learn i, and oy, from the training data according
to

Pkly; :E[Xk | yz]a k=1,...,n,

Ty, = Vvar(Xy [ ;) = ¢E (X = BIX |9 [ ], k=1,.00m,

for all y; € Y.

In the inference stage, the density function of the assumed distribution evaluated at feature
xy, for class y;, i.e., p(xg | yi), is used to provide a relative estimation of each likelihood in matrix
(2.7).

Augmented Bayesian classifiers

The general Bayesian classifier and the naive Bayesian classifier are the two extremes of possible
dependency structures for Bayesian classifiers; the former represents the most complex structure
with no independence assumptions, while the latter is the simplest structure that assumes that
all the features are independent given the class. Between these two extremes there is a wide
variety of possible models of varying complexities.

Example 2.2  Tree augmented Bayesian classifiers. The tree augmented Bayesian classifier
incorporates some dependencies between the features of x € X by building a directed tree
among the feature variables. That is, the n features form a graph which is restricted to a
directed tree that represents the dependency relations between the features. Additionally
there is an arc between the class labels and each feature. The structure of a tree augmented
Bayesian classifier is depicted in Figure 2.2(a).

Example 2.3  Bayesian network augmented Bayesian classifiers. The Bayesian network
augmented Bayesian classifier can be considered as an generalization of tree augmented
Bayesian classifier by relaxing the constrain that the graph structure between features has
to be a tree. In this case, it considers that the dependency structure among the features
constitutes a directed acyclic graph (DAG). As with all aforementioned classifiers, there is a
directed arc between the class node and each feature. The structure of a Bayesian network
augmented Bayesian classifier is depicted in Figure 2.2(b).

The likelihood term (2.2) for the sample features = given the class label y can be obtained in
a similar way as with the naive Bayesian classifiers; however, now each feature not only depends
on the class but also on some other features according to the structure of the graph. Thus, we
need to consider the conditional probability of each feature given the class and the feature of its

parent nodes:
n

P(z |y) =P(rr,..., 2 | y) = [[ Plai [ pa(zi).y). (2.8)

i=1

where pa(x;) is the set of parent nodes of feature z; according to the feature dependency structure
of the classifier.

The tree and Bayesian network augmented Bayesian classifiers can be considered as particular
cases of a more general model, that is, Bayesian networks, which will be covered in more detail
in the subsequent chapters.
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Figure 2.2 (a) Example of a tree augmented Bayesian classifier. (b) Example
of a Bayesian network augmented Bayesian classifier.

Semi-naive Bayesian classifiers

Another alternative to deal with dependent features is to transform the basic structure of a naive
Bayesian classifier, while maintaining a tree-structured network. This has as an advantage that
the efficiency and simplicity of the naive Bayesian classifier is maintained, and at the same time
the performance is improved for cases where the features are not independent. These types of
Bayesian classifiers are known as semi-naive Bayesian classifiers.

The basic idea of semi-naive Bayesian classifiers is to eliminate or join features which are not
independent given the class label, such that the performance of the classifier improves. This is
analogous to feature selection in machine learning, and there are two types of approaches:

e Filter. The features are selected according to a local measure, for instance the mutual
information between the feature and the class.

e Wrapper. The features are selected based on a global measure, usually by comparing the
performance of the classifier with and without the feature.

Additionally, the learning algorithm can start from an empty structure and add features; or from
a full structure with all the features, and eliminate (or combine) features. Figure 2.3 illustrates
the two alternative operations to modify the structure of a naive Bayesian classifier starting from
a full graph. Node elimination consists in simply eliminating a feature z; from the graph, this
could be because it is not relevant for the class (z; and y are independent); or because the feature
z; and another feature z; are not independent given the class. The rationale for eliminating
one of the dependent features is that if the features are not independent given the class, one of
them is redundant and could be eliminated. Node combination consists in merging two features
z; and z; into a new feature, e.g., x;x;, which is an alternative when two features are not
independent given the class. By merging them into a single feature, the independence condition
is not longer relevant. In principle we should select from the two alternatives that implies a
higher improvement in the performance of the classifier and the feature selection process can be
performed multiple iterations until there are no more superfluous or dependent features. Then
the same parameter learning and inference process as in naive Bayesian classifiers can be directly
applied.

Multi-dimensional classification

All previous classifiers consider that there is a single class variable; that is, each sample belongs
to one and only one class. Several important problems need to predict several classes simultane-
ously, in which more than one class can be assigned to a sample € X. Such problems are called
multi-dimensional classification problems. Similarly, an ‘ordinary’ multi-dimensional classifier
consists in finding a vector-valued function f: X — Y, which directly assigns to each sample
x € X an m-dimensional vector of class values § € Y, with dom(Y") C Z7'. From a probabilistic
point of view, the classifier first predicts the posterior probability P(y | z) for all y € Y given
sample x € X, then the ‘hard’ class labels § will be assigned according to § = argmax, Py | x).

In this chapter we only consider a particular case of multi-dimensional classification problems
— multi-label classification, where all class labels are binary, i.e., dom(Y;) = {0,1},i=1,...,m.
We will introduce the Bayesian network methods in subsequent chapters, which can be applied
to solve the general multi-dimensional classification problems.
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Figure 2.3 Example of structure improving process of a semi-naive Bayesian
classifier.

Basic approaches

There are two basic approaches for multi-label classification problems: binary relevance and
label power-set. Binary relevance approaches transform the multi-label classification problem
into m independent binary classification problems, one for each class Y7, ...,Y,,. A classifier is
independently learned for each class and the results are combined to determine the predicted
class set; the dependencies between classes are not considered. The label power-set approach
transforms the multi-label classification problem into a single-class scenario by defining a new
compound class variable whose possible values are all the possible combinations of values of
the original classes. In this case the interactions between classes are implicitly considered.
Essentially, binary relevance can be effective when the classes are relatively independent, and
label power-set when there are few class variables.

Chain classifiers

Under the framework of Bayesian classifiers, we can consider an alternative to the binary rele-
vance approach — the chain classifiers, which implicitly incorporate the dependencies between
classes by adding additional features to each independent classifier. A chain classifier consists
of m base binary classifiers (f1,..., fin) which are linked in a chain, such that each classifier
incorporates the predicted classes §; € {0,1}, ¢ = 1,...,m, by the previous classifiers as addi-
tional features. Thus, each classifier f; in the chain is trained to learn the association of label §;
given the features augmented with all previous predicted class labels (g1, ...,%;—1) in the chain.
Formally, this process can be denoted as

g1 = argmax, Py, | @), (2.9)
9 = argmax, P(y; | z,91,...,0i-1), i=2,...,m.

As in the binary relevance approach, the final prediction of the class vector is determined by
concatenating the outputs of all the binary classifiers in the chain,

g: (g17"‘>gm)~

A challenge for chain classifiers is to select the order of the classes in the chain, since the order
can affect the performance of the classifier. We describe two approaches to address this challenge
as follows.

Circular chain classifiers

In a circular chain classifier, the propagation of the predicted classes from the previous binary
classifiers is done iteratively in a circular way. In the first cycle, as in the standard chain classifiers
(2.9), the predictions of the previous classifiers are additional features for each classifier in the
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Figure 2.4 Example of a Bayesian chain classifier. Top: the graph represent-
ing the class dependency structure. Bottom: naive Bayesian classifiers, one
for each class.

chain. After the first cycle, each binary classifier in the chain receives the predictions of all other
classifiers as additional feature, and update its prediction according to

9; = argmax P(y; | z,9—;), i=1,...,m, (2.10)
Yi

where _,; denotes the predicted class vector § with the ith entry removed. This process is
repeated for a prefixed number of cycles or until convergence.

Bayesian chain classifiers

Bayesian chain classifiers consider the following two assumptions. Firstly, the dependency of
different classes given the features can be represented as a DAG. Then the posterior probability
of class vector y given sample € X reduces to

m

P(y|z) =P(y1,....ym | 2) = [[ P | pa(yi), ). (2.11)

i=1

Secondly, since the calculation of the final prediction ¢ involves solving a hard combinatorial
optimization problem on variable y,

maximize [["; P(y; | pa(y:), z), (2.12)

Bayesian chain classifiers assume an approximation on this problem that it can be solved ap-
proximately via a sequence of independent optimization problems, each focusing on maximizing
the conditional probability of a single variable y;:

maximize P(y; | pa(y:), ), (2.13)

for all 4 = 1,...,m. That is, the most probable joint combination of class assignments is
approximated by the concatenation of the most probable individual classes. The final output
class vector g of the Bayesian chain classifier will be a simple concatenation of all outputs g,
from the ith run of (2.13).

The first assumption is reasonable if we have enough data to obtain a good approximation of
the class dependency structure, and assuming that this is obtained conditioned on the features.
Regarding the second assumption, the total abduction or most probable explanation is not
always equivalent to the maximization of the individual classes. However, the assumption is less
strong than that assumed by the binary relevance approach. Bayesian chain classifiers provide
an attractive alternative to multi-dimensional classification, as they incorporate in certain ways
the dependencies between class variables, and they keep the efficiency of the binary relevance
approach. For the base classifier that belongs to each class we can use any of the Bayesian
classifiers presented in the previous sections, for instance a naive Bayesian classifier. The general
idea for building a Bayesian chain classifier is illustrated in Figure 2.4.
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Exercises

2.1 Naive Bayesian classifier. Displayed in the table below is a dataset focusing on golf with solely
discrete features. The initial four columns denote weather forecasts for various dates, while the
final column indicates whether a golf game was played on that particular day. Our aim is to
employ a naive Bayesian classifier to predict whether a game will be played in the future based
on the weather forecast.

Outlook Temperature Humidity Windy Play

sunny high high false no
sunny high high true no
overcast high high false yes
rainy medium high false yes
rainy low normal false yes
rainy low normal true no
overcast low normal true yes
sunny medium high false no
sunny low normal false yes
rainy medium normal false yes
sunny medium normal true yes
overcast medium high true yes
overcast high normal false yes
rainy medium high true no

(a) Tlustrate the graphical representation of the naive Bayesian classifier.

(b) Before examining the samples for prediction, contemplate which parameters might be nec-
essary. Deduce these parameters manually using the provided dataset.

(¢) Offer a prediction after examining the subsequent weather forecasts with the learnt param-
eters.
o (overcast, low, high, false).
o (rainy, high, high, false).
o (sunny, low, normal, true).

2.2 Gaussian naive Bayes. In this exercise, our objective is to address a binary classification problem
involving continuous features using a naive Bayesian classifier. The dataset provided in data.csv
is structured as follows: the first column indicates whether the sample belongs to the training
or testing dataset, followed by the 20 feature vector entries, and finally, the last column record
the binary sample labels. Please complete the Gaussian naive Bayes algorithm in src.py, and
check your implementation using the notebook 2-2.ipynb.
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Chapter 3

Markov models

Markov chains

We consider a stochastic process
{Xo, X1,..., X4,...}

with random variables Xy, X1, ..., X, ... sharing the same domain dom(X). Suppose the con-
ditional probability of any future state x;y1 € X given the past states zg,...,x;—1 and present
state xy, is independent of the past states and depends only on the present state,

P($t+1 | T, - .- ,xt) = P($t+1 | .’L't)7 (31)

then this stochastic process is called a Markov chain. The equation (3.1) is called the Markov
property. The random variable X is called the state space of the Markov chain.! Specifically,
if the conditional probability P(X;41 = z; | X; = ;) is independent of time ¢ given the same
z; and x;, the Markov chain is time-homogeneous. Note that in the following discussion we will
use subscripts to denote both the state instance at time ¢, denoted as z;, and the i¢th instance
of random variable X (suppose we assign each entry in X a unique index), denoted as x;. The
intended meaning of the notation should be inferred from the context of its usage. We hope it
will cause no confusion.
For a time-homogeneous Markov chain, let P be a square matrix with each entry

Pij =P(z; | i), (3.2)

for all z;,x; € X, representing the probability that the next state is z; given the present state
x;. Considering an m-dimensional state space X, i.e., card(X) = m, clearly the matrix P has
the following property:

e PeR™*™,
e Pj>0foralli=1,....m,j=1,...,m.
e Pl1=1foralli=1,...,m.

Here we use P;. to denote the ith row of matrix P, represented as a column vector. The matrix
P is called the transition matriz of the Markov chain, which can be represented graphically
with a state tramsition diagram. The state transition diagram is a directed graph where each
note is a state and the arcs represent possible transitions between states, weighted by corre-
sponding transition probabilities. If an arc between state x; and x; does not appear in the
diagram, it means that the corresponding transition probability P;; is zero. Figure 3.1 shows
an example of a Markov chain with a 3-dimensional state space. Note that although the state
transition diagram and the graphical model diagram are both represented with graphs, they
have completely different interpretations. The former represents the transition probability be-
tween states, i.e., different instances of the random variable X, while the latter represents the
probabilistic dependencies between different random variables.

1In this course we will only consider the case where the state space is finite and discrete.
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Figure 3.1 Example of state transition diagram of a Markov chain.

Except for the transition matrix P, to uniquely determine an m-dimensional Markov chain?,
we will also need the vector of initial state distribution:

p=(..,PXo=um),...), i=1,...,m. (3.3)

Obviously, the initial state distribution p € R™ has to satisfy p >= 0 and p”1 = 1, where the
generalized inequality symbol ‘>’ denotes the componentwise inequality between two vectors.
Thus the parameter set of a Markov chain can be denoted as a 2-dimensional set

© = {p, P}.

Inference and parameter learning

If the parameter set © of a Markov chain is known, we can calculate the probability of observing
any sequence of states ( = {Xo = x;, X1 = z;, X2 = 2y, ...} generated by that Markov chain,
which is basically the product of the transition probabilities of the sequence of states:

P(C | p, P) = piPijPjj, - - - . (3.4)

On the other hand, if the parameters are unknown, but we are given a set of observed state
sequences D = {(1,(s,...} from that Markov chain, where ¢ = {zg,...,xn} for all { € D, we
can estimate the p and P for the Markov chain according to:

pi:ECND[P(X():{L‘i ‘ C)], 1= L...,m, (35)

and
p._ ECNDﬂf [P(Xt = Z‘i,Xt-l-l =T | C)]
* E¢opt [P(X: = 2i | Q)] ’

Note that for the last observed state xy in each sequence we do not observe the next state, so
the above expectations are estimated across t =0,..., N — 1.

i=1,....m, j=1,....m. (3.6)

Remark 3.1 The equations (3.5) and (3.6), which are used to learn parameters of a Markov
chain based on observations, intuitively align with our understanding. It’s validity can also
be shown analytically as follows.

The problem of estimating the initial state distribution p and the transition matrix P of
a Markov chain according to the set of observations D can be formally defined as a mazimum
likelihood estimation (MLE) problem,

maximize Ip(0) = E¢up [logP(¢ | p, P)]

subject to p>=0, pT1=1
P; >0, ¢=1,....m, j=1,....m
Pl1=1, i=1,...,m,

(3.7)

where © = {p, P} is the optimization variable and D is the problem data. The function
Ip(©) is called the log-likelihood function of model parameter © given the observation D.

2We will always assume the Markov chain to be time-homogeneous except mentioned specifically.
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Note that the objective function of (3.7) can be written as

Ip(©) = E¢up [log P(C | p, P)]
N-—1

logP(xo | p) [[ Plwers |z, P)
t=0

= Ecup

N-1

> logP(w41 | x4, P)
=0

= E¢p [log P(zo | p)] + E¢op

N-1

Zzlmi<xt)le(wt+l)logp’ij , (3.8)

1 t=0

m

Z IzL (.1?0) IOg Pi

i=1

= ECND

+ E¢cop Z

i=1j

where I, (z) is an indicator function with I, (z) = 1 if x = x;, and 0 otherwise. Thus

problem (3.7) can be transformed into the following two optimization problems

maximize E¢op [ZL I, (o) log pi]

3.9
subject to p =0, pT1 =1, (3.9)

with optimization variable p, and

maximize  Eeop [0, Y70, 000" L (@) L, (w1) log P
subject to FP;; >0, i=1,....m, j=1,...,m (3.10)
Pf1=1, i=1,...,m,

with optimization variable P, which are maximized by equation (3.5) and (3.6) (according
to the Gibbs’ inequality), respectively.

Example 3.1 Consider that we have the following observation sequences generated from
the Markov chain described in Figure 3.1:

o (m2,w2, 73, 23,73, 23,21).
o (z1,23,22,73,73,73,73).
o (.%'37 I3, T2, {,CQ).
o (22,21,%2,22,T1,%3,21).

According to these observations, the initial state distribution can be estimated as:

121

and the transition matrix of the Markov chain is

0 1 2
3 3 3
p_| 2 3 2
7T T
2 2 7T
[ 11 11 11

Convergence

Convergence is another useful property of Markov chains. That says, if a Markov chain with
card(X) = m satisfies the following two requirements:
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Figure 3.2 Graphical model representing a hidden Markov model. The top
variables represent the hidden states and the nodes on the bottom are the
observations.

o Irreducible. From every state x; € X there is a probability P;; > 0 of transiting to any
state z; € X.

o Aperiodic. For any given state, there isn’t a fixed interval after which the chain will return
to the same state.

Then this Markov chain will reduce to a unique stationary state distribution 7 € RI* with
771 = 1 when t — oo, such that

TP =m. (3.11)

In this case, the matrix P* (the transition matrix P to the tth power) converges to a rank-one
matrix in which each row is the stationary distribution 7:

lim P! = 1727, (3.12)
t—o0
The rate of convergence of a Markov chain is determined by the second largest eigen-value of
the transition matrix P.

Hidden Markov models

A hidden Markov model (HMM) consists of a Markov chain {Xg, X5,...,X;,...} with do-
main dom(X) whose states are not directly observable, and an observable stochastic process
{Yo,Y1,...,Y;,...} with domain dom(Y) whose outcomes depend only on the present instance
of X in a known way,

Py | zo,. .., xt) = P(ys | z¢)- (3.13)

The set Y is called the observation space of the hidden Markov model. For example, in weather
forecasting, the weather cannot be directly measured; in reality, the weather is estimated based
on the results from a series of sensors — temperature, pressure, wind velocity, etc. Figure 3.2
shows a hidden Markov model represented in a graph diagram.

We first consider a standard hidden Markov model where both the state space X and obser-
vation space Y are discrete and finite with card(X) = m and card(Y) = n, respectively. To
uniquely determine a hidden Markov model, the latent Markov chain can be well defined with
the initial state distribution p and the transition matrix P. Besides, to describe the relationship
between each latent state x € X and observation y € Y, let B be a matrix with each entry

Bij = P(y; | =), (3.14)

for all z; € X, y; € Y, representing the probability of observing y; under state ;. The matrix
B is called the emission matriz of the hidden Markov model. Similar to the transition matrix
P, the emission matrix B has the following property:

e BeR™*™
e Bjj>0foralli=1,...,m,j=1,...,n.

e Blfi=1foralli=1,...,m.
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Thus the parameter set of a hidden Markov model can be denoted as a 3-dimensional set

O = {p, P, B}.

Given a hidden Markov model representation of a certain domain, there are three basic
questions that are of interest in most applications.

1. Inference. Given a model, estimate the probability of a sequence of observations.

2. Decoding. Given a model and a particular observation sequence, estimate the most probable
state sequence that produced the observations.

3. Parameter learning. Given some sequences of observations, estimate the parameters of the
model.

Inference

The inference problem of a hidden Markov model consists in determining the posterior probability
of observing some sequence ¢ = {yo,...,yn}, given the model parameters © = {p, P, B}, that
is, estimating the conditional probability P(¢ | ©).

Direct method

Note that a sequence of observations ¢ = {yo,...,yn} can be generated by different state
sequences ¢ = {xg,...,zn}. Thus, to calculate the posterior probability of a given observation
sequence, we can estimate the probability for a certain state sequence, and then add together
the estimations for all the possible state sequences, resulting in

P(p|©) = ZP%C\@ (3.15)

Given a possible state sequence ¢ = {z, ..., zy}, the probability P(p, | ©) can be obtained by
first calculating the probability of generating the specific state sequence, and then multiplying
to the probability of observing corresponding observations from the state sequence, i.e.,

P(p,¢1©) =P(xo | p)P(yo | w0, B H P(zi1 [ 20, P)P(yegr | 2i41, B), (3.16)

where the probabilities on the right hand side are respective entries of the vector p and matrices
P and B. Put together, the direct method estimates the posterior probability of observing some
sequence ¢ = {yo,...,yn} according to

N-1
P(p|©)= Y P(zo|p)P(yo | w0, B) [[ P@es1 |z, PYP(Yrs1 | 441, B). (3.17)
Ty 3TN t=0

For a model with m states and an observation length of N, the direct method requires a number
of operations in the order of 2Nm” (or simply m”) to solve the inference problem. This can
be less practical when the length of observations is relatively large.

Iterative method

The basic idea of the iterative method, also known as the forward algorithm, is to estimate
the probabilities of the observations per time step. That is, starting from ¢t = 0, calculate the
posterior probability of a partial sequence of observations until time ¢,

P(SDO:t | 9) = P(y()a e Yt | 9)7

and based on this partial result, calculate it for time ¢ + 1, until the end of the observation
sequence where t = N.
First we introduce an auxiliary variable a; € R, and each of its entries a;(7) is defined as

at(l):P(yOaaytht:xz |®)7 z:l,,m (318)
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The auxiliary variable «; is called the forward probability, representing the posterior probability
of observing the partial observation sequence up until time ¢, and the state under which the tth
observation was generated is x;. The forward probability can be calculated recursively with

: piP(yo | Xo = i, B) t=0
a(i) =19 5 (3.19)
atflpziP(yt ‘ Xt = xi7B) t> 07
for all ¢ = 1,...,m. Then the posterior probability of observing the whole sequence ¢ =
{%0,...,yn} given model parameters © can be obtained by summing up all the entries of the
forward probability evaluated at time t = N,
P(p | ©) =ak1. (3.20)

The pseudocode of the forward algorithm is shown in Algorithm 3.1.

Algorithm 3.1 Forward algorithm.

given hidden Markov model parameters ©, observation sequence .

fori=1,...,m do
ao(i) = piP(yo | Xo = i, B).
end for
fort=1,...,N do
fori=1,...,mdo
(i) = - PiP(y; | Xi = i, B).
end for
end for

return P(p | ©) = o4 1.

We now analyze the time complexity of the iterative method. Each iteration requires ap-
proximately m multiplications and m additions, so for the IV iterations, the number of floating
point operations is in the order of Nm?, or simply m2. Thus, the time complexity is reduced
from exponential in N for the direct method to quadratic in m for the iterative method.

Decoding

Given a sequence of observations ¢ = {yo,...,yn} and model parameters ©, the decoding
problem of hidden Markov models can be interpreted in two ways:

o Optimal state prediction. Finding the most probable state xy at time ¢.
o Optimal sequence prediction. Finding the most probable state sequence ¢* = {zf,...,z§}
that generated observation sequence.
Optimal state prediction

Similar to the forward probability o, let 8; € R be the backward probability, where each of its
entry S;(i) is defined as

6t(i):P<yt+la"'ayN ‘Xt:xiae)a z:l,,m (321)

The backward probability 3; represents the posterior probability of observing the partial obser-
vation sequence after time t until the end of the sequence given that the state at that time is
x;. By defining the backward probability of the last observation (¢ = N) to be equal to 1, the
others can be calculated recursively as

> Bent(DPyP(yesr | Xep1 =25, B) t<N

Be(i) = ¢ = (3.22)
1 t= N,
for all i = 1,...,m. Figure 3.3 illustrates the computation of forward probability a; and back-

ward probability 5; across the graph diagram of a hidden Markov model. Note that by combining
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Figure 3.3 Computation of forward probability a; and backward probability
B; of a hidden Markov model. Vertical dashed line indicates the separation
point of the two probabilities at time ¢.

the forward probability and backward probability, we can obtain the objective of the inference
problem from §3.2.1, P(¢ | ©), at any time ¢ along the observation sequence, according to

P(p|0) =af f, (3.23)

forallt=0,...,N.
Now we define another auxiliary variable «; € R, which represents the conditional proba-
bility of being in state z; given the whole observation sequence:

’)/t(l) :P(Xt =T | (p,@), 1= 1,...,7’7’L. (324)
According to Bayes’ rule, the vector v; can be written in terms of oy and (; as:

N PXe=25,0[0)  ou(i)Be(d)
V(1) = = , 3.25
="k e) o7 B (8.25)
for all ¢ = 1,...,m. Then the most probable state x; at time ¢ given the observation sequence
o and parameters © of a hidden Markov model can be obtained by

x; = argmax (). (3.26)

Zq

Optimal sequence prediction

The optimal sequence prediction problem of a hidden Markov model consists in finding a sequence
of states (* = {zf,...,x}} such that

xyy .., oy = argmax P(zg,...,xn | ¢, ©), (3.27)
Zoy-- TN
given the observation sequence ¢ = {yo,...,yn} and model parameters ©. This problem can

be solved approximately by a simple concatenation of the optimal states at each time t, i.e.,

&= {argmax*yt(i) ‘ t= O,...,N}. (3.28)

X4

However, (3.28) is not guaranteed to provide a global optimal result of the state sequence since
it does not consider the transition between states.
To obtain the exact solution of the optimal state sequence prediction problem, note that

P(C|4.0) = s

x P(C, ¢ 0),
thus maximizing the posterior probability P({ | ¢, 0) over ( is equivalent to maximizing the
joint probability P (¢, ¢ | ©) of the state and observation sequence over (. This problem can be
solved with the Viterbi algorithm. Let §; € R be the maximum value of the joint probability
of a subsequence of states until time ¢ — 1, and observations until time ¢, with the state at time
tis Ti,

01(i) = max P(xg,...,xi—1,Xe =x4,90,.--,9: |O), i=1,...,m. (3.29)

ZOyeeey Tt—1
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This probability ¢; can be interpreted as the probability of being in state x; at time ¢ given
that the state subsequence up until ¢ — 1 is optimal w.r.t. the partial observation sequence
{¥0,..-,yt—1}. The probability d; can also be obtained recursively as

(i) = max (1 ()P Plu | X0 = 2, ), (3.30)
forall i =1,...,m. Let ¢y € Z7", store the index j of the previous state x; at time ¢ — 1 that
gives the maximum probability d,—1(j)Pj;, for each state ¢ at time ¢, i.e.,

(i) = argmax &1 (j)Pj;, 1=1,...,m, (3.31)
Jj=1,....m

which is used to reconstruct the state sequence by backtracking from the last state. Let p* be
the probability of obtaining the given observation sequence under the optimal state sequence
¢* ={z§,..., x5}, the complete procedure of the Viterbi algorithm is shown in Algorithm 3.2.

Algorithm 3.2 Viterbi algorithm.

given hidden Markov model parameters ©, observation sequence .
1. Initialization.
fori=1,...,m do

9o (i) = piP(yo | Xo = x4, B).
end for
2. Recursion.
fort=1,...,N do

fori=1,...,mdo

0¢(1) == maxj—1,. .. m (0:0—1(J)Pji) P(ys | X¢ = x4, B).
Pe(i) = argmax;_; ., 61-1(J) Pji-

end for
end for
3. Termination.
p* = MaxXi=1,...,m 6N(z)
iy = argmax;_; o, On (7).
4. Backtracking.
fort=N,...,1do

i1 = Yu(if).

Ty =Ty
end for

Parameter learning

The expectation-mazimization algorithm (EM) is commonly used in estimating the parameters
of models involving latent variables. The idea is to start with some initial parameters for the
model, which can be initialized randomly or based on some domain knowledge. In the E-step,
some likelihood function w.r.t. the current model parameters is calculated. Then in the M-step,
these parameters are optimized to maximizing an MLE objective. This cycle is repeated until
convergence; e.g., until the difference between the parameters for the model from one step to
the next is below a certain threshold.

To learn the parameters of a hidden Markov model, suppose we are given a set of observation
sequences D = {1, ¥2,...} from that hidden Markov model, where ¢ = {yg,...,yn} for all
@ € D. First we should note that the cardinalities of the state space and observation space of
the model have to be known or previously defined. Let © = {p, P, B} be the set of estimated
parameters of the model from the previous EM-iteration, and @ = {p*, PT, BT} be the new set
of parameters to be updated. For each EM-iteration, we first calculate the current estimation
of hidden state sequence ¢ = {xo,...,xn} with parameters ©. Then similar to learning the
parameters of a Markov chain (§3.1.1), the parameters p*, PT, and BT of a hidden Markov
model can be updated according to
pi =Epup [P(Xo=m; | ¢,0)], i=1,...,m, (3.32)

K2
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E,op: [P(X: =2, Xip1 =25 | ,0)]
Epnp it [P(X: =i | ¢,0)] 7

+_ _ C
Pl = i=1,....m, j=1,...,m, (3.33)

and
EQDND,t [P(Xt = .’Ei,th =Yj | ®, @)]

EcpND,t [P(Xt =T; | ®, 6)] 7
Again, these updating equations align with our intuition, but can also be derived analytically.
(See exercise 3.1.) To obtain the probability term on the numerator of (3.33), let & € R"*™

represent the probability of transitioning from state z; at time ¢ to state x; at time ¢t 4+ 1 given
an observation sequence :

§i(i,7) = P(Xy = 24, Xyp1 = 25 | ,0)
_ P(Xt = (Ei,Xt+1 =T5,¢ | @) - . (335)
P(o|O) , .

+ _ = =
B = i=1,....m, j=1,...,n. (3.34)

The denominator P(y | ©) is just a normalization factor, which can be calculated from:

m m

P((p | 6) = ZZP(Xt = xi7Xt+1 = zjv@ | @)

i=1j=1
The auxiliary variable & can be written in terms of the forward probability a; and the backward
probability 3;:

()P (i, )P (Y1 | Xey1 = x5, B)Bey1(d)
iy 2 ar() P )P (Yo | Xe1 = 25, B)Biya ()

§(i,7) = (3.36)

foralli=1,...,m,j=1,...,m. Clearly, the probability 7; can also be written in terms of &:

(i) = D&, 4), (3.37)

for all i = 1,...,m. As a result, the equations (3.32) to (3.34) can be represented compactly
with the previously defined auxiliary variables as

pi =Euup[n0(d)], i=1,...,m, (3.38)
E,.. Ly ] . :
pr = B D, [&1 (4 .J)]’ i=1,...,m, j=1,....m, (3.39)
7 Epepa[n(d)]

and

Bt — E@ND,t[Wt(i)Ij(yt)]

Y Epnp,i[7:(7)]
where I;(y) is an indicator function with I;(y) = 1 if the index of y in observation space Y is
equal to j, and 0 otherwise. Note that similar to (3.6), the expectations in (3.33) and (3.39) over
time ¢ are estimated across t = 0,..., N — 1. The update equations (3.38) to (3.40) are called
the Baum-Welch algorithm. The pseudocode for the whole procedure is shown in Algorithm 3.3.

i=1,...,m, j=1,...,n, (3.40)

Algorithm 3.3 Baum-Welch algorithm.

given the estimated hidden Markov model parameters © from previous EM-iteration, the set
of observation sequences D.

1. Estimate the initial state distribution p™ according to (3.38).

2. Estimate the transition matrix P* according to (3.39).

3. Estimate the emission matrix BT according to (3.40).

return the updated set of parameters O = {p*, P*, BT}

As the last point, it should be noted that while the EM algorithm is guaranteed to converge
to a local optimum, it does not ensure a global optimal solution. The convergence point of EM
depends on its initial conditions.
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Continuous observation space

In many applications the observation space is continuous. In this case, an alternative to dis-
cretization is to work directly with the continuous features, assuming them to be Gaussian
distributed. This assumption leads to the Gaussian hidden Markov models, where the initial
state ditribution vector and the transition matrix are as those in standard hidden Markov mod-
els, but the map from each state to the observation space are modeled as a Gaussian distribution.
Suppose the domain of the observation space dom(Y) = R, then the emission map of the hidden
Markov model is given by the Gaussian density function N'(p;, 02):

1 — )’ ,
p(y|X=xi)=mglexp<—(y20‘;z)>, i=1,...,m. (3.41)

This idea can be further extended to vector observations, for example y € R™ for all y € Y, by
considering the following joint Gaussian density function N (u;,3;) as an alternative of (3.41):

1 1 Tal ) .
X=2,)=—F———=exp| —z(y— 1) X —u) |, i=1,...,m, 3.42
by | X =) = e (5 )5 0 - ) (3.42)

with the vector of distribution mean p; € R™ and the covariance matrix ¥; € 8 ,. Moreover,
sometimes the observation space can not be described by a single Gaussian distribution, in this
case we can use a Gaussian mizture model, which consists of multiple Gaussian distributions
that are combined to represent the desired distribution.

The algorithms for solving the three basic problems (inference, decoding, and parameter
learning) of a Gaussian hidden Markov model are essentially the same as those for standard
hidden Markov models, just considering that the observations are modeled as a Gaussian distri-
bution or a Gaussian mixture model.
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Exercises

Parameter learning of hidden Markov models. Suppose we are given a set of observation se-
quences D = {¢1,p2,...} from a hidden Markov model with unknown parameters, where
v = {yo,...,yn} for all ¢ € D. Let ¢ = {zp,...,xn} be the latent state sequence that
generated ¢. For each iteration of EM, finding the optimal parameters p™, Pt, and BT of the
hidden Markov model can be formulated as the following optimization problem:

maximize J(OT |0)=E,.p[logP(p,(|O1)],

where J(OT | ©) is the EM objective; © is the optimization variable, and D, © are the problem
data. To solve the problem, note that

J(©F | ©) = E,up [logP(p,¢ | ©1)]

=Egp | Y P((],0)logP(p,¢| )
¢

Using this information, show that the optimal value of p*, PT, and BT for each EM-iteration
are given by (3.32) to (3.34).
Hint.

o Similar derivation can be done here on J(O©1 | ©) as was in (3.8).

In this exercise, our objective is to learn the parameters of a hidden Markov model given a set of
observation sequences generated by it. The provided dataset data.csv is a 100 x 50 matrix with
each row representing one sequence of observations. We know that the cardinalities of the state
and observation space are 3 and 2, respectively. Please complete the expectation-maximization
algorithm for parameter learning in src.py, and check your implementation using the notebook
3-2.ipynb. You should see an increase of log-likelihood as the number of EM-iterations increases.
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Chapter 4

Bayesian networks

Representation

A Bayesian network represents the joint distribution of a set of discrete random variables,
X1,..., Xy, as a directed acyclic graph (DAG) and some sets of conditional probabilities. Each
node, that corresponds to a variable, has an associated set of conditional probabilities that con-
tains the probability of each instance of the variable given its parents in the graph, which is
known as the conditional probability table. The structure of the network implies a set of condi-
tional independence assertions, which give power to this representation. Figure 4.1 depicts an
example of a simple Bayesian network. In this example, X, is conditionally independent of X7,
X3, )(57 X6 given Xg, that is:

P(X4 | X17X27X37X57X6) = P(X4 | XQ)

Structure
Mappings

Given a probability distribution P of X = (Xi,...,X,), and its graphical representation G,
there must be a correspondence between the conditional independence in P and in G; this is
called a mapping. There are three basic types of mappings:

e D-map: all the conditional independence relations in P are satisfied in G.
e I-map: all the conditional independence relations in G are true in P.
e P-map: or perfect map, it is a D-map and an I-map.

Particularly, we say the graph G and probability distribution P are compatible if G is an I-map of
P. In general, it is not always possible to have a perfect mapping of the independence relations
between the graph G and the distribution P, so we settle for what is called a minimal I-map:
all the conditional independence relations implied by G are true in P, and if any arc is deleted
in G this condition is lost.

d-separation

Consider three disjoint sets of variables, X, Y, and Z, which are represented as nodes in a
directed acyclic graph G. To test whether X is independent of Y given Z in any distribution
compatible with G, we need to test whether the nodes corresponding to variables Z ‘block’ all
paths from nodes in X to nodes in Y. By path we mean a sequence of consecutive edges (of any
directionality) in the graph, and blocking is to be interpreted as stopping the flow of information
(or of dependency) between the variables that are connected by such paths. A path p is said to
be d-separated (or blocked) by a set of nodes Z if and only if

1. the path p contains a chain ¢ — m — j or a fork i < m — j such that the middle node m
isin Z, or
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Figure 4.1 An example Bayesian network.

O @

Figure 4.2 Graphs illustrating d-separation. In (a), X and Y are d-separated
given Z5 and d-connected given Z;. In (b), X and Y cannot be d-separated
by any set of nodes.

2. the path p contains an inverted fork (or collider) ¢ — m <+ j such that the middle node m
is not in Z and such that no descendant of m is in Z.

A set Z is said to d-separate X from Y if and only if Z blocks every path from a node in X
to a node in Y. In this case, random variable X is independent of Y conditional on Z in every
distribution compatible with G. Conversely, if X and Y are not d-separated by Z in a directed
acyclic graph G, then X and Y are dependent conditional on Z in at least one distribution
compatible with G.

The intuition behind d-separation is simple and can best be recognized if we attribute causal
meaning to the arrows in the graph. In causal chains i — m — j and causal forks i < m — j,
the two extreme variables are marginally dependent but become independent of each other
(i.e., blocked) once we condition on (i.e., know the value of) the middle variable. Figuratively,
conditioning on m appears to ‘block’ the flow of information along the path, since learning
about i has no effect on the probability of j, given m. Inverted forks i — m <« j, representing
two causes having a common effect, act the opposite way; if the two extreme variables are
(marginally) independent, they will become dependent (i.e., connected through unblocked path)
once we condition on the middle variable (i.e., the common effect) or any of its descendants.

Example 4.1  d-separation. Figure 4.2(a) contains a bidirected arc Z; +— Z3, and Fig-
ure 4.2(b) involves a directed cycle X — Z — Z; — X. In Figure 4.2(a), the two paths
between X and Y are blocked when none of {Z1, Zs, Z3} is measured. However, the path
X — Z; «— Z3 < Y becomes unblocked when Z; is measured. This is so because Z;
unblocks the ‘colliders’ at both Z; and Z3; the first because Z; is the collision node of the
collider, the second because Z; is a descendant of the collision node Z3 through the path
Zy < Zo <+ Z3. In Figure 4.2(b), X and Y cannot be d-separated by any set of nodes, includ-
ing the empty set. If we condition on Zs, we block the path X < Z; < Z5 + Y yet unblock
the path X — Z5 < Y. If we condition on Z;, we again block the path X + Z; + Zy « Y
and unblock the path X — Z5 <+ Y because Z; is a descendant of the collision node Z>.

According to the previous definition of d-separation, any node X is conditionally independent
of all nodes in G that are not descendants of X given its parents in the graph, pa(X), which is
known as the Markov assumption. The set of parents of a variable X is called the contour of
X. Besides, we call the Markov blanket of a node X, denoted as mb(X), is a set of nodes that



4.1.2

4.1 Representation 33

make X independent of all the other nodes in G:
P(X |G_x)=P(X | mb(X)). (4.1)
For a Bayesian network, the Markov blanket of X consists of:
e the parents of X and,
e the children of X and,
e the other parents of the children of X.

For instance, in the Bayesian network of Figure 4.1, the Markov blanket of X, is X5, and the
Markov blanket of X5 is X1, X3, X4, X5, X.

The structure of a Bayesian network can then be specified by the parents of each variable.
For example the Bayesian network in Figure 4.1, its structure can be specified as:

pa(X1) =0,
pa(Xs) = {X1},
pa(Xs) =0,
pa(Xy) = {Xo},
pa(Xs) = {Xz, X5},
pa(Xs) = { X2, X5}

Then using the chain rule, we can specify the joint probability distribution of the set of variables
in a Bayesian network as the product of the conditional probability of each variable given its

parents:
n

P(X.....X,) = [[P(X | pa(xX.). (4.2)

For the example in Figure 4.1:

P(X1,...,Xg) = P(X1)P(Xs | X1)P(X3)P(Xy | X2)P(X5 | Xo, X3)P(Xg | Xo, X3).

Parameters

To complete the specification of a Bayesian network, we need to define its parameters, which
are the conditional probabilities of each node given its parents in the graph: P(X; | pa(X;)). In
the case of continuous variables, wee need to specify a function that relates the density function
of each variable to the density of its parents; in the case of discrete variables, the number of
parameters to specify P(X; | pa(X;)) can be combinatorially large as the number of parents of
X, increases. Two main alternatives have been proposed to overcome this issue, one is based on
canonical models and the other on graphical representations of conditional probability tables.

Canonical models

Canonical models represent the relations between a set of random variables for particular inter-
actions using few parameters. It can be applied when the probabilities of a random variable in
a Bayesian network conform to certain canonical relations with respect to the configurations of
its parents. There are several classes of canonical models, the most common are the noisy-OR
and noisy-AND for binary variables, and their extensions for multivalued variables, noisy-max
and noisy-min, respectively. Canonical models can provide a considerable reduction in the num-
ber of parameters when a variable has many parents; and also some inference techniques take
advantage of this compact representation.

Example 4.2  Noisy-OR. Consider an OR logic gate, in which the output is true if any
of its inputs are true. The noisy-OR model is based on the concept of the logic OR; the
difference is that there is a certain (small) probability that the variable is not true even if
one or more of its parents are true. The noisy-OR model is applied when several variables or
causes can produce an effect if any one of them is true, and as more of the causes are true,
the probability of the effect increases. For instance, the effect could be a certain symptom
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or effect, F, and the causes are a number of possible diseases, C1, ..., C,, that can produce
the symptom, such that if none of the diseases is present (all false), the symptom does not
appear; and when any disease is present (true) the symptom is present with high probability
and it increases as the number of C; = true increases. A graphical representation of a noisy-
OR relation in a Bayesian network is depicted in Figure 4.3.

Formally, the following two conditions must be satisfied for a noisy-OR canonical model
to be applicable:

o Independence of exceptions: if an effect is the manifestation of several causes, the
mechanisms that inhibit the occurrence of the effect, & = false, under one cause are
independent of the mechanisms that inhibit it under the other causes?, i.e.,

P(E = false | C1,...,Cy) = [[P(E = false | C;). (4.3)

i=1

o Responsibility: the effect E is false if all the possible causes are false. Together with
(4.3), this implies

P(E =false | C; =false) =1, i=1,...,n. (4.4)

The probability that the effect E is inhibited (it does not occur) under cause C; is defined
as:
q; = P(F = false | C; = true). (4.5)

Given this definition and the previous conditions, the parameters in the conditional proba-
bility table for a noisy-OR model can be obtained using the following expressions when all
the n causes are true:

P(FE = false | C; = true,...,C, = true) = H ¢, (4.6)
i=1
and .
P(E = true | Cy = true,...,C, = true) = 1_HQi' (4.7
i=1

In general, if k out of n causes are true, then (informally):
k
P(E = false | C1,...,Cy) = [ ¢, (4.8)
i=1

so that if all the causes are false then the effect is false with probability one. Thus, only one
parameter is required per parent variable to construct the conditional probability table — the
inhibition probability ¢;. In this case the number of independent parameters (g1, qo, - - ., qn)
increases linearly with the number of parents, instead of exponentially. As an example,
consider a noisy-OR model with 3 causes, C, C5, and C3, where the inhibition probabilities
are the same for the three, g1 = g2 = g3 = 0.1. Given these parameters we can obtain the
conditional probability table for the effect variable E, as shown in Table 4.1.

®This independence does not necessarily hold for E = true.

Graphical representations

Canonical models apply in certain situations but do not provide a general solution for compact
representations of conditional probability tables. An alternative representation is based on the
observation that within each conditional probability table, the same probability values tend to
be repeated several times. Thus, it is not necessary to represent these repeated values many
times. A representation that takes advantage of this condition is decision tree, which could be
used for representing a conditional probability table in a compact way. In a decision tree, each
internal node corresponds to a variable in the conditional probability table, and the branches
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Figure 4.3 Graphical representation of a noisy-OR structure. The cause
variables C,...,C, are the parents of the effect variable F.

Table 4.1 Conditional probability table for a noisy-OR variable with three
parents and parameters ¢; = go = g3 = 0.1.

Cq 0 0 0 0 1 1 1 1

Cs 0 0 1 1 0 0 1 1

Cs 0 1 0 1 0 1 0 1
P(E=0) 1 01 01 0.1 0.1 001 0.01 0.001
P(E=1) 0 09 09 099 09 099 099 0.999

from a node correspond to the different values that a variable can take. The leaf nodes in the
tree represent the different probability values. A trajectory from the root to a leaf, specifies
a probability value for the corresponding variables. If a variable is omitted in a trajectory,
it means that the conditional probability table has the same probability for all values of this
variable. Another graphical representation of conditional probability tables is decision diagram,
which extends decision tree by considering a directed acyclic graph structure, such that it is
not restricted to a tree. This avoids the need to duplicate repeated probability values in the
leaf nodes, and in some cases provides an even more compact representation. Examples about
these two graphical representations of conditional probability tables, P(X | A, B,C, D, E, F,G),
is shown in Figure 4.4, assuming variables A, B,C, D, E, F, G are all binary.

Inference

Belief propagation

The belief propagation algorithm only applies to singly connected graphs (trees and polytrees).
Although there is an extension of belief propagation for general Bayesian networks, but the
convergence is not guaranteed.
Given certain evidence F, the posterior probability for any variable X = x; can be obtained
by applying the Bayes rule:
P(E | z;)P(xi)
P(:sz | E) - P(E)

Given that the Bayesian network has a tree structure, the network can then be divided by any
node into two independent subtrees. Thus, we can separate the evidence into (Figure 4.5):

(4.9)

e FE_: evidence of the rooted tree in X, and
o E.: all other evidence.
Since F; and E_ are conditionally independent given X, thus

P(E | x;)P(z;)
P(E)
P(E_, E, | x;)P(x)
P(E)

P(z; | E) = (from (4.9))
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Figure 4.4 Examples about (a) decision tree and (b) decision diagram repre-
sentation of a conditional probability table.

Figure 4.5 Divide the evidence F into two independent components F and
E_ with node X.

P(E)P4ri]

1
= EP(%‘ | EL)P(E- | ), (4.10)
where % = Pl))(fEJ’)) is the normalization constant. Let us introduce two auxiliary variables:
;) = Plas | Ey), (4.11)
and
AMz;) =P(E_ | ), (4.12)
then (4.10) can be written as
1
P(z; | E) = Eu(%))\(%) (4.13)

Equation (4.13) is the basis of the belief propagation algorithm to obtain the posterior probability
of all non-instantiated nodes. The computation of the posterior probability of any node X is
decomposed into two parts: (1) the evidence A coming from the children of X in the tree, and
the evidence p coming from the parent of X. We can think of each node X in the tree as a
simple processor that stores its vectors

WX)= (.., P(zi | E4),...), i=12,...
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Figure 4.6 (a) Bottom-up propagation of A evidence. (b) Top-down propa-
gation of p evidence.

and
AMX)=(..,P(E_ | x),...), i=1,2,...,

and its conditional probability table P(X | pa(X)). The evidence is propagated via a message
passing mechanism, in which each node sends the corresponding messages to its parent and
children in the tree.

Next we derive the equations for the messages. For the A messages, given that the children
of X are conditionally independent given z;, we have

Aa;) = P(E_ | z;) HP (EM | 2,), (4.14)

where B is the evidence coming from the tree rooted in the kth child Y*) of X. Applying
the rule of total probability conditioning on Y *), we obtain

P(EY |z)= > PEY |z,y")PEy®Y | ;)

Yy ey (k)
= Y PEY [ y)PEW | )
y®) ey (&)
= > AEPEP |2, (4.15)
Yy ey (k)

where the second equivalence comes from the fact that the evidence coming from the tree rooted
in node Y %) is conditionally independent of X given Y *). Hence the \ evidence for each note can
be calculated recursively according to the A evidence of its children by performing a bottom-up
propagation, which is shown in Figure 4.6(a).

Similarly, for the u messages, we apply the rule of total probability conditioning on the parent
node W = pa(X) of X:

w(xi) =P(z; | E4)

S Pay | By w)P(w | Ey)
weW

S Pl | w)P(w | Ey), (4.16)
weW

where the third equivalence is, again, because of X is conditionally independent of the evidence
E, given W. P(w | E4) corresponding to the probability of w given the evidence coming from
all the tree except the subtree rooted on X. According to (4.13) to (4.15), it can be written as

1 k
P(w|E.) = Znw) [ PEF.|w)
E® 2B
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Figure 4.7 A simple Bayesian network with corresponding conditional prob-
ability table.

= ouw) T X A™)PE® | w), (417)

X £X g e X (R

where X (%) is the kth child of W, and E‘(/‘Iﬁ)_ is the evidence coming from the tree rooted in X ().
Hence, the p evidence of each node can be recursively expressed as a function of the p evidence
of its parent W, and the X evidence of all other children of W. To calculate the p evidence for all
nodes, we can first perform a bottom-up propagation from all leaves of the tree (Figure 4.6(a))
to obtain the A evidence of all nodes, then perform a top-down propagation from the root of the
tree (Figure 4.6(b)).

Before the propagation starts, we should assign the evidence to those instantiated variables,
and define the prior of the root and leaf nodes of the tree. For example, we can consider a
uniform distribution A = 1 if a leaf node is unknown, and a one-hot coding for a known leaf
node (one for the assigned value and zero for all other values). After obtaining the A and p
evidence vector of all nodes in the tree from the propagation, the posterior probability of any
variable X is obtained by combining these vectors using (4.13) and normalizing.

Example 4.3  Belief propagation. We now illustrate the belief propagation algorithm with
a simple example. Consider the Bayesian network in Figure 4.7 with 4 binary variables C,
D, E, F, and the only evidence is E = e;. Then the initial conditions for the leaf nodes are:
AE) = (1,0) and A(F) = (1,1). Propagating to the parent node D is basically multiplying
the \ vectors by the corresponding conditional probability tables:

A(D)_'ll [0.9 0.5]@[11 [0.7 0.4]
0 01 0.5 1 0.3 0.6
[oo S
B | 05 1

[o9
Sl o5 |

Now propagating it to its parent C":

T
0.9 09 07| | 086
0.5 01 03| | 078 |’
In this way, we complete the bottom-up propagation.

We now perform the top-down propagation. Given that C' is not instantiated with prior
(0.8,0.2), we define p(C) = (0.8,0.2) and propagate to its child D:

T
0.8 0.9 0.1 0.86
“(D)_[m] [0.7 0.3]_[0.14]'

AC) =
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We now propagate to its child F'; however, given that D has another child, F,we also need
to consider the A message from this other child, thus:

7 T
0.86 1 09 0.5 0.7 0.3 0.57
u(F) = O] = :
0.14 0 0.1 0.5 0.4 0.6 0.27
This completes the top-down propagation. Given the A and p vectors for each unknown
variable, we just multiply them term by term and then normalize to obtain the posterior

probabilities:
1108 0.86 1| 0.69 0.81
P C - = = — = R
©) Z 02] [078 Z 0.16] [019]
1] 0.86 0.9 11 077 0.92
P(D)=— =— = ,
(D) Z 014] [05 A 0.07] [008]
1 1 1 . .
P(F)— L 0.57 _ 1 0.57 _ 0.68 .
Z | 0.27 1 Z | 0.27 0.32

4.2.2 Variable elimination

Assume a Bayesian network representing the joint probability distribution of X = {X;,..., X, }.
We want to calculate the posterior probability of a certain variable of subset of variables X,
given a subset of evidence variables Xg; the remaining variables are Xg, such that X = {Xg U
Xg U Xg}. The posterior probability of X given the evidence is:

P(Xu,Xg)
PXy | Xp)=——T1—"""2 4.1
We can obtain both terms via marginalization of the joint distribution:
P(Xpy, XEg) = ZP(X), (4.19)
Xr
and
P(Xp) =) P(Xu,Xg). (4.20)

Xu

The objective of the variable elimination method is to perform these calculations efficiently.
To achieve this, we can first represent the joint distribution as a product of local probabilities
according to the network structure. Then, summations can be carried out only on the subset of
terms which are a function of the variables being normalized. This approach takes advantage of
the properties of summation and multiplication, resulting in the number of necessary operations
being reduced.

Example 4.4  Variable elimination. Consider the Bayesian network in Figure 4.8, where
we want to obtain P(A | D). In order to achieve this we need to obtain P(A, D) and P(D).

To calculate the first term we should eliminate B, C, and E from the joint distribution, that
is:

P(A,D) = Z ZZ P(A,B,C,D,E)

B C FE
=> > > P(AP(B|AP(C|AP(D|B,C)P(E|C)
B C FE
=P(A)) [P(B[A))  |P(C|AP(D|B,C)> PE|C)|].
B C E
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Figure 4.8 A simple Bayesian network.

If we consider that all variables are binary, this implies a reduction from 32 operations to 15
operations.

The critical aspect of the variable elimination algorithm is to select the appropriate order
for eliminating each variable, as this has an important effect on the number of required op-
erations. The different terms that are generated during the calculations are known as factors
which are functions over a subset of variables, that map each instantiation of these variables to
a non-negative number (not necessarily probabilities). In general a factor can be represented as
f(X1,...,X,,). For instance, in the previous example, one of the factors is f(C, E) = P(E | C),
which is a function of two variables. The computational complexity in terms of space and time
of the variable elimination algorithm is determined by the size of the factors, i.e., the number of
variables on which the factor is defined. Basically, the complexity for eliminating any number of
variables is exponential on the number of variables in the factor. Thus, the order in which the
variables are eliminated should be selected so that the largest factor is kept to a minimum.

In general, finding the best order of variable elimination is NP-hard, but there are several
heuristics that help to determine a good ordering for variable elimination. These heuristics can
be explained based on the interaction graph, which is an undirected graph that is built during
the process of variable elimination. The variables of each factor form a clique in the interaction
graph. The initial interaction graph is obtained from the original Bayesian network structure
by eliminating the direction of the arcs, and adding additional arcs between each pair of non-
connected variables that have a common child. Then, each time a variable X is eliminated, the
interaction graph is modified by adding an arc between each pair of neighbors of X; that are not
connected, and deleting variable X; from the graph. For example, the interaction graphs that
result from the Bayesian network in Figure 4.8 by the following elimination ordering: E, D, C,
B, is depicted in Figure 4.9. Two popular heuristics for determining the elimination ordering,
which can be obtained from the interaction graph, are the following:

e Min-degree: eliminate the variable that leads to the smallest possible factor, which is
equivalent to eliminating the variable with the smallest number of neighbors in the current
interaction graph.

e Min-fill: eliminate the variable that leads to adding the minimum number of edges to the
interaction graph.

A disadvantage of variable elimination is that it only obtains the posterior probability of one
variable (or subset of variables). To obtain the posterior probability of each non-instantiated
variable in a Bayesian network, the calculations have to be repeated for each variable.

Conditioning

The conditioning method is based on the fact that an instantiated variable blocks the propagation
of the evidence in a Bayesian network. Thus, we can cut the graph at an instantiated variable,
and this can transform a multi-connected graph into a polytree, for which we can apply the belief
propagation algorithm introduced in §4.2.1. In general, a subset of variables can be instantiated
to transform a multi-connected network into a singly connected graph. If these variables are
not actually known, we can set them to each of their possible values, and then do probability
propagation for each value. With each propagation we obtain the posterior probabilities for all
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Figure 4.9 Interaction graphs resulting from the elimination of variables with
ordering F/, D, C, B from the Bayesian network in Figure 4.8.

unknown variables. Then, the final probability values are obtained as a weighted combination
of these posterior probabilities.

First we will introduce the conditioning algorithm assuming we only need to partition a
single variable and then we will extend it for multiple variables. Formally, we want to obtain the
probability of any variable X, given the evidence E, conditioning on variable A. The variable
A is selected such that by instantiating A, the multi-connected graph can be transformed to a
singly connected graph. By the rule of total probability, we have

P(X|E)=> P(X|E,a)P(a|E), (4.21)
acA

where P(X | E, a) is the posterior probability of X which is obtained by probability propagation
for each possible value of A, and the probability P(a | E) is the weight. By applying the Bayes
rule, we obtain the following equation to estimate the weight:

Pla| E) = %P(a)P(E la), (4.22)

for all a € A, where % is the normalization constant. The first term P(a) can be obtained by

propagating without evidence. The second term P(E | a) can be calculated by propagation with
A = a to obtain the probability of the evidence variables.

Example 4.5  Conditioning. Consider the Bayesian network in Figure 4.8, this multi-
connected network can be transformed into a polytree by assuming A is instantiated (Fig-
ure 4.10). If the evidence is D and FE, then probabilities of the other variables A, B, and C
can be obtained via conditioning following these steps:

1. Obtain the prior probability of A.

2. Obtain the probability of the evidence nodes D and F for each value of A by probability
propagation in the polytree.

3. Calculate the weights P(a | D, E) according to (4.22), with the probabilities obtained
from the last two steps.

4. Estimate the probability of B and C for each value of A given the evidence by proba-
bility propagation in the polytree.

5. Obtain the posterior probabilities for B and C from the last two steps by applying
(4.21).



4.2.4

42 4 Bayesian networks

@ @

Figure 4.10 Transform the Bayesian network in Figure 4.8 into a singly con-
nected network by instantiating A.

Figure 4.11 An example of an ordering of nodes and cliques in a graph. In
this case, the nodes have a perfect ordering, and the ordering of the cliques
satisfies the running intersection property.

In general, if we need to instantiate n variables to transform a multi-connected Bayesian
network to a polytree, propagation must be performed for all the combinations of values of the
instantiated variables. If each variable has k values, the number of propagations is k™. The
procedure is basically the same as described above for one variable with increased complexity.

Junction tree algorithm

The junction tree method is based on a transformation of the Bayesian network to a junction
tree, where each node in this tree is a group or cluster of variables from the original network.
Probabilistic inference is performed over this new representation. Before going into the details
about the algorithm, we first introduce some background knowledge about graph theory.

Complete graph and cliques

A complete graph is a graph, in which each pair of nodes is adjacent, i.e., there is an edge between
each pair of nodes. A complete set is a subset of some graph G that induces a complete subgraph
of G. It is a subset of vertices of G so that each pair of nodes in this subgraph is adjacent. A
cligue C' is a subset of graph G such that it is a complete set that is maximal, i.e., there is no
other complete set in G that contains C.

Ordering and triangulation

An ordering of the nodes in a graph consists in assigning an integer to each node. Given a graph
G = (V, E), with n vertices, then o = (V1,...,V,,) is an ordering of the graph, where V; is before
Vj; according to this ordering if ¢ < j. An ordering « of a graph G = (V, E) is a perfect ordering if
all the adjacent vertices of each vertex V; that are before V; are completely connected according
to this ordering. That is, for every node V;, adj(V;) N {V4,...,V;_1} is a complete subgraph of
G, where adj(V') denotes the adjacent nodes of V. Figure 4.11 depicts an example of a perfect
ordering.

Consider the set of m cliques of an undirected connected graph G. In an analogous way as
an ordering of the nodes, we can define an ordering of the cliques as 8 = (C1,...,Cy). An
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ordering (3 of the cliques has the running intersection property, if all the common nodes of each
clique C; with previous cliques according to this order are contained in some clique C; with
Jj < i. That is, for every clique C; with ¢ > 1, there exists a clique C; with j < ¢ such that
C;N{Cq,...,Ci—1} € C;. In this case, we call the clique C; the parent of clique C;. It is
possible that a clique has more than one parent. The cliques Cy, Cs, and C5 in Figure 4.11
satisfy the running intersection property. In this example, C is the parent of Cy, and C; and
Cy are parents of Cj.

A graph G is triangulated if every simple circuit of length greater than three in G has a
chord. A chord is an edge that connects two of the vertices in the circuit and that is not part
of that circuit. For example, in the triangulated graph shown in Figure 4.11, the circuit formed
by the vertices 1 -+ 2 — 4 — 3 — 1 has a chord that connects nodes 2 and 3. Given a graph
G, satisfying the triangulation property is a condition for achieving a perfect ordering of the
vertices, and having an ordering of the cliques that satisfies the running intersection property.

Maximum cardinality search

Given that a graph is triangulated, the maximum cardinality search algorithm provides a perfect
ordering of the nodes. Let G = (V, E) be an undirected graph with n vertices, we first select
any node from V' and assign it index 1. Then from all the non-indexed vertices, select the one
with higher number of adjacent indexed vertices and assign it the next number, until all nodes
in G have been numbered. If there are multiple nodes with the same number of adjacent indexed
vertices, we can choose from one of them randomly for the current index.

Given a perfect ordering of the vertices, it is easy to number the cliques so the order satisfies
the running intersection property. For this, the cliques are numbered in inverse order. Given a
set of m cliques, the clique that has the node with the highest index is assigned m, and the clique
that includes the next highest indexed node is assigned m — 1, until all cliques are numbered.
This method can be illustrated with the example in Figure 4.11. The node with the highest
number is 5, so the clique that contains it is C's. The next highest node is 4, so the clique that
includes it is C5. The remaining clique is C7.

Junction tree algorithm

The intuition behind the junction tree method is based on transforming a Bayesian network
(which is a directed graph) to an undirected graph, and then clustering the variables into cliques
so that the resulting graph is singly connected. Finally the belief propagation can be performed
on the resulting singly connected network.

The transformation proceeds as follows:

1. Eliminate the directionality of the arcs.

2. Moralize the graph by adding an arc between pairs of nodes with common children, and
add additional arcs if necessary to make the graph triangulated.

3. Order the nodes in the graph with maximum cardinality search.

4. Obtain and order the cliques of the graph such that the order satisfies the running inter-
section property.

5. Build a junction tree according to the clique ordering.

Figure 4.12 shows an example of transforming a Bayesian network to a junction tree. Those
common variables of neighbor cliques in the junction tree are called separators. Given the
relevance of these separators, the junction tree is usually drawn including the separator nodes,
depicted as rectangles.

Once the junction tree is built, inference is based on probability propagation over the junction
tree, in an analogous way as for tree-structured Bayesian networks. In practice, the belief
propagation process on a junction tree is divided into two stages: preprocessing and propagation.
In the preprocessing phase, the potentials v of each clique are obtained through the following
steps:

1. Determine the set of variables for each clique C;.
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Figure 4.12 Transformation of the Bayesian network in Figure 4.8 to a junc-
tion tree. The ellipse nodes represent cliques and the rectangle nodes are the
separators.

2. Determine the set of variables that are shared with the previous (parent) clique, i.e., the
separators S;.

3. Determine the set of other variables R; that are in C; but not in S;.
4. Calculate the potential of each clique as ¥ (C;) = [[ x¢g, P(X | pa(X)).

The propagation phase proceeds in a similar way to belief propagation for trees, by propagating
A messages bottom-up and p messages top-down:

e Bottom-up propagation.

1. Start from the leaf clique, calculate the A message to send to the parent clique:
MCi) =32, ¥(Ci).

2. Update the potential of each clique with the A messages from its children: ¢'(C;) =
AMC)$(Cj).

3. Repeat the previous two steps until reaching the root clique, and obtain P(Cioot) =

1pl(c(root)-
e Top-down propagation.

1. Start from the root clique, calculate the p message to send to each child node C; by
its parent Cj: p(C;) = ZCrSi P(Cj).
2. Update the potential of each clique when receiving the p message from its parent and

obtain: P(C;) = ¢'(C}) iggg

3. Repeat the previous two steps until reaching the leaf nodes in the junction tree.

At the end of this propagation in both directions, each clique has the joint marginal probability
of the variables that conform it. Hence, the marginal posterior probabilities of each variable can
be obtained from the clique via marginalization.

Example 4.6  Junction tree algorithm. Consider the junction tree in Figure 4.12, the
preprocessing phase is obtaining:

¢y = {4, B,C} Cb = {B,C, D} Cs = {C, B}
Sy = Sy = {B,C} Sy = {C)
R :{Avac} R2:{D} RSZ{E}

1
P(C1) =P(A)P(B | A)P(C | A) &(C2) =P(D|B,C) ¥(C5)=P(E|C).
Then in the propagation phase, first C's sends a A message to Ca:

ACs) =D 9(Cs) =D P(E|C),
E E
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and the potential of Cs is updated as:
V'(Ca) = $(C2)A(C3) = P(D | B,C) Y P(E|C).
E
Next, the A message from Co
Cy) = ¥(C) =Y P(D|B,C)Y P(E|C)
D D E
is sent to C7, and the potential of C'; is updated as:
W(Cr) = ¥(C1MCo) = P(AP(B | A)P(C | A)Y P(D|B,C)Y P(E|C).
D E

Finally we assign P(C;) = ¢'(C}), which ends the bottom-up propagation. Note that the
obtained probability P(C7) is equivalent to the joint marginal probability of the variables in
clique C since

P(Cy) =4'(Ch)

=P(AP(B|A)P(C|A)> P(D|B,C)) P(E|C)

P(B|AP(C|APD | B,C)P(E|C)

UM

Z (A,B,C,D, E)
D.,E

P(A, B,C).
Now starts the top-down propagation. Clique C; sends u message
p(Cy) = Y P(Cy)=> P(4,B,C)
C1—5; A

to clique Cy, and we obtain
1(Ca

P(Cy) = (Cz) N

CQ)
P(D|B,C)Y,P(E|C)Y, P(4,B,C)
S,P(D|B.0)Y,P(E|C)
=P(D | B,C)P(B,(C)
=P(B,C,D),

~—

which is also equivalent to the joint marginal probability of the variables in clique Cs. Finally,
clique C5 sends p message

n(Cs)= Y P(C2)=) P(B,C.D)
Cy—S3 B,D

to clique C5, and we get

~—

P(Cy) = w’(ce)‘;ggj

P(E|C)) 5 pP(B,C,D)
>YrPE]C)
=P(E|C)P(C)
= P(C,E).

~—

This ends the top-down propagation.
After obtaining the joint marginal probability of the variables for all cliques, the single
variable’s probabilities can be calculated via marginalization:

P(A) = ZB,C P(Cl) P(B> = ZA,C P(Cl) P(C) = ZA,B P<Cl
P(D) = ZB,CP(C2>
P(E)=> .P(Cs).
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Sampling based methods

Stochastic simulation algorithms consist in simulating the Bayesian several times, where each
simulation gives a sample value for all non-instantiated variables. Then the posterior probability
of each variable is approximated in terms of the frequency of each value in the sample space.
This process gives an estimate of the posterior probability which depends on the number of
samples. However, the computational cost is not affected by the complexity of the network.

Logic sampling

Logic sampling is a basic stochastic simulation algorithm that generates samples according to
the following procedure:

1. Generate sample values for all root nodes of the Bayesian network according to their prior
probabilities P(X).

2. Generate samples for the children of the sampled nodes, according to their conditional
probabilities P(X | pa(X)).

3. Repeat the second step until all leaf nodes are reached.

The previous procedure is repeated n times to generate n samples. Then the probability of
possible values of each variable is estimated as the frequency that the value occurs in the n
samples, i.e.,

P(X =) = %mek(xi), (4.23)
i=1

where the indicator function I, (x;) = 1 if 2, = z;, and 0 otherwise.

The direct application of the previous procedure gives an estimate of the marginal proba-
bilities of all the variables when there is no evidence. If there is evidence, i.e., some variables
are instantiated, all samples that are not consistent with the evidence are discarded and the
posterior probabilities are estimated from the remaining samples.

A disadvantage of logic sampling when evidence exists is that the data-efficiency is very low
since many samples have to be discarded. This implies that a larger number of samples are
required to have a relatively good estimation.

Likelihood weighting

Likelihood weighting generates samples in the same way as logic sampling, however when there
is evidence the non-consistent samples are not discarded. Instead, each sample is given a weight
according to the weight of the evidence for this sample. Given a sample of all non-instantiated
nodes H and the evidence variables E, the weight of sample ¢ is calculated as:

then the posterior probability of possible values of each variable is estimated as a weighted
average over all n samples:

P(X = x3,) = (4.25)

Parameter learning

When the network structure is known, parameter learning of a Bayesian network consists in
estimating the conditional probability tables from data. If we have sufficient and complete data
for all the variables, the conditional probability table for each variable can be estimated based on
the frequency of each value or combination of values via maximum likelihood estimation (MLE).
For example, to estimate the conditional probability table of variable C' with two parents A and
B given the observed n samples, each entry of the table can be estimated according to

Z?’:l Iai,bj,ck (ai/a bi/, Ci,)
Z?’:l Iaiabj (ai” bi’)
with indicator function I. However, it can sometimes happen that we do not have a perfect

dataset for learning the parameters.

P(C=c,|A=a;B=0b;)= (4.26)
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Smoothing

When we estimate probabilities from data, it can sometimes happen that a particular event never
occurs in the data set. This leads to the corresponding probability value being zero, implying
an impossible case. Hence, if in the inference process this probability is considered, it will also
make the result zero. This situation occurs, in many cases, because there is insufficient data to
have a robust estimate of the parameters, and not because it is really an impossible event. This
problem can be addressed by using some type of smoothing for the probabilities, eliminating
zero probability values. From a Bayesian point of view, smoothing corresponding to estimate
the posterior distribution of the parameters given some priors.

Uniform prior

One of the most common and simplest prior one can consider is a uniform distribution on
the variable domain, which is called Laplacian smoothing (or additive smoothing). Consider a
discrete variable X with m possible values. Given a dataset with n samples, the estimation of
its probability will be the following:

o+ Z;:l IM (xi’)

P(xl) - am—+n

. i=1,...,m, (4.27)

where I is the indication function of x; and « is the smoothing parameter, with a = 0 cor-
responding to no smoothing. When there is no observed sample, i.e., n = 0, the estimated
parameter distribution is simply the uniform prior

1
P(xi)za, i=1,...,m.

As the number of observed samples increases, the parameter estimation will converge to the true
data distribution since in this case,
a+ ZZ:I Ifri (‘TZ’) Z?’:l Ilz‘ (xl’)

lim P(z;) = lim = ,
n— 00 n—o0o am-—+n n

foralli=1,...,m.

Beta prior

Other than the non-informative uniform prior, we can try to integrate more expert information
into the parameter estimation by considering an informative prior. For binary variables, we can
build a prior based on the expectations of a beta distribution, Beta(«, 8). The expected value
of random variable X ~ Beta(a, () is controlled by the shape parameters o and j3, that is

(07

EBeta(a,B)[X] = P(X =1 ‘ avﬂ) = O[—Fﬁ

(4.28)

Then similar to (4.27), given a dataset with n samples, the estimation of binary variable X can

be obtained as "

ot hiz)
a+pB+n
and P(X =0) =1—P(X = 1). In this case, the fraction ;5 determines the expert’s prior for
X =1, while the denominator a + § defines the confidence about the prior. This means that a

higher o + 3 value assigns more confidence on the prior while a lower value places more weight
on the observations.

P(X=1)= (4.29)

3

Example 4.7  Smoothing with beta prior. Assuming that an expert gives an estimate
of Egeta(a,8)[X] = 0.7 for a certain parameter, and that the experimental data provides
40 positive cases among 100 samples. The parameter estimation for different confidences
assigned to the expert will be the following:

+ Low confidence (a + = 10): P(X = 1) = {55 = 0.43.

+ Medium confidence (o + 8 = 100): P(X = 1) = {555 = 0.55.
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o High confidence (o + 5 =1000): P(X =1) = % = 0.67.

In the first case, the expert prior is dominated by the data, while in the third case the
probability is closer to the expert’s estimation, and the second case provides a compromise
between them.

Dirichlet prior

The idea of the previous beta prior can be extended to general m-valued random variables
by replacing the beta distribution with a Dirichlet distribution, Dir(«), with the concentration
parameter o being an m-vector. The expected value of each entry of an m-dimensional random
vector X ~ Dir(a) is

a

Epir(o)[Xi] = P(zi | a) = LR 1=1,...,m, (4.30)

and we also have .
ZEDir(a) [XZ] =L (431)

i=1

We can view the m-dimensional random vector as a m-valued discrete random variable by
assigning each of the entries an value. Hence, with the given n observations, we can estimate
the probability distribution of X as

i + 3 iy Loy (i)

1
aTl+n !

P(z;) = yeee, M. (4.32)

7

Similar to the beta prior, the fraction a;/a”1 determines the expert’s prior for X = x;, and the
confidence about the prior is controlled by the value of a”1.

Missing data

Another common situation that we may have during parameter learning is to have incomplete
data. There are two basic cases:

e Missing values: in some samples there are missing values for one or more variables.
o Hidden nodes: a variable or set of variables in the model cannot be observed.

For dealing with missing values, there are several alternatives. One trivial approach would be
to remove all the samples with missing values. This would be acceptable only if there is sufficient
data. Another alternative without removing any samples from the dataset is to substitute the
missing value by the most common value of that variable based on all available observations.
However, this may bias the model since the information from the other variables is not taken into
account. In general the best option would be to estimate the missing value based on the values
of the other variables in the corresponding sample. In this case, we first learn the parameters
of the Bayesian network based on the samples with complete observations, and then for each
sample with missing values applying the following process:

1. Instantiate all the known variables in the sample.
2. Through probabilistic inference obtain the posterior probabilities of the missing variables.

3. Assign to each unknown variable the value with highest posterior probability, or sample
one value according to the posterior probability.

4. Add this completed sample to the database.

Finally we can re-estimate the model parameters based on the completed dataset.

For hidden nodes, the approach to estimate their parameters is based on the expectation-
maximization (EM) algorithm. The algorithm starts by initializing the missing parameters
with random values. Then for each EM-iteration, in the E-step, the missing data values are
estimated based on the current parameters; in the M-step, the parameters are updated based on
the estimated data. This will be repeated multiple times until the parameters get converge.
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Discretization

Usually Bayesian networks consider discrete or categorical variables. Although there are some
developments for continuous variables, these are restricted to certain distributions, in partic-
ular Gaussian variables and linear relations. An alternative to include continuous variables in
Bayesian networks is to discretize them, i.e., transform them to categorical variables. Discretiza-
tion methods can be unsupervised and supervised.

Unsupervised discretization

Unsupervised discretization do not consider the task for which the model is going to be used,
meaning that the discretization intervals for each variable are determined independently. The
two main types of unsupervised discretization approaches are equal width and equal data. Equal
width consists in dividing the range of a variable into k£ equal bins, such that each bin has a
size of (sup(X) — inf(X))/k. The number of intervals & is usually assigned by the user. Equal
data divides the range of the variable into k intervals, such that each interval includes the same
number of data points from the training dataset. In other words, if there are n samples, each
interval will contain n/k data points, but the intervals will not necessarily have the same width.

Supervised discretization

Supervised discretization incorporates the task to be performed with the model, such that the
variables are discretized to optimize this task, for instance classification accuracy. This can be
posed as an optimization problem. For example, consider a continuous feature variable X and
a categorical class variable C'. Given n training samples with each one having a value for C
and X, the problem is to determine the optimal partition of (inf(X),sup(X)) such that the
classification accuracy is maximized. This is then a combinatorial optimization problem that is
computationally complex. Different search approaches can be used, including basic ones such as
hill-climbing or more sophisticated methods like simulated annealing and genetic algorithms.

Structure learning

Tree learning

For a particular case where the dependencies between random variables can be represented with
a tree-structure, the structure learning procedure can be separated into two steps: (1) learning
the skeleton of the tree, i.e., establishing undirected edges between variables, and (2) determining
the direction of the edges.

Skeleton learning

The Chow-Liu procedure (CLP) obtains the skeleton of a tree, but does not provide the directions
of the arcs. Given a set of n random variables X = {X1,...,X,}, we would like to find the
tree structure that best approximate the joint distribution of these variables P(z). Let P(z)
be the approximated joint distribution obtained from some tree including these variables, the
skeleton learning problem consists in minimizing the distance between distributions P(z) and
f’(x), according to the KL-divergence measure:

Dy (P,P) = Z P(z)log <§:Ex;> . (4.33)
zeX z

However, evaluating the KL-divergence for all possible trees is very expensive. As an alternative
of the objective (4.33), let

(X, X;)= > P(xi,x]—)log<P(xi’xj)) (4.34)

T €X;,m;€X, P(xi)P(xj)
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be the mutual information between any pair of variables X; € X, X; € X, we define the weight
W(X) as the sum of the mutual information of the edges that constitute the tree G = (X, E) as

W) =Y I(XX) = 3 I(XepalX.). (4.35)
(X:,X;)E€E i=1

(Here we assume the root note is indexed as X, in the tree without loosing of generality.) It
can be shown that minimizing (4.33) is equivalent to maximizing (4.35) over the set of edges F.
(See exercise 4.4.) Therefore, obtaining the optimal tree is equivalent to finding the mazimum
weight spanning tree, according to the following procedure:

1. Obtain the mutual information I(X;, X;) for all pairs of variables X; € X, X; € X.
2. Order the mutual information values in descending order.

3. Select the pair (X;, X;) with maximum I(X;, X;) and connect the two variables with an
edge, this constitutes the initial tree.

4. Add the pair with the next highest mutual information to the tree if they do not make a
cycle, otherwise skip it and continue with the following pair.

5. Repeat the previous step until all the variables are in the tree.

Direction learning

Based on the learnt skeleton of the tree from CLP, one trivial way of assigning edge directions
would be randomly select one node as the tree root and assign directions to the edges starting
from this root. Another option is to obtain directions using external semantics, or using higher
order dependency tests. We will introduce the last alternative subsequently.

As discussed in §4.1.1, given three variables X, Y, and Z, there are three possibilities for
their dependency:

e Sequential: X - Y — Z.
e Divergent: X <Y — Z.
e Convergent: X =Y «+ Z.

The first two cases are indistinguishable under statistical independence testing, since in both
cases X and Z are independent given Y. However the third case is different, where X and Z are
not independent given Y. Hence, this case can be used to determine the directions of the two
arcs that connect these three variables, and once we have identified a convergent structure, we
can apply this knowledge to learn the directions of other arcs using independence tests. With
this, the following algorithm can be used for learning the direction of a tree skeleton:

1. Tterate over the network until a convergent variable triplet is found. We will call the
variable to which the arcs converge a multi-parent node.

2. Starting with a multi-parent node, determine the directions of other arcs using indepen-
dence tests for variable triplets. Continue this procedure until it is no longer possible.

3. Repeat the first two steps until no other directions can be determined.

However, we should note that there is no guarantee that the direction for all the arcs in the tree
can be obtained via this procedure. If any arcs are left undirected when the algorithm quits,
external semantics can be used to infer their directions.

Example 4.8  Direction learning using independence tests. Given a tree skeleton as shown in
Figure 4.13, we first perform statistical independence tests for variable triplet { X7, Xo, X4}.
Suppose we find that X5 are dependent of X, given Xj, meaning the variable triplet
{X1, X2, X4} falls into the convergent substructure. Hence, we can assign the direction
for edge (X1,X2) and (X1, X4) as Xo — X7 < X4. Based on this knowledge, we can fur-
ther test the independence relationship between triplet {X;, X2, X3} and {X;, X3, X4}. If
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Figure 4.13 An example of learning the edge directions given a tree skeleton
using independence tests.

we have (Xo UL X3 | X7) and (X3 1 X4 | X;), the direction of edge (X7, X3) must be
X1 — X3. Otherwise, both the variable triplets { X1, X2, X3} and {X7, X3, X4} fall into con-
vergent substructure and we can thus assign the edge direction X; <— X3. Finally, the same
process can be applied for triplet { X, X3, X5} to determine the direction of edge (X3, X5).

Score-based methods

Score-based methods view the structure learning problem as a combinatorial optimization prob-
lem w.r.t. some type of scoring function over the network structure. Since this problem is
generally NP-hard, we resort to heuristic search techniques, such as hill-climbing, simulated an-
nealing, genetic algorithms, etc. As can be expected, one of the most important decisions we
must make in this framework is the choice of scoring function S.

Likelihood score

The likelihood score is defined as the probability of observing the dataset D given the graph G
and its parameters 6, typically expressed in logarithmic form:

S1L(G) = Ip(fc) =log P(D | 0, G). (4.36)

The network structure found by directly maximizing the log-likelihood score (MLE estimation)
can be highly complex, which usually implies overfitting the data (poor generalization) and also
makes inference more complex.

Bayesian score

An alternative metric which avoids overfitting is expressed by following a Bayesian approach,
obtaining the posterior probability of the structure given the data with the Bayes rule:

P(D|G)P(G)

P(GID) = 55

(4.37)

Since the denominator P(D) is a constant that does not depend on the structure, it can be
discarded from the metric. Thus we define the Bayesian score as:

Sp(G) =logP(D | G) + log P(G), (4.38)

which is again, for convenience, expressed in logarithmic form. The probability P(G) is the prior
over network structures, allowing us to prefer some structures over others. The likelihood term
P(D | G) is called the marginal likelihood of the data since its obtained by marginalizing out
the unknown model parameters 6¢:

P(D|G) :/9 P(D | 0, G)P (6 | G) dbe, (4.39)

where P(D | 6, G) is the likelihood of the data given the network G and its parameter 0, and
P(f¢ | G) is the prior distribution over different parameter values for the network G.

It is important to realize that maximizing the marginal likelihood (4.39) is quite different
from maximizing the likelihood score (4.36). Both terms examine the likelihood of the data
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given the structure. The maximum likelihood score evaluates the likelihood of the training data
using the best parameter values for the given dataset. This estimate is realistic only if these
parameters are also reflective of the data in general, a situation that never occurs. In contrast, in
the Bayesian approach, by integrating P(D | 04, G) over the different choices of parameters ¢,
we are measuring the expected likelihood, averaged over different possible choices of 5. Thus,
we are being more conservative in our estimate of the goodness of the model, which contributes
to avoid overfitting.

In practice, the value of the marginal likelihood P(D | G) depends on the parameter prior
P(0c | G) that we select, as well as the number of samples in the dataset, etc. For example, if
we use a Dirichlet parameter prior for all parameters in the network, then, when the number of
samples in the dataset n — oo, we have the Bayesian information criterion (BIC):

k
SBlc(G) = lp(eg) — 5 logn
=1logP(D | b¢,G) — glog n, (4.40)

where k is the number of parameters in the model and n is the number of samples in the
dataset. From this example, we can see that the Bayesian score seems to be biased toward
simpler structures, but as it gets more data, it is willing to recognize that a more complex
structure is necessary. In other words, it appears to trade off fit to data with model complexity,
thereby reducing the extent of overfitting.

PC algorithm

The PC algorithm first recovers the skeleton (underlying undirected graph) of the Bayesian
network, and then it determines the direction of the edges. To determine the skeleton, it starts
from a fully connected undirected graph, and determines the conditional independence of each
pair of variables given some subset of the other variables. For this it assumes that there is
a procedure that can determine if two variables, X and Y, are independent given a subset of
variables Z. For example, using statistical tests or by calculating the conditional cross-entropy
measure. If the independence measure is below some threshold value set according to a certain
confidence level, the edge between the pair of variables is eliminated. These tests are iterated for
all pairs of variables in the graph. Then in the second step, where the direction of the edges are
determined, the same independence testing procedure based on variable triplets as introduced
in §4.4.1 can be applied.

If the set of independencies are faithful to a graph, meaning that that conditional indepen-
dence relations are due to the causal structure rather than because of accidents in parameter
values, and the independence tests are perfect, the algorithm produces a graph equivalent to the
original one.
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Exercises

4.1 Graphoid axioms. Using the property of d-separation, illustrate graphically that the following
graphoid axioms introduced in §1.1.1 are true.
(a) X LY |Z2) = (Y1 X]|2Z).

b)) (X LYW |Z) = (X LY |Z).

() XYW |Z) = (X LY |ZW).

d) XLY | 2)& (X LW|ZY) = (X LYW | Z).

4.2 Belief propagation. Given the following Bayesian network and corresponding conditional prob-

ability tables, considering all the variables are binary, obtain the posterior probabilities of all
unknown variables via belief propagation with the evidence A = a1, F = es.

(8)
@ & W

@ a a  c | | b b
— 2 |07 01 4 |02 07
0.2 0.8 0.6 0.4
bs | 0.3 0.9 ds | 0.8 0.3
‘(51701) (bi,c2)  (b2,c1)  (b2,c2) ‘(51701) (bi,c2)  (b2,c1)  (b2,c2)
el 0.8 0.6 0.5 0.1 fi 0.4 0.9 0.3 0.5
€2 0.2 0.4 0.5 0.9 fa 0.6 0.1 0.7 0.5

4.3 Stochastic inference. Given the following Bayesian network and corresponding conditional prob-
ability tables, considering all the variables are binary, implement the logic sampling and likeli-
hood weighting algorithm to estimate the posterior probabilities of all unknown variables with
the evidence E = e;.

C1 C2

I dq
0.8 0.2

do

09 0.7 el
0.1 0.3 ()

09 05 f1

0.1 05 f2 103 06

4.4 Chow-Liu procedure. Given a set of n random variables X = {X7,..., X, }, finding the best tree
skeleton to represent the joint distribution P(x) of these variables consists in minimizing the

KL-divergence between the true distribution P(x) and tree approximated distribution P(x):

5 P(z)
Dk, (P,P) = P(x)log | = .
KL ;{ g <P(x)>
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Show that minimizing this KL-divergence is equivalent to maximizing the weight W (X) defined
on some tree G = (V, E) as

n—1
W(X)= > I(X,X;) =Y I(X;pa(X,)),
(Xi,Xj)EE =1

where we assume the root note is indexed as X, in the tree, and

o v o log [ E@T)
1(Xi, X;) a:iGX;:;jGXjP( )1 g<P($i)P(xj))

is the mutual information between variables X; € X, X; € X.
Hint. 3, P(x)logP(z;) = >, P(z;)log P(z;).
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Chapter 5

Markov decision problems

Markov decision processes

A Markov decision process (MDP) can be used to model the interaction of an agent and an
environment. At each time step t of the interaction, the agent receives some representation of
the environment’s state s; € S, and follows a policy m to take an action a; € A. In response,
the environment emits a real-valued reward signal r(s¢, a;) and enters a new state s;11 € S. A
graphical representation of this process is shown in Figure 5.1. The set S and A are called the
state space and action space, respectively. The policy is in general stochastic, with 7(a | s) being
the probability of choosing action a in state s. We use 7(s) to denote the conditional probability
over A if the policy is stochastic, or the action it chooses if it is deterministic. The function
r: S x A — R is called the reward function. The process at every step is called a transition; at
time ¢, it consists of the tuple (st, as, St41), where a; ~ 7(s¢) and s¢y1 ~ p(se11 | ¢, a). Hence,
under policy 7, the probability of generating a trajectory 7 = (sg, ag, $1,a1,-..,sr) of length T
can be written explicitly as

T-1

p(r) = p(so) T[] mlar | so)p(sesr | se,a0). (5.1)
t=0

In general, the state and action sets of an MDP can be discrete or continuous. When both
sets are finite, we can represent these functions as lookup tables; this is known as a tabular
representation.

Note that the field of control theory uses slightly different terminology. In particular, the
environment is called the plant, and the agent is called the controller. States are denoted by
ry € X C R™, actions are denoted by u; € U4 C R"”, and rewards are denoted by costs ¢; € R.
In this course we will use the former notation because they are meaningful to a wider audience.

Episodes and returns

The Markov decision process describes how a trajectory T = (sg, ag, $1,a1,...) is stochastically
generated. If the agent can potentially interact with the environment forever, we call it a
continuing task. Alternatively, the agent is in an episodic task, if its interaction terminates once
the system enters a terminal state or absorbing state (the next state is always itself with 0
reward). After entering a terminal state, the agent will start a new episode from a new initial
state so ~ p(sp). The episode length is in general random. For example, the amount of time a
robot takes to reach its goal may be quite variable, depending on the decisions it makes, and
the randomness in the environment. Note that we can convert an episodic MDP to a continuing
MDP by redefining the transition model in terminal states to be the initial-state distribution
p(s0). Finally, if the trajectory length T in an episodic task is fixed and known, it is called a
finite horizon problem.

Let 7 be a trajectory of length T, where T may be oo if the task is continuing. We define
the return for the state at time ¢ to be the sum of expected rewards obtained going forwards,
where each reward is multiplied by a discount factor v € [0, 1]:

TftflT

Ge=ri+ 71 + ¥V ra + -+ T—1
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Figure 5.1 Graphical representation of an MDP.

T—t—1

T-1
= Z Vorigr = Z 7. (5.2)
k=0 1=t

For episodic tasks that terminate at time T', we define G; = 0 for ¢ > T. Clearly, the return
satisfies the following recursive relationship:

Gy =ri+7(re1 + 9742 + -+ ) =1 + YGiqa. (5.3)

The discount factor ~ plays two roles. First, it ensures the return Gy is finite even if T —
oo (i.e., infinite horizon), if we use v < 1 and the rewards r; are bounded. Second, it puts
more weight on short-term rewards, which generally has the effect of encouraging the agent to
achieve its goals more quickly. However, if v is too small, the agent will become too greedy.
In the extreme case where v = 0, the agent is completely myopic, and only tries to maximize
its immediate reward. In general, the discount factor reflects the assumption that there is a
probability of 1 — ~ that the interaction will end at the next step. For finite horizon problems,
where T is known, we can set v = 1, since we know the life time of the agent a priori.

Value functions

Let m be a given policy, we define the state-value function V', or wvalue function for short, as

follows:
Z Vtrt
t=0

for all s € §, where E,; indicating that actions are selected according to w. This is the expected
return obtained if we start in state s € S and follow 7 to choose actions in a continuing task.
Similarly, we define the action-value function @, also known as the Q-function, as follows:

o
t
E YTt
t=0

for all s € S,a € A. The action-value function represents the expected return obtained if we
start by taking action a in state s, and then follow 7 to choose actions thereafter. Finally, we
define the advantage function as follows:

V7™(s) = Ex[Go | s0 = s] = E,

S0 = s] , (5.4)

Q™ (s,a) =E;[Gy | so=8,a0 =a] = E;

S0 = 8,a0 = a] , (5.5)

AT (s,a) = Q™ (s,a) — V™ (s), (5.6)

which tells us the benefit of picking action a in state s then switching to policy , relative to
the baseline return of always following 7. Note that A™(s,a) can be both positive and negative,
and E(4q)[A™ (s, a)] = 0 since

V7 (s) = Er(a)5)[Q" (s, a)]. (5.7)

A fundamental property of value functions is that they satisfy recursive relationships similar
to that which we have already established for the return (5.3). For any policy 7 and any state
s, the following consistency condition holds between the value of s and the value of its possible
successor states:

Vﬂ—(S) = EW[GO | So = S]
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=E;[ro+vG1 | so = ] (by (5.3))
= Z m(a|s) [r(s,a) + Z p(s' | 5,0)E;[Gy | s1 = s']}
acA s'es
= Z m(a | s) |j“(5,a) +7 Z p(s' | 8,a)V7(s) (5.8)
acA s'eS

The equation (5.8) is called the Bellman equation for value function V7. It expresses a relation-
ship between the value of a state and the values of its successor states. Similarly, we have the
Bellman equation for action-value function Q™ as

Qﬂ-(saa) = EW[GO | S0 = S,a0 = a]

=E,[ro +vG1 | so = s,a9 = a] (by (5.3))
=r(s,a)+v Z p(s"| s,a)Ex[G1 | 51 = ¢
s'eS
=r(s,a)+7 Y p(s' [ s,0) Y 7l | $)Q7(s',d). (5.9)
s'eS a’'€A

Note that in the above discussion we overload the notation for density function p to also
represent the probability measure P when talking about the transition model p(s’ | s,a). The
intentions behind this is that we would like to use a unified representation for both discrete and
continuous MDPs, and to emphasize the fact that the transition model p plays an important role
in MDPs. One can distinguish whether p is a density function or a probability measure based
on the context, especially according to how the probabilities are calculated (‘Y. or ‘7).

Optimal value functions and policies

Suppose 7* is a policy such that V™ > V7™ for all s € S and all policy , then it is an optimal
policy. There can be multiple optimal policies for the same MDP, but by definition their value
functions must be the same, and are denoted by V* and Q*, respectively. We call V* the optimal
(state-)value function, and Q* the optimal action-value function.

Intuitively, the value of a state under an optimal policy must equal the expected return for
the best action from that state:

V*(s) = Igleaj(Q (s,a) (5.10)
= E * = =
max Er [Go | 50 = s,a9 = al

=maxE -[rg +vG1 | so = s,a0 = ]
acA

= max
acA

r(s,a) + Z p(s' | 5,0)E |Gy | 51 = s’]]

s'eS

= max [r(s,a) +7 Z p(s’ | s,a)V*(s")|, (5.11)

ac
s'eS

for all s € S. The last equation formulate the Bellman optimality equation for value function V*.
This derivation procedure also informs us about the Bellman optimality equation for action-value
function Q*:

Q*(s,a) =r(s,a) +7 > p(s' | s,a) max Q*(s', a'), (5.12)

es a’€A

for all s € S,a € A. Given a value function (V or @), the discrepancy between the right- and
left-hand sides of (5.11) and (5.12) are called Bellman error or Bellman residual. The backup
diagrams in Figure 5.2 show graphically the spans of future states and actions considered in the
Bellman optimality equations for V* and @Q*. For finite MDPs, the Bellman optimality equations
(5.11) and (5.12) has a unique solution 7*. The Bellman optimality equation is actually a system
of equations, one for each state, so if there are n states, then there are n equations in n unknowns.
If the dynamics p of the environment are known, then in principle one can solve this system of
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Figure 5.2 Backup diagrams for V* and Q*.

equations for V* and Q* using any one of a variety of methods for solving systems of nonlinear
equations.

Once one has V*| it is relatively easy to determine an optimal policy 7*. For each state s,
there will be one or more actions at which the maximum is obtained in the Bellman optimality
equation. Any policy that assigns nonzero probability only to these actions is an optimal policy.
This can be considered as an one-step search. Given the optimal value function V*, then the
actions that appear best after a one-step search will be optimal actions, i.e.,

7*(s) = argmax |7(s,a) + v Z p(s' | s,a)V*(s")|, (5.13)
acA
s'esS

for all s € S. Another way of saying this is that any policy that is greedy with respect to the
optimal evaluation function V* is an optimal policy. The beauty of V* is that if one uses it
to evaluate the short-term consequences of actions — specifically, the one-step consequences —
then a greedy policy is actually optimal in the long-term sense in which we are interested because
V* already takes into account the reward consequences of all possible future behavior.

Having @* makes choosing optimal actions even easier. With @, the agent does not even
have to do a one-step-ahead search: for any state s, it can simply find any action that maximizes
Q*(s,a), i.e.,

7 (s) = argmax Q" (s, a). (5.14)

acA

The action-value function effectively caches the results of all one-step-ahead searches. It provides
the optimal expected long-term return as a value that is locally and immediately available for
each state-action pair. Hence, at the cost of representing a function of state-action pairs, instead
of just of states, the optimal action-value function allows optimal actions to be selected without
having to know anything about possible successor states and their values, that is, without having
to know anything about the environment’s dynamics.

Example

We now show a simple example, to make concepts like value functions more concrete. Fig-
ure 5.3(a) shows a rectangular gridworld representation of a simple finite MDP. The cells of the
grid correspond to the states of the environment. At each cell, four actions are possible: wup,
down, left, and right, which deterministically cause the agent to move one cell in the respective
direction on the grid. Actions that would take the agent off the grid leave its location unchanged,
but also result in a reward of —1. Other actions result in a reward of 0, except those that move
the agent out of the special states A and B. From state A, all four actions yield a reward of +10
and take the agent to A’. From state B, all actions yield a reward of +5 and take the agent to
B’

Suppose the agent selects all four actions with equal probability in all states. Figure 5.3(b)
shows the value function V'™ for this policy, for the discounted reward case with v = 0.9. This
value function was computed by solving the system of linear equations (5.8). Notice the negative
values near the lower edge; these are the result of the high probability of hitting the edge of the
grid there under the random policy. State A is the best state to be in under this policy. Note
that A’s expected return is less than its immediate reward of 10, because from A the agent is
taken to state A’ from which it is likely to run into the edge of the grid. State B, on the other
hand, is valued more than its immediate reward of 5, because from B the agent is taken to B’
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Figure 5.3 Gridworld example: exceptional reward dynamics (a) and state-
value function for the equiprobable random policy (b). (c) and (d) shows the
optimal value function V* and optimal policy 7* of this gridworld example.

which has a positive value. From B’ the expected penalty (negative reward) for possibly running
into an edge is more than compensated for by the expected gain for possibly stumbling onto A
or B.

Suppose we now solve the Bellman optimality equation for V* in this gridworld task. Fig-
ure 5.3(c) and 5.3(d) shows the optimal value function and the corresponding optimal policies,
respectively. Where there are multiple arrows in a cell, all of the corresponding actions are
optimal.

Dynamic programming

The term dynamic programming (DP) refers to a collection of iterative algorithms that can be
used to compute optimal policies given a perfect model of the environment as an MDP. The key
idea of DP is the use of value functions to organize and structure the search for good policies.

Policy iteration

Policy evaluation

First we consider how to compute the value function V™ for an arbitrary policy 7. This called
policy evaluation in the DP literature. We also refer to it as the prediction problem. According
to (5.8), we have

Vi(s) =Y mla|s) |r(s,a) +7 ) (s [ 5,0)V7(s)]

a€A s'eS

for all s € S, where 7(a | s) is the probability of taking action a in state s under policy 7. The
existence and uniqueness of V™ is guaranteed as long as either v < 1 or eventual termination is
guaranteed for all states under the policy .

If the environment’s dynamics are completely known, then (5.8) is a system of card(S)
simultaneous linear equations in card(S) unknowns (V7(s), for all s € S). In practice, we
perfer to solve the system of linear equations with iterative methods. Consider a sequence of
approximate value functions V(©, V() V@ with V(): S — R. The initial approximation
V() is chosen arbitrarily (except that the terminal state, if any, must be given value 0), and
each successive approximation is obtained by using the Bellman equation for value function (5.8)
as an update rule:

Ve (g) = Z ma|s) |r(s,a) +~ z p(s’ | s,a) V()| (5.15)

acA s'eS

for all s € S. The sequence V@ V) V@ can be shown in general to converge to V™ as
1 — oo under the same conditions that guarantee the existence of V™. This algorithm is called
iterative policy evaluation.
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To write a sequential computer program to implement iterative policy evaluation as given by
(5.15), we would have to use two arrays, one for the old values V(*), and one for the new values
V@t With two arrays, the new values can be computed one by one from the old values without
the old values being changed. Alternatively, you could use one array and update the values ‘in
place’, that is, with each new value immediately overwriting the old one. Then, depending on
the order in which the states are updated, sometimes new values are used instead of old ones on
the right-hand side of (5.15). This in-place algorithm also converges to V7™; in fact, it usually
converges faster than the two-array version, as you might expect, because it uses new data as
soon as they are available. We think of the updates as being done in a sweep through the state
space. For the in-place algorithm, the order in which states have their values updated during
the sweep has a significant influence on the rate of convergence. We usually have the in-place
version in mind when we think of DP algorithms. A complete in-place version of iterative policy
evaluation is shown in pseudocode in Algorithm 5.1.

Algorithm 5.1 [terative policy evaluation.

given the policy 7 to be evaluated.
initialize V' (s) for all s € S arbitrarily, if s is not terminal, otherwise 0.

repeat
for s € S do
V(s) = Yuear(a ] 5) [r(s,0) +7 X yes (s’ | 5,0)V ()],
end for

until stop criterion reached.

Policy improvement

After obtaining the value function for some policy 7 from policy evaluation, we can find a new
greedy policy 7, according to

7'(s) = argmax Q™ (s, a) = argmax |r(s,a) + Z p(s' | s,a)V™(s)|, (5.16)
a€A acA s'eS

for all s € S. The new greedy policy takes the action that looks best in the short term — after
one step of lookahead — according to V™. The process of making a new policy that improves on
an original policy, by making it greedy with respect to the value function of the original policy,
is called policy improvement.

It can be easily shown that the new greedy policy 7’ is as good as, or better than the old
policy 7. Specifically, in the former case, the old policy = must be the optimal policy 7*. Suppose
7’ is as good as, but not better than 7. Then V™ = V™ and from (5.16) it follows that for all
seS:

T o / w0
V™ (s) = max T(S7a)+’7,zesp(5 | s,a)V7(s)|,

which is exactly the Bellman optimality equation. Therefore, V™ must be V*, and both 7 and
7w’ must be optimal policies.

Policy iteration

Once a policy 7, has been improved using V'™ to yield a better policy 7/, we can then compute 1%
and improve it again to yield an even better 7”/. We can thus obtain a sequence of monotonically
improving policies and value functions:

7T(0) E V,r(O) I 71_(1) E V.,r(1> I 7T(2) E . I o E V*,

where —~— denotes a policy evaluation and L, denotes a policy improvement. Each policy
is guaranteed to be a strict improvement over the previous one (unless it is already optimal).
Because a finite MDP has only a finite number of deterministic policies, this process must
converge to an optimal policy and the optimal value function in a finite number of iterations.
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This way of finding an optimal policy is called policy iteration. A complete algorithm is given
in Algorithm 5.2. Note that each policy evaluation, itself an iterative computation, is started
with the value function for the previous policy. This typically results in a great increase in the
speed of convergence of policy evaluation (presumably because the value function changes little
from one policy to the next).

Algorithm 5.2 Policy iteration.

1. Initialization.
initialize V(s) € R and 7(s) € A for all s € S.
repeat
2. Policy evaluation.
repeat
for s € S do
V(s) = Ypenm(al s) [r(s,a) + 7, esp(s' | s,0)V(s)].
end for
until stop criterion reached.
3. Policy improvement.

for s € S do
7(s) == argmax,¢ 4 [7"(5, a) + VZs/eS (s | s,a)V(s')].
end for

until policy is stable.

Value iteration

One drawback to policy iteration is that each of its iterations involves policy evaluation, which
may itself be a protracted iterative computation requiring multiple sweeps through the state set.
In fact, the policy evaluation step of policy iteration can be truncated in several ways without
losing the convergence guarantees of policy iteration. One important special case is when policy
evaluation is stopped after just one sweep (one update of each state). This algorithm is called
value iteration (VI). It can be written as a particularly simple update operation that combines
the policy improvement and truncated policy evaluation steps:

VO (s) = max |r(s,0) + %p(s’ | 5,a)VO ()], (5.17)

for all s € S. For arbitrary V(0 the sequence VO V) V® can be shown to converge
to V* under the same conditions that guarantee the existence of V*.

Another way of understanding value iteration is by reference to the Bellman optimality
equation (5.11). Note that value iteration is obtained simply by turning the Bellman optimality
equation into an update rule. Also note how the value iteration update is identical to the policy
evaluation update (5.15) except that it requires the maximum to be taken over all actions. A
complete in-place version of value iteration is shown in pseudocode in Algorithm 5.3.

Algorithm 5.3 Value iteration.

initialize V' (s) for all s € S arbitrarily, if s is not terminal, otherwise 0.

repeat
for s € S do
V(s) :=maxeea [r(s,a) + 7Y cs (s | s,a)V(s)].
end for

until stop criterion reached.
output a deterministic policy 7 := argmax,¢ 4 [r(s,a) + ¥ Xy cs (s’ | 5,0)V (s")].
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Exercises

5.1 Dynamic programming. An agent is moving on a 4 x 4 grid and the goal is to reach one of the
terminal states T at the top left or the bottom right corner. A visualization of this environment
is shown below.

T

T

The agent can go up, down, left, and right. Actions leading off the edge do not change the
state. The agent receives a reward of —1 in each step until it reaches a terminal state. An
implementation of this environment is given in gridworld.py.

(a) Policy evaluation. Implement the policy evaluation function,
policy_eval(policy, env, discount_factor=1.0, theta=0.00001),
in policy_iteration.py, where
o policy is a [card(S), card(A)] shaped matrix representing the policy,
e env is a discrete OpenAl-style environment and env.P[s] [a] is a transition tuple

(transition_probability, next_state, reward, done) for state s and action a,
and

e theta is the stopping threshold. We stop the evaluation once our value-function change
(difference between two iterations) is less than theta for all states.

It returns a vector of length card(S) representing the value-function.

(b) Policy improvement. Implement the policy improvement function,
policy_improvement (env, policy_eval_fn=policy_eval, discount_factor=1.0),

in policy_iteration.py. It returns a tuple (policy, V) where policy is the optimal
policy — a matrix of shape [card(S),card(A)] where each state s € S contains a valid
probability distribution over actions, and V is the value-function for the optimal policy.

(¢) Value iteration. Implement the value iteration function,
value_iteration(env, theta=0.0001, discount_factor=1.0),

in value_iteration.py. It again returns a tuple (policy, V) of the optimal policy and
the optimal value-function.

You can find the tests for your implementation in 5-1.py. Run them by
python 5-1.py -v,
or by

python -m unittest 5-1.py -v.
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Chapter 6

Control as probabilistic inference

The framework of reinforcement learning or optimal control provides variants of methods for
solving Markov decision problems. In this chapter, we present the basic graphical model that
allows us to embed reinforcement learning problems into the framework of probabilistic graphical
models.

In the following discussion, we use s € S to denote states and a € A to denote actions,
which may each be discrete of continuous. States evolve according to the stochastic dynamics
p(st41 | 8¢,a¢), which are in general unknown. We will follow a discrete-time finite-horizon
derivation, which horizon T, and omit discount factor for now. A discount 7 can be readily
incorporated into this framework simply by modifying the transition dynamics, such that any
action produces a transition into an absorbing state with probability 1 — v, and all standard
transition probabilities are multiplied by . A task in this framework can be defined by a reward
function r(s¢, at). Solving a task typically involves recovering a policy

mo(s¢ | ar) = plag | s¢,0),

which specifies a distribution over actions conditioned on the state parameterized by some pa-
rameter vector f. A standard reinforcement learning policy search problem is then given by the
following optimization problem:

maximize E;‘FZI E (s, a0)~p(si,a:10) [T (5, 1)), (6.1)

with 6 being the optimization variable. This problem aims to find a vector of policy parameters 6
that maximize the total expected reward ), r(s;, a;) of the policy, and the expectation is taken
under the policy’s trajectory distribution p(7), given by

T
p(7) =p(s1,a1,...,s7,ar | 0) = p(s1) Hp(at | st,0)p(set1 | s, ar). (6.2)
t=1

Exact inference

The graphical model and policy search

To embed the control problem into a graphical model, we can begin simply by modeling the
relationship between states, actions, and next states. This relationship is simple, and corresponds
to a graphical model with factors of the form p(s;11 | s¢, at), as shown in Figure 6.1(a). However,
this graphical model is insufficient for solving control problems, because it has no notion of
rewards or costs. We therefore have to introduce an additional variable into this model, which
we will denote 0. This additional variable is a binary random variable, where o; = 1 denotes
that step ¢ is optimal, and o, = 0 denotes that it is not optimal. We will choose the distribution
over this variable to be given by the following equation:

ploy = 1] s¢,a) = exp(r(se, ar)), (6.3)

where (8¢, at) is the reward function and we have assumed without much lose of generality that
r(sg,ar) < 0 for all s, € S and a; € A, so that (6.3) gives a valid probability. The graphical
model with these additional variables is summarized in Figure 6.1(b).
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at—1 at at+1 At4-2 at—1 a At+1 At+2
\/\ \/\ \ \ \ \

Figure 6.1 The graphical model for control problems with states and actions
(a), and with optimality variables (b).

In this graphical model, the optimal policy can be written as p(a: | s¢,01.7 = 1). (We will
write o1.7 = 1 as o}, in the remainder of the derivation for conciseness.) This distribution is
somewhat analogous to p(a; | s¢,6*) with 6* being the optimal value of 6 for (6.1). We can then
recover the optimal policy p(a; | s, 0}.;) using a standard sum-product inference algorithm,
analogously to inference in HMM-style dynamic Bayesian networks. First, note that 0*1‘:()571) is

conditionally independent of a; given s;, which means that p(a; | s¢, 07.7) = p(as | s¢,05.7). Let

B(st,a:) = p(ofr | 8¢, a1) (6.4)

being the backward message of state-action pairs (s¢,a:), which denotes the probability that a
trajectory can be optimal for time steps from t to T if it begins in state s; with the action a;.
Slightly overloading the notation, we will also introduce the message

B(st) = plog.r | st), (6.5)

which denotes the probability that the trajectory from t to T is optimal if it begins in state
s¢. We can recover the state-only message from the state-action message by integrating out the
action:

B(st) = plofur | 51) = /A p(0hr | st a0)plar | st) day = /A Blse,aplar | 50) day,  (6.6)

where the factor p(a: | s¢) is the action prior. Note that it is not conditioned on o}, in any
way: it does not denote the probability of an optimal action, but simply the prior probability
of actions. The graphical model in Figure 6.1(b) doesn’t actually contain this factor, and we
can assume that p(a; | s¢) = m without losing of generality, since any non-uniform priors
can be incorporated instead into (6.3) via the reward function. The recursive message passing
algorithm for computing (s, a;) proceeds from the last time step ¢ = T backward through
time to t = 1. In the base case, we note that S(sr,ar) is simply proportional to exp(r(sr, ar))
according to (6.3), since there is only one factor to consider. The recursive case is then given as
following:

B(st,ar) = plog.r | s, at) = / B(st41)p(st41 | s, a)p(0; | s¢,at) dseya. (6.7)
s

From these backward messages, we can then derive the optimal policy p(a; | 8¢, 05.7) as:

p(st,a¢ | 0f, p(0}, St, A )p\at | St)P(St
p(at | shO;T): ( | t.T) — ( t.Tl ) ( | ) ( )

p(st | ofip) p(0}. | 8¢)p(st)
plofr | st,ar)  B(se,a)
Pt 150~ Blo) (8)

where the order of conditioning in the third step is flipped by using Bayes’ rule, and cancelling
the factor of p(o}.) that appears in both the numerator and denominator. The term p(a; | s¢)
disappears, since we previously assumed it was a uniform distribution.
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Connection to Bellman equations

The intuition about (6.8) can be recovered by considering what these equations are doing in log
space. To that end, we will introduce the log-space messages as

Q(s¢, ar) = log B(st, ar), (6.9)
and
V(st) = log B(st). (6.10)

The use of @ and V here is not accidental: the log-space messages correspond to ‘soft’ variants
of the state and state-action value functions. First, consider the marginalization over actions in
log-space:

Visy) = log/AeXp(Q(st,at)) day. (6.11)

When the values of Q(s¢, a) are large, the above equation resembles a hard maximum over a;.
That is, for large Q(s¢, a;), we have

Vis) = log/Aexp(Q(st,at)) day ~ n}gx Q(st, at).

For smaller values of Q(s¢,a;), the maximum is soft. Hence, we can refer to V and @ as soft
optimal value functions and Q-functions, respectively. We can also consider the backup in (6.7)
in log-space. In the case of deterministic dynamics, this backup is given by

Q(st,at) = r(st,at) + V(set1), (6.12)

which exactly corresponds to the Bellman optimality equations (5.12). However, when the
dynamics are stochastic, the backup is given by

Q(st,at) = (8¢, ar) +10g/ p(sey1 | st,a¢) exp(V(siq1)) dsira
s
= T(Sta at) + log E5t+1~p(5t+1‘st7at) [exp(v(st-i-l))]' (613)

The backup (6.13) is peculiar, since it does not consider the expected value at the next state,
but a ‘softmax’ over the next expected value. Intuitively, this produces @Q-functions that are
optimistic: if among the possible outcomes for the next state there is one outcome with a very
high value, it will dominate the backup, even when there are other possible states that might
be likely and have extremely low value. This creates risk-seeking behavior: if an agent behaves
according to this Q-function, it might take actions that have extremely high risk, so long as they
have some non-zero probability of a high reward.

Approximate inference

Maximum entropy control

Given the graphical model in Figure 6.1(b), and recall that we consider the distribution of the
optimality variable O to be given by

p(OZk | St,at) = exp(r(st,at)).

We then obtain the posterior distribution over trajectories 7 when we condition on o; = 1 for all
t=1,...,T,ie., all actions are optimal:

-

p(r [ o1.p) o< p(T,01.0) = p(s1) | | p(or | 515 a0)p(se41 | 515 ar)

o~
Il
_

e

= p(s1) exp(r(se, ar))p(se+1 | 8¢, ar)

~~
Il
-
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T T
1) Hp(5t+1 | st,at)] exp (Z r(st,at)> . (6.14)

t=1 t=1

Suppose we are given some policy mg parameterized by 6, the distribution over trajectories 7 can
be written as

=

po(T) =p(s1) | | p(st+1 | s, ar)ma(ar | se). (6.15)

t=1

Obviously, the optimal policy 7* has to result in a p*(7) according to (6.15) that match exactly
to the optimal posterior trajectory distribution p(r | of.7) in (6.14). We can therefore view
the inference process as minimizing the KL-divergence between pg(7) and p(r | of.p), which
corresponds to the following optimization problem:

minimize  Dict.(po(7) || p(7 | 07.1)), (6.16)

where 6 is the optimization variable and the objective is given by:

Dxr(po(7) [ p(7 | 01.7)) = =Erpy () [log p(7 | 01.7) —log po(7)]. (6.17)

Negating both sides and substituting in the equations for pe(7) and p(7 | 0f.1), we get
T
—Dxi(po(7) | p(7 | 01.7)) = Erpy(r) [logp s1) + Z log p(st+1 | 8¢, at) + r(st, at))
t=1

T
—logp(s1) Z log p(st41 | st,a:) +logmg(as | s¢)) ]
=1

T
=E; ps(r) [Zr st, ar) — logme(ar | st)
t=1

Il
[M]=

E(St,at)Npe(St,at)[T(Stva’t) - ]'Og 71'9(@15 | St)]

~
Il

1
T

E(Smat)’\‘Pe(St,,at)[r(St7 at)] + Z EStNPB(St)[H(TrG(St))L (6'18)

1 t=1

Il
[M]=

o~
Il

where H(mg(s:)) denotes the entropy of policy 7y at state s;. Therefore, minimizing the KIL-
divergence corresponds to maximizing the expected reward and the expected policy entropy, in
contrast to the standard control objective in (6.1), which only maximizes reward. This type
of control objective is sometimes referred to as mazimum entropy reinforcement learning or
mazimum entropy control.

Connection to variational inference

One way to interpret the objective function (6.18) is as a particular type of structured variational
inference. In structured variational inference, our goal is to approximate some distribution p(x)
with another, potentially simpler distribution g(x). Typically, ¢(z) is taken to be some tractable
factorized distribution, such as a product of conditional distributions connected in a chain or tree,
which lends itself to tractable exact inference. In our case, we aim to approximate p(7 | 0f.;),

given by
T T
p(T | ol.p) = Hp st+1|st,atlexp<2r st,at>,
t=1 t=1

with the distribution

~

1) HQ(SH-I | st,at)q(a | st). (6.19)

Let g(s1) = p(s1) and q(st41 | st,at) = p(Se41 | St,at), then g(7) is exactly the distribution
po(7) from (6.15) with g(as | s¢) = me(as | s¢). In structured variational inference, approximate
inference is performed by optimizing the variational lower bound (also called the evidence lower
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bound). Recall that our evidence here is that o, = 1 for all ¢t = 1,...,T, thus the variational
lower bound is given by

log p(o}.7) = log //P(OT;T, s1.7,a1.r) dsi.pday.p

q(sl:T7a1:T)
=1o //po*. , S1.7, A1.7) —————— ds1.pdag;
& (O sur 1T)Q(51:T7a1:T) BT

p(oT:T, S1:T, al:T):|
Q(SI:T7 al:T)

> E(slzT,al:T)Nq(sl:T,al:T) [logp(o}lk:Tﬂ S1:T a‘llT) - IOg Q(812T7 aliT)]? (620)

= log E(slzT,al:T)Nq(slzT,alzT) [

where the last inequality holds because of Jensen’s inequality. Substituting p(oi.;, $1.7, a1.7)
and q(s1.7,a1.7) according to (6.14) and (6.19), the bound reduces to

Ing(Oik:T) > E(Sl:Tyal:T)Nq(slzT10«1:T) er(st,at) - 1Og q(a’t | st)‘| (621)

t=1
up to an additive constant. Optimizing this objective with respect to the policy q(a; | s¢)
corresponds exactly to the objective in (6.18).
Obtaining the optimal policy

To maximize the maximum entropy control objective

T
—Dxr(po(7) | p(T | 01.0)) = > E(sya0)mpo(suan) [F(51, ar) — log mo(ar | 51)]
t=1
T T
= Z E(St,at)fvpe(sﬁ,at)[r(sta at)] + Z EStNPB(St)[H(TrQ(St))L
t=1 t=1

we have to derive the backward messages from an optimization perspective as a dynamic pro-
gramming algorithm. We will begin with the base case of optimizing 7 (st | ar), which consists
in maximizing

E(3T7CLT)NP9(ST70«T) [T(ST7 aT) - IOg WG(G‘T | ST)]

exp(r(st,ar))
~Borarromionen [ 98 SRS

= Esrposr) [—DKL (WG(ST) Wl(ST))eXP(T(ST))> + V(ST)} : (6.22)

—logmg(ar | sT) + V(ST)]

where the last equality holds from the definition of KL-divergence, and exp(V (sr)) is the nor-
malizing constant for exp(r(sr)) w.r.t. ar, i.e.,

Visr) = log/ exp(r(st,ar)) dar. (6.23)
A
Since we know that the KL-divergence is minimized when the two arguments represent the same
distribution, the optimal policy is given by
mo(ar | s7) = exp(r(st,ar) — V(sr)). (6.24)

The recursive case can then computed as following: for a given time step ¢, mp(as | ;) must
maximize two terms:

E(St,at)Npe(St,at) [’I“(St, a’t) - lOg o (a‘t | St)] + E(Shat)""ps(staat) [E5t+1""p(5t+l‘st,at) [V(StJrl)]]
= E(St;at)’\’pe(shat) [T(St’ at) + E5t+1’\’p(5t+1‘5t7at) [V(St-i-l)] - IOg 7T9(at ‘ St)]

exp(r(st, at) =+ ESt ~p(si41]se,a¢) [V(St-i-l)])
= E(st,at)Npg(st,at) IOg eX};EVIESt)Jr)l - IOg 779(0'75 | St) + V(St)
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= B [ s (mols0) | i exvl@(se) ) + Vo). (6.25)
where we now define
Qlserae) = r(s50:02) + Bap sy opiorss snsao [V (st )] (6.26)
and
V(ss) = log /A exp(Q(se, ar)) day, (6.27)

which corresponds to the standard Bellman optimality equations with a soft maximization for
the value function. Choosing

mo(ar | s1) = exp(Q(se, ar) — V(st)), (6.28)

we again see that the KL-divergence evaluates to zero, where the objective function (6.25) is
maximized. This means that we recover a Bellman backup operator that uses the expected value
of the next state, rather than the optimistic estimate we saw in (6.13), which provides a solution
to the practical problem of risk-seeking policies.
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Appendix A

Inference with Monte Carlo methods

Monte Carlo methods

Monte Carlo integration

We often want to compute the expected value of some function of a random variable, E[f(X)].
This requires computing the following integral:

E[f(X)] = / f@)p() de, (A1)

where € R™, the function f: R™ — R™, and p(z) is the target distribution of random variable
X. Note that in many cases, the target distribution may be some posterior p(x | i), which can be
hard to compute. In such problems, instead, we often work with the unnormalized distribution,
p(z) = p(x,y), and then normalize the results using

7= / p(z,y) dz = p(y). (A.2)

In low dimensions (up to, say, 3), we can compute the above integral efficiently using numerical
integration, which (adaptively) computes a grid, and then evaluates the function at each point
on the grid. But this does not scale to higher dimensions. An alternative approach is to draw
multiple (say, n) random samples, x ~ p(z), and then to compute

E[f(X)] =~ Zf(xo. (A.3)

This is called Monte Carlo (MC) integration. It has the advantage over numerical integration
that the function is only evaluated in places where there is non-negligible probability, so it does
not need to uniformly cover the entire space.

If we denote the exact mean by u = E[f(X)], and the MC approximation by [, according to
the central limit theorem, it can be shown that with independent samples,

(ﬂu)%N<0,62>,

n

where

Thus for large enough n, we have

52 52
P | fi— 1961/~ <y < it 1961/~ | ~ 0.95.

The term \/%2 is called the (numerical or empirical) standard error, and is an estimate of our
uncertainty about our estimate of u. The remarkable thing to note about the above results is
that the standard error in the estimate, is theoretically independent of the dimensionality of the
integral.
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Example A.1  Estimating © by Monte Carlo integration. A (Euclidean) ball (or just ball)
in R™ has the form

B(we,r) = {z | & —zelly < v} ={x | (2 —2)" (x — z) <r?},
where 7 > 0, and |- ||, denotes the Euclidean norm, i.e., |lull, = (uTu)1/2. The vector
z. € R™ is the center of the ball and the scalar r is its radius; B(x.,r) consists of all points
within a distance r of the center z..

Specifically, let B(r) = {z,y | 22 + y? < r?} denotes a ball in R? centered in the origin
with radius r, we know that its area is 772, but it is also equal to the following definite

integral
S=/ / Ip(z,y) drdy,
—rJ—r

where Ig(z,y) is an indicator function of set B(r) which is 1 for points inside the ball,
and 0 outside. Hence, the constant m = S/r2. We can approximate this by Monte Carlo
integration. Let p(z) and p(y) be uniform distribution on [—r, 7], so p(x) = p(y) = 1/(2r)
for all «,y € [—r,r], and 0 otherwise. Then

Sampling from simple distributions

The main computational challenge of MC integration is to efficiently generate samples from the
probability distribution p(z). In this section, we discuss a sampling method that is suitable for
parametric univariate distributions. These can be used as building blocks for sampling from
more complex multivariate distributions.

The simplest method for sampling from a univariate distribution is based on the inverse
probability transform. Let F be a cumulative density function (CDF) of some distribution we
want to sample from, and let F~! be its inverse. If U ~ U(0,1) is a uniform random variable,
then F~1(U) ~ F. This can be easily shown as follows:

P(F ' (U)<z)=P(U < F(2)) (applying F' to both sides)
= F(x), (because P(U < y) =)

where the first line follows since F' is a monotonic function, and the second line follows since U
is uniform on the unit interval.

Hence we can sample from any univariate distribution, for which we can evaluate its inverse
CDF, as follows: generate a random number u ~ U(0, 1) using a pseudorandom number generator
Let u represent the height up the y axis. Then ‘slide along’ the = axis until you intersect the
F curve, and then ‘drop down’ and return the corresponding x value. This corresponds to
computing z = F~1(u). This process is illustrated in Figure A.1.

Example A.2  Sampling from an exponential distribution. Consider the exponential distri-
bution Exp(\) with density function

pa(w) =

Ae ™ x>0
0 xz < 0.
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Figure A.1 Sampling from N (3,1) using an inverse CDF. The blue and green
curves show the CDF and PDF of the target distribution, and the red and
greed dots denote the samples from U(0,1) and N (3,1), respectively.

The CDF is

l—e ™ >0
Fy(z) = -
\@) {0 z <0,

whose inverse is the quantile function

Pl () = _log(l}\— w)

with domain dom(Fy ') = [0,1). If U ~ U(0,1), we know that Fy ' (U) ~ Exp(\). So we
can sample from the exponential distribution by first sampling from the uniform and then
transforming the results using —log(1 — u)/A.

Rejection sampling
Suppose we want to sample from the target distribution

p(x) = p(x)/Zp, (A.4)

where p(z) is the unnormalized version, and

Zp = /ﬁ(x) dz (A.5)

is the (possibly unknown) normalization constant. One of the simplest approaches to this prob-
lem is rejection sampling.

In rejection sampling, we require access to a proposal distribution q(x) which satisfies Cq(x) >
p(x), for some constant C. The function Cq(x) provides an upper envelop for p. We can use
the proposal distribution to generate samples from the target distribution as follows. For each
sample, we first sample x; ~ ¢(x), which corresponds to picking a random z axis location,
and then we sample u; ~ U(0,Cq(z;)), which corresponds to picking a random height (y axis
location) under the envelope. If u; > p(x;), we reject the sample, otherwise we accept it. This
process is illustrated in a 1-dimensional example in Figure A.2.

We now show this procedure is correct. First note that the probability of any given sample
x; being accepted equals the probability of a sample u; ~ U(0,Cq(z;)) being less than or equal
to p(z;), i.e.,

plzi)  q 5( s
p(gjl)
q(accept | ;) = / du = . A6
(et 120 = | Gaey ™ Cate) o)
Therefore we have,
g(propose and accept x;) = q(z;)q(accept | z;) = q(x;) p(:) = p(%) (A7)

Cq(z;) C
Integrating both sides give:

/q(xi)q(accept | ;) dz; = q(accept) = M = %,
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reject

region region

z; ~ q(x)

Figure A.2 Schematic illustration of rejection sampling. The acceptance re-
gion is shown shaded, and the rejection region is the white region between
the shaded zone and the upper envelope.

Hence we see that the distribution of accepted points is given by the target distribution:

| glwiaccept)  pla) O pla)
ale | aceept) = €A < BED 2 = P2 = p(w), (A.9)

From (A.8) we also know that if p is a normalized target distribution, the acceptance prob-
ability is 1/C. Thus we might want to choose C as small as possible while still satisfying
Cq(xz) > p(x). This means that we want to make our proposal ¢(z) as close as possible to the
target distribution p(x), while still being an upper bound. But this is quite hard to achieve,
especially in high dimensions. To see this, consider sampling from p(z) = N(0,021) using the
proposal g(z) = N (0, 03]). Obviously we must have 03 > 0;‘; in order to be an upper bound. In
n dimensions, the optimum value is given by C' = (0,/0,)". The acceptance rate is 1/C (since
both p and ¢ are normalized), which decreases exponentially fast with dimension. For example,
if o, exceeds o, by just 1%, then in 1000 dimensions the acceptance ratio will be about 1,/20000.
This is a fundamental weakness of rejection sampling.

Importance sampling

We now introduce a Monte Carlo method known as importance sampling for approximating
integrals of the form (A.1):

E[f(X)] = / f(@)p(z) dr,

where the function f is the target function, and p(x) is the target distribution, which is often a
conditional distribution of the form p(x) = p(x | y). Since in general it is difficult to draw from
the target distribution, we will instead draw from some proposal distribution ¢(z) (which will
usually depend on y). We then adjust for the inaccuracies of this by associating weights with
each sample, so we end up with a weighted MC approximation:

E[f(X)] ~ Y Wif(x). (A.10)
=1

We discuss two cases, first when the target is normalized, and then when it is unnormalized. This
will affect the ways the weights are computed, as well as statistical properties of the estimator.

Direct importance sampling

In this section, we assume that we can evaluate the normalized target distribution p(zx), but we
cannot sample from it. So instead we will sample from the proposal ¢(z). We can then write

[ 1@t do = [ 502 4(0) a (A1)

We require that the proposal be non-zero whenever the target is non-zero, i.e., the support of
q(z) needs to be greater than or equal to the support of p(z). If we draw n samples = ~ ¢g(x),
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we can write

1 - plxi) 1 ¢
E X))~ — i) = — i i), A.12
F(X)] n;“mﬂm n;wmw (A12)
where we define the importance weight w; for each sample as follows:
plzi) .
w; = , i=1,...,n. A3
q(;) ( )

The result is an unbiased estimate of the true mean E[f(X)].

Self-normalized importance sampling

The disadvantage of direct importance sampling is that we need a way to evaluate the normalized
target distribution p in order to compute the weights. It is often much easier to evaluate the
unnormalized target distribution p(z) = Z,p(x), where Z, = [p(x) dz is the normalization
constant. The key idea is to also approximate the normalization constant Z,, with importance
sampling. This method is called self-normalized importance sampling (SNIS). The resulting
estimate is a ratio of two estimates, and hence is biased. However as the number of samples
n — 00, the bias goes to zero (under some weak assumptions, cf. the references listed in page 92).
In more detail, SNIS is based on this approximation:

fx)p(z) dz J (l_)f(a:) q(z) dz
Blf()) = [ fople) do = LLOAD T Lﬁ@ |
D [ [q(i)} q(z) dz
D T )
n izl BT lelzlnw’{ (@) (A.14)
n 2ai=1 Wi
where x; ~ g(z) for all § = 1,...,n, and ; is the unnormalized weight for each sample, defined
as ~
P LG (A.15)
q(x;)
We can write (A.14) more compactly as
E[f(X)] ~ Y Wif(), (A.16)
i=1
where W; is the normalized weight for each sample, defined as
Wi = —t i=1,...,n. (A.17)

n ~ b
D iy Wir

This is equivalent to approximating the target distribution using a weighted sum of delta func-
tions:

p(@) = plx) = Wid(z —z;). (A.18)
=1

As a byproduct of this algorithm we get the following approximation to the normalization con-
stant:

. 1 &
Zym Zy =~ > . (A.19)

Markov chain Monte Carlo

In §A.1, we considered non-iterative Monte Carlo methods, including rejection sampling and
importance sampling, which generate independent samples from some target distribution. The
trouble with these methods is that they often do not work well in high dimensional spaces.
In this section, we discuss a popular method for sampling from high-dimensional distributions
known as Markov chain Monte Carlo (MCMC).
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The basic idea behind MCMC is to construct a Markov chain (§3.1) on the state space X
whose stationary distribution is the target density p*(x) of interest. (In a Bayesian context, this
is usually a posterior, p*(z) x p(z | y), but MCMC can be applied to generate samples from any
kind of distribution.) That is, we perform a random walk on the state space, in such a way that
the fraction of time we spend in each state x is proportional to p*(z). By drawing (correlated)
samples xg, 1, ... from the chain, we can perform Monte Carlo integration w.r.t. p*.

Note that the initial samples from the chain do not come from the stationary distribution,
and should be discarded. The amount of time it takes to reach stationarity is called the mizing
time or burn-in time. Reducing the burn-in time is one of the most important factors in making
the algorithm fast.

Metropolis-Hastings algorithm

In this section, we describe the simplest kinds of MCMC algorithm known as the Metropolis-
Hastings (MH) algorithm. The basic idea in MH is that at each step, we propose to move from
the current state x to a new state 2’ with probability ¢(z’ | x), where ¢ is called the proposal
distribution (or kernel). The user is free to use any kind of proposal they want, subject to some
conditions which we explain below. This makes MH quite a flexible method. Having proposed
a move to ', we then decide whether to accept this proposal, or to reject it, according to some
formula, which ensures that the long-term fraction of time spent in each state is proportional to
p*(x). If the proposal is accepted, the new state is z’, otherwise the new state is the same as
the current state, x (i.e., we repeat the sample).

If the proposal is symmetric, so q(z’ | ) = g(z | 2’), the acceptance probability is given as

follows: o
A:min{l,p (m)}. (A.20)

p*(z)
We see that if 2’ is more probable than x, we definitely move there (since © **((”;/)) > 1), but if 2’ is
less probable than x, we may still move there anyway, depending on the relative probabilities. So
instead of greedily moving to only more probable states, we occasionally allow ‘downhill” moves
to less probable states.

If the proposal is asymmetric, so q(z’ | z) # q(x | «), we need the Hastings correction, given

by the following;:

A =min{l,a}, (A.21)
where
_pr(@)glx|2)  p(a)/q(z" | x)
p*(z)q(a’ | z)  pr(z)/q(z|2')’
This correction is needed to compensate for the fact that the proposal distribution itself (rather
than just the target distribution) might favor certain states.
An important reason why MH is a useful algorithm is that, when evaluating «, we only I}eed to

know the target density up to a normalization constant. In particular, suppose p*(z) = z-p(x),
P

where p(z) is an unnormalized distribution and Z, is the normalization constant. Then we have
_ 0"/ Zp)q(x | 2')
(B(x)/Zp)a(z’ | x)
where the Z,’s cancel. Hence, we can sample from p* even if Z, is unknown.

A proposal distribution ¢ is valid or admissible if it ‘covers’ the support of the target. For-
mally, we can write this as

(A.22)

supp(p*) C Uzsupp(q(- | x)). (A.23)
With this, we can state the overall algorithm as in Algorithm A.1.

Convergence analysis

To show that the MH procedure generates samples from p*, we need a bit of Markov chain
theory, as discussed in §3.1.2. The MH algorithm defines a Markov chain with the following
transition matrix:

N eI Yt R
pla | @) { q(z | z)+ >, 4, q(@ | 2)(1 - A(2" [ 2)) otherwise. (A-24)
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Algorithm A.1 Metropolis-Hastings algorithm.

given proposal distribution g.
initialize x.
repeat

Sample =’ ~ q(a’ | x).

Compute o := %.
Compute acceptance probability A := min{1, a}.
Sample v ~ U (0,1).
Set new sample to

o { 2 u < A (accept)
x

u > A (reject).

until number of iterations reached.

This follows from a case analysis: if you move to ' from z, you must have proposed it (with
probability ¢(z’ | 2)) and it must have been accepted (with probability A(z’ | z)); otherwise you
stay in state x, either because that is what you proposed (with probability ¢(x | z)), or because
you proposed something else (with probability g(z’ | )) but it was rejected (with probability
1— A | x)).

Let us analyze this Markov chain. Recall that a chain satisfies detailed balance if

pa’ | z)p*(z) = p(z | «')p" (") (A.25)

This means in the in-flow to state x’ from z is equal to the out-flow from state x’ back to x, and
vice versa. If a chain satisfies detailed balance, then p* is its stationary distribution. Our goal
is to prove that the MH algorithm defines a transition function p that satisfies detailed balance
and hence that p* is its stationary distribution. (If (A.25) holds, we say that p* is an invariant
distribution w.r.t. the Markov transition kernel p.) To show this, we assume that the Markov
chain with transition matrix given by (A.24) is ergodic and irreducible. Consider two states x
and z’. Either

pr(x)g(a’ [ z) <p*(a)q(x | 2') (A.26)

P (x)g(x [ z) > p*(2)g(x | 2"). (A.27)

Without loss of generality, assume that p*(x)q(2’ | ) > p*(2’)g(z | 2’). Then,

p(2")g(x | =')

P @ [2) <"

a(@’ | z) =
Hence, we have A(z' | z) = a(2’ | z) and A(z | 2') = 1. Now to move from x to 2’ we must first

propose =’ and then accept it, i.e.,

pr(a)g(x | ") _ p*(2')
pr(x)g(=’ | 2)  p*(x)

pa’ [ z) = q(@’ [ 2)A(" | z) = q(2" | 2) q(x | o), (A.28)

which indicates that
p*(@)p(a’ | z) = p*(a")q(z | ). (A.29)
Since A(x | 2') = 1, the backward probability can be written as
plz|2') =q(z | 2)A(z | ') = q(z | 2'). (A.30)

Inserting this into (A.29), we get

p(@)p(a’ | z) = p"(2)p(x | "), (A.25)

so detailed balance holds w.r.t. p*. This shows that given the MH transition kernel p, the target
distribution p* is the unique stationary distribution of the Markov chain, since we have assumed
that the chain is ergodic and irreducible.
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Figure A.3 An example of the random walk Metropolis algorithm for sampling
from a mixture of two 1-dimensional Gaussians, A'(—20, 100) and N(20, 100),
with mixing weights 0.3 and 0.7. The variance o2 of the Gaussian random
walk proposal are 12 (a), 5002 (b), and 82 (c).

Proposal distributions

We now discuss some common proposal distributions gq. Note, however, that good proposal
design is often intimately dependent on the form of the target distribution (most often the
posterior).

Independence sampler. If we use a proposal of the form ¢(z’ | ) = g(«’), where the new state
is independent of the old state, we get a method known as the independence sampler, which is
similar to importance sampling (§A.1.4). The function ¢(z’) can be any suitable distribution,
such as a Gaussian. Since Gaussian distribution has non-zero probability density on the entire
state space, so it is a valid proposal for any unconstrained continuous state space.

Random walk Metropolis. The random walk Metropolis (RWM) algorithm corresponds to MH
with the following proposal
7'~ N(z,0%I), (A.31)

where the mean of this Gaussian distribution is the previous sample , and the variance o2 is a

scale factor chose to facilitate rapid mixing. This is equivalent to saying that the random vector
2’ — z is Gaussian with mean 0 and variance o1, i.e., (2’ — z) ~ N(0,021).

Example A.3  Sampling from a mixture of Gaussians with random walk Metropolis. Fig-
ure A.3 shows an example where we use RWM to sample from a mixture of two 1-dimensional
Gaussians. This is a somewhat tricky target distribution, since it consists of two somewhat
separated modes. It is very important to set the variance of the proposal o2 correctly: if the
variance is too low, the chain will only explore one of the modes, as shown in Figure A.3(a),
but if the variance is too large, most of the moves will be rejected, and the chain will be
very sticky, i.e., it will stay in the same state for a long time. This is evident from the long
stretches of repeated values in Figure A.3(b). If we set the proposal’s variance just right, we
get the trace in Figure A.3(c), where the samples clearly explore the support of the target
distribution.

Composing proposals. If there are several proposals that might be useful, one can combine
them using a mixture proposal, which is a convex combination of some base proposals:

g(a’ | 2) =) wigi(a’ | ), (A.32)
i=1

where w; are the mixing weights that sum to one. As long as each ¢; is an individually valid
proposal, and each w; > 0, then the overall mixture proposal will also be valid. In particular, if
each proposal is reversible, so it satisfies detailed balance, then so does the mixture.
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Gibbs sampling

The major problems with MH are the need to choose the proposal distribution, and the fact
that the acceptance rate may be low. In this section, we describe an MH method that exploits
conditional independence properties of a graphical model to automatically create a good pro-
posal, with acceptance probability 1. This method is known as Gibbs sampling. In physics, this
method is also known as Glauber dynamics or the heat bath method. This is the MCMC analog
of coordinate descent.

The idea behind Gibbs sampling is to sample each variable in turn, conditioned on the values
of all the other variables in the distribution. For example, if we have variable X € R3, we use

zy ~ p(a |z, x3)

y ~ play | o, x3)

g ~ p(ah | 2, 25).
This readily generalizes to n-dimensional variables. (Note that if X; is a known variable, we
do not sample it, but it may be used as input to the another conditional distributions.) The
expression p(x} | _;) is called the full conditional for variable X;. In general, X; may only
depend on some of the other variables. If we represent p(z) as a graphical model, we can infer

the dependencies by looking at the Markov blanket of X;, which are its neighbors in the graph
(see §4.1.1), so we can write

g ~ plag | 2—;) = p(a; | mb(z;)). (A.33)

Connections to MH

It turns out that Gibbs sampling is a special case of MH where we use a sequence of proposals
of the form

(@ | z)=p@' |z_),_ (z"}), i=1,...,n, (A.34)
for some variable X € R™, where I,,_, is the indicator function. That is, we move to a new state
where x; is sampled from its full conditional, but x_; is left unchanged. We now show that the
acceptance rate of each such proposal is 100%, so the overall algorithm also has an acceptance
rate of 100%. For each proposal ¢;, we have

_ p@)gi(z | ) _ plei]
p(@)gi(e’ |z)  p(w; |
_ p(@ | z_i)p(z—i)p(z
p(xi | z—i)p(z_i)p(z

z; —1, (A.35)

where we exploited the fact that z’, = z_;.

Example A.4  Gibbs sampling for Ising models. Consider the 2-dimensional lattice G =
(X, E) in Figure A.4. We can represent the joint distribution of X as follows:

1
p(z) = 7 H Vi (i, 5), (A.36)
P (xi,x;)eE

where ¢;;(z;, z;) is named as the potential function of clique C' = {X;, X;}. This is called a
lattice model. An Ising model is a special case of lattice models, where the variables X; are
binary for all i« = 1,...,n. Such models are often used to represent magnetic materials. In
particular, each node represents an atom, which can have a magnetic dipole, or spin, which
is in one of two states, +1 and —1. In some magnetic systems, neighboring spins like to
be similar; in other systems, they like to be dissimilar. We can capture this interaction by
defining the clique potentials as follows:

Jij

€ Ty = Tj

Yij (i, m5) = { (A.37)

—J;
e xy # xy,

where J;; is the coupling strength between nodes X; and X;. If two nodes are not connected
in the graph, we set J;; = 0. We assume that the weight matrix is symmetric, so J;; = Jj;.
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Figure A.4 A 2-dimensional lattice for random vector X € R2° represented
as a undirected graph. The red node Xg is independent of the other nodes
given its neighbors (blue nodes).

Often we also assume all edges have the same strength, so J;; = J for all edges. Thus we

have
J

Vij (i, x5) = { Z_J

xXr; = LL']'
Ti # Ty

(A.38)

To perform the sampling for an n-dimensional random vector X following an Ising model,
we need to compute the full conditional:

p(ai | v—;) o H Vi (i, xj), (A.39)
X, €adj(X;)
for all ¢ = 1,...,n. In the case of an Ising model with edge potentials ;;(x;,z;) =

exp(Jx;x;), where z;,z; € {—1,+1}, the full conditional becomes

— HXjeadj(Xi) Yij(x; = +1,25)
Ly, caqjix:) Yis (@i = +1,25) + [y, caqjx,) Yii (@i = =1, 7;)
o eXP(J ijeadj(xi) ZC])
exp(J ZXjeadj(Xi) xj) 4+ exp(—J ZXandj(Xi) ;)
exp(Jn;)
’ A.40
exp(Jn;) + exp(—Jn;) (A.40)

plri =+1|2_;)

where J is the coupling strength, and 7; = ZXandj(Xi)xj. It is easy to see that n; =
z;(a; —d;), where a; is the number of neighbors that agree with (have the same sign as) node
X;, and d; is the number of neighbors who disagree. If this number is equal, the ‘forces’ on
xi cancel out, so the full conditional is uniform.

Metropolis within Gibbs

When implementing Gibbs sampling, we have to sample from the full conditionals. If the dis-
tributions are conjugate, we can compute the full conditional in closed form, but in the general
case, we will need to devise special algorithms to sample from the full conditionals. One ap-
proach is to use the MH algorithm, which is called Metropolis within Gibbs. In particular, to
sample x; ~ p(z} | €].;_1,Ti+1:m), We proceed in 4 steps:

1. Propose zf ~ q(x | ;).
2. Compute the acceptance probability A; = min{1, o;}, where

(@] | 2 1, Tiyrm)q(zi | @)
p(ifi | xll;i_laxz#l:n)Q(x;l ‘ xz)

(A1)

a; =

3. Sample u ~ U(0,1).

4. Set z} = 2! if u < A;, and x} = x; otherwise.
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Hamiltonian Monte Carlo

Many MCMC algorithms perform poorly in high dimensional spaces, because they rely on a form
of random search based on local perturbations. In this section, we discuss a method known as
Hamiltonian Monte Carlo (HMC), that leverages gradient information to guide the local moves.

Hamiltonian mechanics

Consider a particle rolling around an energy landscape. We can characterize the motion of the
particle in terms of its position § € R”, and its momentum v € R™. The set of possible values
for (,v) is called the phase space. We define the Hamiltonian function for each point in phase
space as follows:

H(O,v) =E(0) + K(v), (A.42)
where £(0) is the potential energy, K(v) is the kinetic energy, and the Hamiltonian is the total
energy. In a physical setting, the potential energy is due to the pull of gravity, and the momentum
is due to the motion of the particle. In a statistical setting, we often take the potential energy
to be

E(0) = —log p(h), (A.43)
where 5(0) is a possibly unnormalized distribution, such as p(6 | D), and the kinetic energy to

be )
Kv) = ivTE_lv, (A.44)
where ¥ € 8%, is a symmetric, positive definite matrix, known as the mass matriz.
Stable orbits are defined by trajectories in phase space that have a constant energy. The
trajectory of a particle within an energy level set can be obtained by solving the following

continuous time differential equations, known as Hamilton’s equations:
g oH oK
.~ v v
dv  OH  0E (A.45)

T o
To see why energy is conserved, note that

n n

Cm:z<m“wz+mﬂm> :Z<5H‘9H_3H8H> 0, (A.46)

dt P 691 dt 61}1‘ dt P 691 61)1- 692 d’Ui
Intuitively, we can understand this result as follows: a satellite in orbit around a planet will
‘want’ to continue in a straight line due to its momentum, but will get pulled in towards the
planet due to gravity, and if these forces cancel, the orbit is stable. If the satellite starts spiraling
towards the planet, its kinetic energy will increase but its potential energy will decrease. Note
that the mapping from (0, v:) to (6¢4at,Viyae) for some time increment At is invertible for
small enough time steps. Furthermore, this mapping is volume preserving, so has a Jacobian
determinant of 1. These facts will be important later when we turn this system into an MCMC
algorithm.

Integrating Hamilton’s equations

In this section, we discuss how to simulate Hamilton’s equations in discrete time.

Euler's method. The simplest way to model the time evolution is to update the position and
momentum simultaneously by a small amount, known as the step size n:

. dv o€
Vg1 =V — =v —N=
t+1 t T dt |y, o t 7760 oo
o ¢ (A.47)
Orp1 = 0¢ + a0 =0, + oK
e ndt 0=0; ,v=v¢ o ! 61) v:vt.
If the kinetic energy has the form in (A.44), then the second expression simplifies to
9t+1 = 9,5 + ’I?E_l'l}t. (A48)

This is known as the Fuler’s method.
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Modified Euler’'s method. The modified Euler’s method is slightly more accurate, and works as
follows. It first update the momentum, and then update the position using the new momentum:

dv o€
Ut+1:’0t+77$ :vt—n%
0=0,,v=1v; 0=0, (A49)
0 =0; + ﬁ =0; + flC
t+1 t ndt o610 t 7781)

V=V¢+1
Unfortunately, the asymmetry of this method can cause some theoretical problems.
Leapfrog integrator. The leapfrog integrator is a symmetrized version of the modified Euler’s

method. We first perform a ‘half’ update of the momentum, then a full update of the position,
and then finally another ‘half’ update of the momentum:

n o0&
Vgy1/2 = Ut — 200
0=0¢
oK
Orp1 = 0p + Urw (A.50)
V=V¢41/2
n o0&

Vt+1 = Vt4+1/2 — 5 Ap .
2 00 =0,

If we perform multiple leapfrog steps, it is equivalent to performing a half step update of v at

the beginning and end of the trajectory, and alternating between full step updates of # and v in

between.

The HMC algorithm

We now describe how to use Hamiltonian dynamics to define an MCMC sampler in the expanded
state space (0,v). The target distribution has the form

p(0,v) = %exp(—?—[(ﬂ,v)) = %exp (—5(9) — ;’UTELU> . (A.51)

Then we can just ‘throw away’ the v’s so that the result will be the samples 6 from the desired
marginal:
p(0) = /p(@,v) dv = Zioe_g(g) / Zive_%”Tzflv dv = Ziee_g(e). (A.52)
Suppose the previous state of the Markov chain is (0;—1,v;—1), to sample the next state,
we proceed as follows. We set the initial position to 6, = 6;_1, and sample a new random
momentum, vy ~ N (0,X)'. We then initialize a random trajectory in the phase space, starting
at (0, v(), and followed for L leapfrog steps, until we get to the final proposed state (6*,v*) =
(07, v). If we have simulated Hamiltonian mechanics correctly, the energy should be the same
at the start and the end of this process. If not, we say the HMC has diverged, and we reject the
sample. If the energy is constant, we compute the MH acceptance probability as

p(6*,v")

A=min<{ 1,
{ p(et—lvvt—l)

} = min {1,exp (=H(O",v") + H(Or—1,v4-1)) }, (A.53)
where the transition probabilities cancel since the proposal is reversible. Finally, we accept the
proposal by setting (6;, v;) = (8*,v*) with probability A, otherwise we set (0y,v;) = (04—1,vi—1).
(In practice we don’t need to keep the momentum term v, it is only used inside of the leapfrog
algorithm.) The pseudocode for this procedure is shown in Algorithm A.2.

Note that we need to sample a new momentum at each iteration to satisfy ergodicity. To
see why, recall that H(6,v) stays approximately constant as we move through phase space. If
H(0,v) = E(0)+3vTE" v, then clearly £(0) < H(6,v) = h for all locations 6 along the trajectory.
Thus the sampler cannot reach states where £(6) > h. To ensure the sampler explores the full
space, we must pick a random momentum at the start of each iteration.

INote that the 3 here denotes the covariance matrix of some Gaussian distribution, instead of the mass matrix
in Hamiltonian mechanics.
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Algorithm A.2 Hamiltonian Monte Carlo.

given the number of leapfrog steps L, the step size 7, and the covariance matrix 3.
repeat
Generate random momentum v;_; ~ N (0, X).
Set (06,’()’0) = (9,5_1,1}15_1).
Half step for momentum: v} , := vy — 3VE(fp).
fori=1,...,L—1do
0 :=0,_, + 772_1?)1/,1/2
Uz/+1/2 = ”1/71/2 —nVE(G)).
end for
Full step for location: 07 =07 _; +nX" v}, .
Half step for momentum: v} = U/L_1/2 —3VE(DL).
Obtain proposal (6*,v*) == (07,v}).
Compute acceptance probability A := min {1, exp (—H(0*,v*) + H(0—1,vi—1))}
Set 0; := 0* with probability A, other wise 6, = 6,_1.
until number of iterations reached.
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Bibliography

This chapter is mostly adapted from [ , §11 and §12]. For more details on Monte Carlo
methods see also | , , , ].

Except for using inverse probability transform introduced in this chapter, the Box-Muller method
provides another approach to sample from a Gaussian distribution, which was originally devel-
oped by Box and Muller | ]

The statistical properties of the SNIS estimator as we mentioned briefly in §A.1.4 are discussed
in detail in | ].

The MCMC algorithm has an interesting history. It was discovered by physicists working on
the atomic bomb at Los Alamos during World War II, and was first published in the open
literature | ] in a chemistry journal. An extension was published in the statistics litera-
ture | ], but was largely unnoticed. A special case (Gibbs sampling, §A.2.2) was indepen-
dently invented by Geman and Geman | ] in the context of Ising models. But it was not
until [ ] that the algorithm became well-known to the wider statistical community. Since
then it has become wildly popular in Bayesian statistics, and is becoming increasingly popular
in machine learning. For more details on the MCMC theory, see e.g., | ] and [ ]. For
more details on the implementation side, see e.g., the article by Lao et al. | ]

The paper | | provided some analysis regarding the mixing rate of random walk Metropolis
methods. They showed that if the posterior is Gaussian, the asymptotically optimal value of o2
is 2.38% /n, where n is the dimensionality of z. This results in an acceptance rate of 0.234, which
in this case, is the optimal tradeoff between exploring widely enough to cover the distribution
without being rejected too often. For a more recent account of optimal acceptance rates for
RWM, see also | ].

The papers | ] and [ ] proposed that in the case where the target distribution is
a posterior given some data, p*(z) = p(z | D), it is helpful to condition the proposal of MH
not just on the previous hidden state, but also the visible data, i.e., to use ¢(2’ | 2, D). This
is called data-driven MCMC, and a detailed introduction of this method can be found in their
publications.

One can change the parameters of the MH proposal as the algorithm is running to increase
efficiency. This is called adaptive MCMC. This allows one to start with a broad covariance (say),
allowing large moves through the space until a mode is found, followed by a narrowing of the
covariance to ensure careful exploration of the region around the mode. However, one must
be careful not to violate the Markov property; thus the parameters of the proposal should not
depend on the entire history of the chain. It turns out that a sufficient condition to ensure this
is that the adaption is ‘faded out’ gradually over time. See e.g., | ] for details.

It is necessary to start MCMC in an initial state that has non-zero probability. A natural
approach is to first use an optimizer to find a local mode. However, at such points the gradients
of the log joint are zero, which can cause problems for some gradient-based MCMC methods.
Several alternatives for selecting the MCMC initial state was discussed in a tutorial by Andrieu
and Thoms [ ]

In Gibbs sampling, we can sample some of the nodes in parallel, without affecting correctness.
In particular, suppose we can create a coloring of the (moralized) undirected graph, such that
no two neighboring nodes have the same color. Then we can sample all the nodes of the same
color in parallel, and cycle through the colors sequentially. Details about this approach can be
found in | ]. In general, computing an optimal coloring is NP-complete, but we can use
efficient heuristics such as those in [ .

The fact that the acceptance rate is 100% does not necessarily mean that Gibbs will converge
rapidly, since it only updates one coordinate at a time. In some cases we can efficiently sample
groups of variables at a time. This is called blocked Gibbs sampling, and can make much bigger
moves through the state space. The articles | ] and | | can be referred to for more
detailed information about this approach. Besides, we can sometimes gain even greater speedups
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by analytically integrating out some of the unknown quantities. This is called a collapsed Gibbs
sampler, and it tends to be more efficient, since it is sampling in a lower dimensional space.
Some examples about how this method works are included in | , §12.3.8].

Lattice models and Ising models are all special cases of undirected graphical models, which are
also called Markov random fields (MRFs). For more information about probabilistic calculation
on MRFs and their properties, one can refer to | , §4.3].

Hamiltonian Monte Carlo were originally derived from physics | , , , ,

]. The method was originally called hybrid Monte Carlo | |. It was introduced
to the statistics community by Neal [ ], and was renamed to Hamiltonian Monte Carlo
in | ]. For a more detailed theory and mathematical analysis about Hamiltonian Monte
Carlo methods, one can refer to | ]. In practice, there are many widely used libraries for
applying HMC in stochastic inference, such as PyMC | ] and TensorFlow Probabil-

ity [ ]

In practice, to diagnose the MCMC convergence after sampling is also very important, although
we did not go into much detail about this aspect. A thorough introduction about different
metrics and techniques can be found in | , §12.6].
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Exercises

A.1 Random walk Metropolis. In this exercise, we would like to sample from a given mixture of two
Gaussians using Metropolis-Hastings algorithm with a random walk proposal. Please complete
the MH algorithm in src.py, and check your implementation using the notebook a-1.ipynb.

A.2 Gibbs sampling. One application of Ising models is as a prior for binary image denoising problems.
In particular, suppose y is a noisy version of image x, and we wish to compute the posterior
p(z | y) o< p(x)p(y | x), where p(z) is an Ising prior, and p(y | «) = [[;p(yi | @:) is a per-
site likelihood term. It is commonly assumed that the local likelihood term is Gaussian, i.e.,
Yi ~ N(l’i70'2).
(a) Derive the full conditional for the posterior p(z; | x—;,y) required for implementing the
Gibbs sampling procedure.

(b) Implement the Gibbs sampling procedure in src.py according to your derived full condi-
tionals, and check your implementation using the notebook a-2.ipynb.
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Notation

Sets, vectors, and matrices

R Real numbers.

R" Real n-vectors (n x 1 matrices).

Rmxn Real m x n matrices.

Ry, Ryt Nonnegative, positive real numbers.

Z Integers.

Z,,7Z, Nonnegative, positive integers.

ST Symmetric n X n matrices.

Sn,8% . Symmetric positive semidefinite, positive definite, n x n matrices.
card(C) Cardinality of set C.

Ic Indicator function of set C.

1 Vector with all components one.

e; ith standard basis vector.

Oy Componentwise multiplication of vectors x and y.

1 Identity matrix.

X, X, The ith column/row of matrix X, represented as a column vector.
xT Transpose of matrix X.

X* (Square) matrix X to the kth power.

tr(X) Trace of matrix X.

diag(z) Diagonal matrix with diagonal entries x1,...,z,.

rank(A) Rank of matrix A.

Functions and derivatives

f:A— B f is a function on the set dom(f) C A into the set B.
dom(f) Domain of function f.

Vf Gradient of function f.

V2f Hessian of function f.

Norms and distances

-1l A norm.

[l l1-norm of vector x.

|||y Euclidean (or l3-) norm of vector z.

lz]| loo-norm of vector x.

dist(A, B) Distance between sets (or points) A and B.

Generalized inequalities

z =2y Componentwise inequality between vectors x and y.

<y Strict componentwise inequality between vectors x and y.



102 Notation
Probability

P(S) Probability of event S.

(X 1Y |2 Conditional independence of random variables X and Y given Z.

E[X] Expected value of random variable X.

var(X) Variance of random variable X.

o(X) Standard deviation of random variable X.

cov(X,Y) Covariance of random variables X and Y.

p(X,Y) Correlation coefficient of random variables X and Y.

r(X,Y) Regression coefficient of random variables X and Y.

p(x) Density function of continuous random variable X.

F(z) Cumulative distribution function of continuous random variable X.

1(0) Log-likelihood function of € given the observation X = z.

supp(p) Support of density function p.

N(p,0?) Gaussian distribution with mean y, variance .

O(x) Cumulative distribution function of N'(0,1) random variable X.

U(x,y) Uniform distribution on interval [z, y].

Exp()) Exponential distribution with parameter .

Beta(a, ) Beta distribution with shape parameters « and .

Dir(«) Dirichlet distribution with concentration parameters o = (g, ..., ax).
Graph

pa(V) Parents of node V.

mb(V) Markov blanket of node V.

adj(V) Adjacent nodes of node V.
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