Probabilistic Graphical Models
Prof. Joschka Boedecker and Hao Zhu

Department of Computer Science
University of Freiburg

universitatfreiburg

6. Markov decision problems

e Markov decision processes
Episodes and returns
Value functions
Optimal value functions and policies

e Dynamic programming
Policy iteration
Value iteration

Outline

e Markov decision processes
Episodes and returns
Value functions
Optimal value functions and policies

Markov decision processes | Markov decision problems

6-3

Markov decision processes (MDPs)

S: state space

e A: action space

e r: S x A— R: reward function
e 7 policy
e the probability of generating a trajectory

7 = (80, G0, $1, 01, - - ., ST) of length T
T—1

p(7) = p(s0) H m(ar | se)p(se41 | se,a)
=0

— p(s' | s,a): transition function

Markov decision processes | Markov decision problems

\ X
at—1 453 att1 At 4-2

\ \ \
o)y

6-4

Episodes

e continuing task: the agent can potentially interact with the environment forever

e episodic task: the interaction terminates once the system enters a terminal state or
absorbing state (the next state is always itself with 0 reward)

— after entering a terminal state, agent starts a new episode from a new initial state so ~ p(so)
— the episode length is in general random

— finite horizon problems: the trajectory length 7" in an episodic task is fixed and known

Markov decision processes | Markov decision problems

6-5

Returns

Gy =1 +Yree1 + v27’t+2 e Ay

T—t—1

Z vrm—Z’V r;

e G4 return at time ¢, the sum of expected rewards obtained going forwards

~ € [0,1]: discount factor
— if v < 1 and rewards r; are bounded =—> G is always bounded even if T — oo

Gy =0, for t > T, if episode tasks terminate at T'
® recursive expression:
Gy =1 +v(ree1 + e+) =10+ VG4

Markov decision processes | Markov decision problems 6-6

Value functions

state-value function

o0

V™(s) = Ez[Go | so = s8] = Ex Z’ytrt

t=0

sp=s|, forallsesS

e the expected return starting in state s € S and follow 7 to choose actions
action-value function

so=S8,a0=al, forallseS

Q" (s,a) = Ex[Go | s0 = s,a0 = d] ZWU

e the expected return starting by taking action «a in state s, and then follow policy m

Markov decision processes | Markov decision problems 6-7

Value functions

advantage function
A" (s,a) = Q™ (s,a) — V7 (s)
e the benefit of picking action a in state s then switching to policy 7, relative to the
baseline return of always following m
o E (50)[A7(5,a)] =0, since

V7(s) = Er(q)5)[Q" (5, a)]

Markov decision processes | Markov decision problems

Value functions
Bellman equations: recursive expression of value functions

V™(s) = Ex[Go | so = s] = Ex[ro +vG1 | so = $]

— Z m(a | s) [r(s,a) +v Z p(s' | 5,0)E;[Gy | 51 = s’]]

acA s'eS
= 7(als) [T(S,a) +7 Y (s | s,)V (s)
acA s'eS

Q" (s,a) =E;[Go | so = s,a0 = a] =Ez[ro +vG1 | so = s,a9 = a
=r(s,a Jr*yz (s | s,a)E[Gy | 81 = §]

s'eS
=r(s,a)+v Y p(s' | s,0) > w(a' |)Q(s,a))
s'eS a’€A

Markov decision processes | Markov decision problems 6-9

Optimal value functions and policies

optimal policy 7* = V™ >V for all s € S and all policy
o V*, Q*: optimal value functions

e multiple optimal policies for one MDP have the same value functions

Bellman optimality equations
* *
1% = = E._.- = =
(s) gleaxQ (s,a) r;leax = |Go | so = $,a0 = d]

=maxE «[rg + vG1 | so = s,a¢ = a]
acA

= max
acA

r(s,a) +7) p(s' | 5,0)Ex[G1] 51 = S’]]

s'eS

= max lr(s, a) + Z p(s' | s,a)V*(s)

(1S
s'eS

Markov decision processes | Markov decision problems 6-10

Optimal value functions and policies
Q*(s,a) =r(s,a) +7 Y p(s' | 5,0) max Q*(s',d’)
a’€eA
s'eS
e the discrepancy between the right- and left-hand sides are called Bellman error

e the Bellman optimality equations has a unique solution 7* for finite MDPs

V) . @) .
36303 s ¢4

Markov decision processes | Markov decision problems

Optimal value functions and policies

e given optimal value functions V* and Q*, the optimal policy 7* can be obtained
according to

7*(s) = argmax |r(s,a) + Z p(s" | s,a)V*(s)
acA s'eS

or

7 (s) = argmax Q* (s, a)
acA

Markov decision processes | Markov decision problems

Example: gridworld
o A= {up, down, left, right}
e from state A, all four actions yield a reward of +10 and take the agent to A’
e from state B, all actions yield a reward of +5 and take the agent to B’

e actions taking the agent off the grid leave its location unchanged with a reward of —1,
and all other actions result in a reward of 0

Gridworld 1/ rand % "

A B 3.8 | 88 44 | 53 1.5 22.0 | 24.4 220|194 | 175 — 4—&—» -— 4—$—> -—
\ >+5 1530 | 23| 1905 19.8 | 22.0 | 19.8 | 17.8 | 16.0 t. t =
+10|| B i 0.1 | 07| 07 | 04 |04 17.8 | 19.8 | 17.8 | 16.0 | 144 L, t A
/ ~1.0| 04| —0.4]-0.6|-1.2 16.0 [17.8 | 16.0 | 14.4 | 130 t. t ot

A/ i -19|-13|-12|-14|-2.0 14.4 | 16.0 | 14.4 | 13.0 | 11.7 L T ‘_T ‘_T ‘_T

Markov decision processes | Markov decision problems 6-13

Outline

e Dynamic programming
Policy iteration
Value iteration

Dynamic programming | Markov decision problems

Policy iteration

policy evaluation: given some policy 7, evaluate

, forallseS

VT(s)=) wlal|s) lr(&a) +7 Y p(s' | s,a)V7(s)

acA s'eS

e for finite MDPs: solving a system of card(S) linear equations with card(S) unknowns

2)

iterative policy evaluation: approximate V™ with the sequence V(@ V() V() where

Vir(s) = w(a]s)

acA

r(s,a) +7 Y p(s' | 5,a) V(s
s'eS

e VO v Y@ converges to V™ as i — oo

Dynamic programming | Markov decision problems

Policy iteration

e ‘two array’ implementation: use two arrays, one for the old values V(%) and one for the
new values V*1 then the new values can be computed one by one from the old values
without the old values being changed

¢ ‘in place’ implementation: use one array of V, and with each new value immediately
overwriting the old one

given the policy 7 to be evaluated.
initialize V (s) for all s € S arbitrarily, if s is not terminal, otherwise 0.

repeat
for s € S do
V(s) = Ypeanals) [r(s,a) +7 Dyespls’ | 5.0)V(s)].
end for

until stop criterion reached.

e the in-place version usually converges faster than the two-array version, which is influenced
by the order of states for update

Dynamic programming | Markov decision problems 6-16

Policy iteration

policy improvement: given the value function V™ for some policy 7, find a new policy

7'(s) = argmax Q" (s,a) = argmax [r(s, a) +~ Z p(s' | 5,a)V7(s')|, forallseS

acA acA seS

e 7' is as good as, or better than the old policy =

e if 7’ is as good as 7, then 7’ =7 = 7*

— proof: suppose 7’ is as good as, but not better than , i.e., V™ = V"/, we have

v (s):r;leaj(|:r(s7a)+vzp(s | s,a)V™ (s')|, forallseS

s'eS

Dynamic programming | Markov decision problems 6-17

Policy iteration

policy iteration: alternating between policy evaluation and policy improvement

7T(0) E VW(O) I 7'['(1) E Vﬂ(l) I 71_(2) E T %

E

™

E . .
e ——: policy evaluation

I L
e ——: policy improvement

Dynamic programming | Markov decision problems

V*

6-18

Policy iteration

1. Imnitialization.
initialize V(s) € R and 7(s) € A for all s € S.
repeat
2. Policy evaluation.
repeat
for s € S do

V(s) = Ypeam(al) [r(s,a) +7 X yesp(s’ | 5,0)V(s)].

end for
until stop criterion reached.
3. Policy improvement.

for s € S do
7(s) = argmax,e 4 [r(s,a) + 72 ocs (s | 5,0)V(s")].
end for

until policy is stable.

Dynamic programming | Markov decision problems

6-19

Value iteration (V1)

solving Bellman optimality equations with iterative methods:
e approximate V* with the sequence V(O V(1) V() where

(i41) — / (@) (o
VI (s) = max r(s,a)+v Y p(s' | 5,0)VO(s)

e s'eS
- vO y® o y@ converges to V* as i — 0o

e can be considered as policy improvement + (1-sweep) truncated policy evaluation

Dynamic programming | Markov decision problems 6-20

Value iteration (V1)

initialize V (s) for all s € S arbitrarily, if s is not terminal, otherwise 0.

repeat
for s € S do
V(s) = maxae [r(s,0) + ¥, csp(s" | 5,a)V(s))].
end for

until stop criterion reached.
output a deterministic policy 7 := argmax,¢ 4 [r(s,a) + ¥ Yy cs (s’ | 5,a)V (s')].

Dynamic programming | Markov decision problems

6-21

	Markov decision processes
	Episodes and returns
	Value functions
	Optimal value functions and policies

	Dynamic programming
	Policy iteration
	Value iteration

