
Probabilistic Graphical Models

Prof. Joschka Boedecker and Hao Zhu

Department of Computer Science
University of Freiburg

6. Markov decision problems

• Markov decision processes
Episodes and returns
Value functions
Optimal value functions and policies

• Dynamic programming
Policy iteration
Value iteration

Outline

• Markov decision processes
Episodes and returns
Value functions
Optimal value functions and policies

• Dynamic programming
Policy iteration
Value iteration

Markov decision processes | Markov decision problems 6-3

Markov decision processes (MDPs)

• S: state space

• A: action space

• r : S ×A → R: reward function

• π: policy

• the probability of generating a trajectory
τ = (s0, a0, s1, a1, . . . , sT) of length T :

p(τ) = p(s0)

T−1∏
t=0

π(at | st)p(st+1 | st, at)

– p(s′ | s, a): transition function

· · · · · ·st st+1 st+2 st+3

at at+1 at+2at−1

rt rt+1 rt+2

Markov decision processes | Markov decision problems 6-4

Episodes

• continuing task: the agent can potentially interact with the environment forever

• episodic task: the interaction terminates once the system enters a terminal state or
absorbing state (the next state is always itself with 0 reward)

– after entering a terminal state, agent starts a new episode from a new initial state s0 ∼ p(s0)

– the episode length is in general random

– finite horizon problems: the trajectory length T in an episodic task is fixed and known

Markov decision processes | Markov decision problems 6-5

Returns

Gt = rt + γrt+1 + γ2rt+2 + · · ·+ γT−t−1rT−1

=

T−t−1∑
k=0

γkrt+k =

T−1∑
i=t

γi−tri

• Gt: return at time t, the sum of expected rewards obtained going forwards

• γ ∈ [0, 1]: discount factor
– if γ < 1 and rewards rt are bounded =⇒ Gt is always bounded even if T → ∞

• Gt = 0, for t ≥ T , if episode tasks terminate at T

• recursive expression:

Gt = rt + γ(rt+1 + γrt+2 + · · ·) = rt + γGt+1

Markov decision processes | Markov decision problems 6-6

Value functions

state-value function

V π(s) = Eπ[G0 | s0 = s] = Eπ

[∞∑
t=0

γtrt

∣∣∣∣ s0 = s

]
, for all s ∈ S

• the expected return starting in state s ∈ S and follow π to choose actions

action-value function

Qπ(s, a) = Eπ[G0 | s0 = s, a0 = a] = Eπ

[∞∑
t=0

γtrt

∣∣∣∣ s0 = s, a0 = a

]
, for all s ∈ S

• the expected return starting by taking action a in state s, and then follow policy π

Markov decision processes | Markov decision problems 6-7

Value functions

advantage function

Aπ(s, a) = Qπ(s, a)− V π(s)

• the benefit of picking action a in state s then switching to policy π, relative to the
baseline return of always following π

• Eπ(s|a)[Aπ(s, a)] = 0, since

V π(s) = Eπ(a|s)[Q
π(s, a)]

Markov decision processes | Markov decision problems 6-8

Value functions

Bellman equations: recursive expression of value functions

V π(s) = Eπ[G0 | s0 = s] = Eπ[r0 + γG1 | s0 = s]

=
∑
a∈A

π(a | s)
[
r(s, a) + γ

∑
s′∈S

p(s′ | s, a)Eπ[G1 | s1 = s′]

]

=
∑
a∈A

π(a | s)
[
r(s, a) + γ

∑
s′∈S

p(s′ | s, a)V π(s′)

]

Qπ(s, a) = Eπ[G0 | s0 = s, a0 = a] = Eπ[r0 + γG1 | s0 = s, a0 = a]

= r(s, a) + γ
∑
s′∈S

p(s′ | s, a)Eπ[G1 | s1 = s′]

= r(s, a) + γ
∑
s′∈S

p(s′ | s, a)
∑
a′∈A

π(a′ | s′)Qπ(s′, a′)

Markov decision processes | Markov decision problems 6-9

Optimal value functions and policies

optimal policy π∗ =⇒ V π∗ ≥ V π for all s ∈ S and all policy π

• V ∗, Q∗: optimal value functions

• multiple optimal policies for one MDP have the same value functions

Bellman optimality equations

V ∗(s) = max
a∈A

Q∗(s, a) = max
a∈A

Eπ∗ [G0 | s0 = s, a0 = a]

= max
a∈A

Eπ∗ [r0 + γG1 | s0 = s, a0 = a]

= max
a∈A

[
r(s, a) + γ

∑
s′∈S

p(s′ | s, a)Eπ∗ [G1 | s1 = s′]

]

= max
a∈A

[
r(s, a) + γ

∑
s′∈S

p(s′ | s, a)V ∗(s′)

]
Markov decision processes | Markov decision problems 6-10

Optimal value functions and policies

Q∗(s, a) = r(s, a) + γ
∑
s′∈S

p(s′ | s, a)max
a′∈A

Q∗(s′, a′)

• the discrepancy between the right- and left-hand sides are called Bellman error

• the Bellman optimality equations has a unique solution π∗ for finite MDPs

s

a

r
s′

max

(V ∗) s, a

a′

r
s′

(Q∗)

max

Markov decision processes | Markov decision problems 6-11

Optimal value functions and policies

• given optimal value functions V ∗ and Q∗, the optimal policy π∗ can be obtained
according to

π∗(s) = argmax
a∈A

[
r(s, a) + γ

∑
s′∈S

p(s′ | s, a)V ∗(s′)

]
or

π∗(s) = argmax
a∈A

Q∗(s, a)

Markov decision processes | Markov decision problems 6-12

Example: gridworld

• A = {up, down, left, right}

• from state A, all four actions yield a reward of +10 and take the agent to A′

• from state B, all actions yield a reward of +5 and take the agent to B′

• actions taking the agent off the grid leave its location unchanged with a reward of −1,
and all other actions result in a reward of 0

A

A′

B

B′+10

+5

Gridworld V rand

−1.9 −1.3 −1.2 −1.4 −2.0

−1.0 −0.4 −0.4 −0.6 −1.2

0.1 0.7 0.7 0.4 −0.4

1.5 3.0 2.3 1.9 0.5

3.8 8.8 4.4 5.3 1.5

V ∗

14.4 16.0 14.4 13.0 11.7

16.0 17.8 16.0 14.4 13.0

17.8 19.8 17.8 16.0 14.4

19.8 22.0 19.8 17.8 16.0

22.0 24.4 22.0 19.4 17.5

π∗

Markov decision processes | Markov decision problems 6-13

Outline

• Markov decision processes
Episodes and returns
Value functions
Optimal value functions and policies

• Dynamic programming
Policy iteration
Value iteration

Dynamic programming | Markov decision problems 6-14

Policy iteration

policy evaluation: given some policy π, evaluate

V π(s) =
∑
a∈A

π(a | s)
[
r(s, a) + γ

∑
s′∈S

p(s′ | s, a)V π(s′)

]
, for all s ∈ S

• for finite MDPs: solving a system of card(S) linear equations with card(S) unknowns

iterative policy evaluation: approximate V π with the sequence V (0), V (1), V (2), . . ., where

V (i+1)(s) =
∑
a∈A

π(a | s)
[
r(s, a) + γ

∑
s′∈S

p(s′ | s, a)V (i)(s′)

]

• V (0), V (1), . . . , V (i), . . . converges to V π as i → ∞
Dynamic programming | Markov decision problems 6-15

Policy iteration

• ‘two array’ implementation: use two arrays, one for the old values V (i), and one for the
new values V (i+1), then the new values can be computed one by one from the old values
without the old values being changed

• ‘in place’ implementation: use one array of V , and with each new value immediately
overwriting the old one

given the policy π to be evaluated.
initialize V (s) for all s ∈ S arbitrarily, if s is not terminal, otherwise 0.
repeat

for s ∈ S do
V (s) :=

∑
a∈A π(a | s)

[
r(s, a) + γ

∑
s′∈S p(s′ | s, a)V (s′)

]
.

end for
until stop criterion reached.

• the in-place version usually converges faster than the two-array version, which is influenced
by the order of states for update

Dynamic programming | Markov decision problems 6-16

Policy iteration

policy improvement: given the value function V π for some policy π, find a new policy

π′(s) = argmax
a∈A

Qπ(s, a) = argmax
a∈A

[
r(s, a) + γ

∑
s′∈S

p(s′ | s, a)V π(s′)

]
, for all s ∈ S

• π′ is as good as, or better than the old policy π

• if π′ is as good as π, then π′ = π = π∗

– proof: suppose π′ is as good as, but not better than π, i.e., V π = V π′
, we have

V π′
(s) = max

a∈A

[
r(s, a) + γ

∑
s′∈S

p(s′ | s, a)V π′
(s′)

]
, for all s ∈ S

Dynamic programming | Markov decision problems 6-17

Policy iteration

policy iteration: alternating between policy evaluation and policy improvement

π(0) E−−−→ V π(0) I−−−→ π(1) E−−−→ V π(1) I−−−→ π(2) E−−−→ · · · I−−−→ π∗ E−−−→ V ∗

• E−−−→: policy evaluation

• I−−−→: policy improvement

Dynamic programming | Markov decision problems 6-18

Policy iteration

1. Initialization.

initialize V (s) ∈ R and π(s) ∈ A for all s ∈ S.
repeat

2. Policy evaluation.

repeat
for s ∈ S do

V (s) :=
∑

a∈A π(a | s)
[
r(s, a) + γ

∑
s′∈S p(s′ | s, a)V (s′)

]
.

end for
until stop criterion reached.
3. Policy improvement.

for s ∈ S do
π(s) := argmaxa∈A

[
r(s, a) + γ

∑
s′∈S p(s′ | s, a)V (s′)

]
.

end for
until policy is stable.

Dynamic programming | Markov decision problems 6-19

Value iteration (VI)

solving Bellman optimality equations with iterative methods:

• approximate V ∗ with the sequence V (0), V (1), V (2), . . ., where

V (i+1)(s) = max
a∈A

[
r(s, a) + γ

∑
s′∈S

p(s′ | s, a)V (i)(s′)

]

– V (0), V (1), . . . , V (i), . . . converges to V ∗ as i → ∞

• can be considered as policy improvement + (1-sweep) truncated policy evaluation

Dynamic programming | Markov decision problems 6-20

Value iteration (VI)

initialize V (s) for all s ∈ S arbitrarily, if s is not terminal, otherwise 0.
repeat

for s ∈ S do
V (s) := maxa∈A

[
r(s, a) + γ

∑
s′∈S p(s′ | s, a)V (s′)

]
.

end for
until stop criterion reached.
output a deterministic policy π := argmaxa∈A

[
r(s, a) + γ

∑
s′∈S p(s′ | s, a)V (s′)

]
.

Dynamic programming | Markov decision problems 6-21

	Markov decision processes
	Episodes and returns
	Value functions
	Optimal value functions and policies

	Dynamic programming
	Policy iteration
	Value iteration

