Probabilistic Graphical Models

Prof. Joschka Boedecker and Hao Zhu

Department of Computer Science University of Freiburg

universität freiburg

6. Markov decision problems

Markov decision processes
 Episodes and returns
 Value functions
 Optimal value functions and policies

 Dynamic programming Policy iteration
 Value iteration

Outline

Markov decision processes
 Episodes and returns
 Value functions
 Optimal value functions and policies

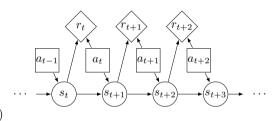
 Dynamic programming Policy iteration
 Value iteration

Markov decision processes (MDPs)

- ullet \mathcal{S} : state space
- A: action space
- $r: \mathcal{S} \times \mathcal{A} \to \mathbf{R}$: reward function
- π : policy
- the probability of generating a trajectory $\tau = (s_0, a_0, s_1, a_1, \dots, s_T)$ of length T:

$$p(\tau) = p(s_0) \prod_{t=0}^{T-1} \pi(a_t \mid s_t) p(s_{t+1} \mid s_t, a_t)$$

- $p(s' \mid s, a)$: transition function



Episodes

- continuing task: the agent can potentially interact with the environment forever
- episodic task: the interaction terminates once the system enters a terminal state or absorbing state (the next state is always itself with 0 reward)
 - after entering a terminal state, agent starts a new episode from a new initial state $s_0 \sim p(s_0)$
 - the episode length is in general random
 - **finite horizon problems**: the trajectory length T in an episodic task is fixed and known

Returns

$$G_{t} = r_{t} + \gamma r_{t+1} + \gamma^{2} r_{t+2} + \dots + \gamma^{T-t-1} r_{T-1}$$
$$= \sum_{k=0}^{T-t-1} \gamma^{k} r_{t+k} = \sum_{i=t}^{T-1} \gamma^{i-t} r_{i}$$

- G_t : return at time t, the sum of expected rewards obtained going forwards
- $\gamma \in [0,1]$: discount factor

 if $\gamma < 1$ and rewards r_t are bounded $\implies G_t$ is always bounded even if $T \to \infty$
- $G_t = 0$, for $t \geq T$, if episode tasks terminate at T
- recursive expression:

$$G_t = r_t + \gamma (r_{t+1} + \gamma r_{t+2} + \cdots) = r_t + \gamma G_{t+1}$$

Value functions

state-value function

$$V^{\pi}(s) = \mathbf{E}_{\pi}[G_0 \mid s_0 = s] = \mathbf{E}_{\pi} \left[\sum_{t=0}^{\infty} \gamma^t r_t \mid s_0 = s \right], \quad \text{for all } s \in \mathcal{S}$$

ullet the expected return starting in state $s\in\mathcal{S}$ and follow π to choose actions

action-value function

$$Q^{\pi}(s,a) = \mathbf{E}_{\pi}[G_0 \mid s_0 = s, a_0 = a] = \mathbf{E}_{\pi}\left[\sum_{t=0}^{\infty} \gamma^t r_t \mid s_0 = s, a_0 = a\right], \quad \text{for all } s \in \mathcal{S}$$

ullet the expected return starting by taking action a in state s, and then follow policy π

Value functions

advantage function

$$A^{\pi}(s,a) = Q^{\pi}(s,a) - V^{\pi}(s)$$

- the benefit of picking action a in state s then switching to policy π , relative to the baseline return of always following π
- $\mathbf{E}_{\pi(s|a)}[A^{\pi}(s,a)] = 0$, since

$$V^{\pi}(s) = \mathbf{E}_{\pi(a|s)}[Q^{\pi}(s,a)]$$

Value functions

Bellman equations: recursive expression of value functions

$$V^{\pi}(s) = \mathbf{E}_{\pi}[G_0 \mid s_0 = s] = \mathbf{E}_{\pi}[r_0 + \gamma G_1 \mid s_0 = s]$$

$$= \sum_{a \in \mathcal{A}} \pi(a \mid s) \left[r(s, a) + \gamma \sum_{s' \in \mathcal{S}} p(s' \mid s, a) \mathbf{E}_{\pi}[G_1 \mid s_1 = s'] \right]$$

$$= \sum_{a \in \mathcal{A}} \pi(a \mid s) \left[r(s, a) + \gamma \sum_{s' \in \mathcal{S}} p(s' \mid s, a) V^{\pi}(s') \right]$$

$$Q^{\pi}(s, a) = \mathbf{E}_{\pi}[G_0 \mid s_0 = s, a_0 = a] = \mathbf{E}_{\pi}[r_0 + \gamma G_1 \mid s_0 = s, a_0 = a]$$

$$= r(s, a) + \gamma \sum_{s' \in \mathcal{S}} p(s' \mid s, a) \mathbf{E}_{\pi}[G_1 \mid s_1 = s']$$

$$= r(s, a) + \gamma \sum_{s' \in \mathcal{S}} p(s' \mid s, a) \sum_{s' \in \mathcal{S}} \pi(a' \mid s') Q^{\pi}(s', a')$$

Optimal value functions and policies

optimal policy $\pi^* \implies V^{\pi^*} \geq V^{\pi}$ for all $s \in \mathcal{S}$ and all policy π

- V^* , Q^* : optimal value functions
- multiple optimal policies for one MDP have the same value functions

Bellman optimality equations

$$V^{*}(s) = \max_{a \in \mathcal{A}} Q^{*}(s, a) = \max_{a \in \mathcal{A}} \mathbf{E}_{\pi^{*}}[G_{0} \mid s_{0} = s, a_{0} = a]$$

$$= \max_{a \in \mathcal{A}} \mathbf{E}_{\pi^{*}}[r_{0} + \gamma G_{1} \mid s_{0} = s, a_{0} = a]$$

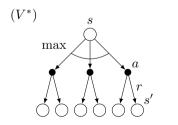
$$= \max_{a \in \mathcal{A}} \left[r(s, a) + \gamma \sum_{s' \in \mathcal{S}} p(s' \mid s, a) \mathbf{E}_{\pi^{*}}[G_{1} \mid s_{1} = s'] \right]$$

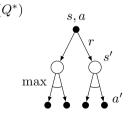
$$= \max_{a \in \mathcal{A}} \left[r(s, a) + \gamma \sum_{s' \in \mathcal{S}} p(s' \mid s, a) V^{*}(s') \right]$$

Optimal value functions and policies

$$Q^{*}(s, a) = r(s, a) + \gamma \sum_{s' \in \mathcal{S}} p(s' \mid s, a) \max_{a' \in \mathcal{A}} Q^{*}(s', a')$$

- the discrepancy between the right- and left-hand sides are called Bellman error
- ullet the Bellman optimality equations has a unique solution π^* for finite MDPs





Optimal value functions and policies

 \bullet given optimal value functions V^* and $Q^*,$ the optimal policy π^* can be obtained according to

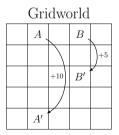
$$\pi^*(s) = \operatorname*{argmax}_{a \in \mathcal{A}} \left[r(s, a) + \gamma \sum_{s' \in \mathcal{S}} p(s' \mid s, a) V^*(s') \right]$$

or

$$\pi^*(s) = \operatorname*{argmax}_{a \in \mathcal{A}} Q^*(s, a)$$

Example: gridworld

- $A = \{up, down, left, right\}$
- ullet from state A, all four actions yield a reward of +10 and take the agent to A'
- ullet from state B, all actions yield a reward of +5 and take the agent to B'
- actions taking the agent off the grid leave its location unchanged with a reward of -1, and all other actions result in a reward of 0



V^{rand}							
3.8	8.8	4.4	5.3	1.5			
1.5	3.0	2.3	1.9	0.5			
0.1	0.7	0.7	0.4	-0.4			
-1.0	-0.4	-0.4	-0.6	-1.2			
-1.9	-1.3	-1.2	-1.4	-2.0			
-1.9	-1.3	-1.2	-1.4	-2.0			

V^*							
22.0	24.4	22.0	19.4	17.5			
19.8	22.0	19.8	17.8	16.0			
17.8	19.8	17.8	16.0	14.4			
16.0	17.8	16.0	14.4	13.0			
14.4	16.0	14.4	13.0	11.7			

π^*							
-	\Rightarrow	+	+	-			
L	1	Ţ	+	+			
L	†	1	1	1			
L	1	1		1			
<u></u>	†	1	1	1			

Outline

Markov decision processes
 Episodes and returns
 Value functions
 Optimal value functions and policies

 Dynamic programming Policy iteration
 Value iteration

policy evaluation: given some policy π , evaluate

$$V^{\pi}(s) = \sum_{a \in \mathcal{A}} \pi(a \mid s) \left[r(s, a) + \gamma \sum_{s' \in \mathcal{S}} p(s' \mid s, a) V^{\pi}(s') \right], \quad \text{for all } s \in \mathcal{S}$$

ullet for finite MDPs: solving a system of $\mathbf{card}(\mathcal{S})$ linear equations with $\mathbf{card}(\mathcal{S})$ unknowns

iterative policy evaluation: approximate V^π with the sequence $V^{(0)}, V^{(1)}, V^{(2)}, \ldots$, where

$$V^{(i+1)}(s) = \sum_{a \in \mathcal{A}} \pi(a \mid s) \left[r(s, a) + \gamma \sum_{s' \in \mathcal{S}} p(s' \mid s, a) V^{(i)}(s') \right]$$

ullet $V^{(0)},V^{(1)},\ldots,V^{(i)},\ldots$ converges to V^{π} as $i o\infty$

- ullet 'two array' implementation: use two arrays, one for the old values $V^{(i)}$, and one for the new values $V^{(i+1)}$, then the new values can be computed one by one from the old values without the old values being changed
- ullet 'in place' implementation: use one array of V, and with each new value immediately overwriting the old one

```
given the policy \pi to be evaluated. initialize V(s) for all s \in \mathcal{S} arbitrarily, if s is not terminal, otherwise 0. repeat for s \in \mathcal{S} do V(s) \coloneqq \sum_{a \in \mathcal{A}} \pi(a \mid s) \left[ r(s,a) + \gamma \sum_{s' \in \mathcal{S}} p(s' \mid s,a) V(s') \right]. end for until stop criterion reached.
```

• the in-place version usually converges faster than the two-array version, which is influenced by the order of states for update

policy improvement: given the value function V^{π} for some policy π , find a new policy

$$\pi'(s) = \operatorname*{argmax}_{a \in \mathcal{A}} Q^{\pi}(s, a) = \operatorname*{argmax}_{a \in \mathcal{A}} \left[r(s, a) + \gamma \sum_{s' \in \mathcal{S}} p(s' \mid s, a) V^{\pi}(s') \right], \quad \text{for all } s \in \mathcal{S}$$

- π' is as good as, or better than the old policy π
- if π' is as good as π , then $\pi' = \pi = \pi^*$
 - **proof**: suppose π' is as good as, but not better than π , i.e., $V^\pi = V^{\pi'}$, we have

$$V^{\pi'}(s) = \max_{a \in \mathcal{A}} \left[r(s, a) + \gamma \sum_{s' \in \mathcal{S}} p(s' \mid s, a) V^{\pi'}(s') \right], \quad \text{for all } s \in \mathcal{S}$$

policy iteration: alternating between policy evaluation and policy improvement

$$\pi^{(0)} \stackrel{\to}{\longrightarrow} V^{\pi^{(0)}} \stackrel{\to}{\longrightarrow} \pi^{(1)} \stackrel{\to}{\longrightarrow} V^{\pi^{(1)}} \stackrel{\to}{\longrightarrow} \pi^{(2)} \stackrel{\to}{\longrightarrow} \cdots \stackrel{\to}{\longrightarrow} \pi^* \stackrel{\to}{\longrightarrow} V^*$$

- $\bullet \xrightarrow{E}$: policy evaluation
- — : policy improvement

```
Initialization.
initialize V(s) \in \mathbf{R} and \pi(s) \in \mathcal{A} for all s \in \mathcal{S}.
repeat
     2. Policy evaluation.
     repeat
          for s \in \mathcal{S} do
               V(s) := \sum_{a \in A} \pi(a \mid s) \left[ r(s, a) + \gamma \sum_{s' \in S} p(s' \mid s, a) V(s') \right].
          end for
     until stop criterion reached.
     3. Policy improvement.
     for s \in \mathcal{S} do
          \pi(s) := \operatorname{argmax}_{a \in A} \left[ r(s, a) + \gamma \sum_{s' \in S} p(s' \mid s, a) V(s') \right].
     end for
until policy is stable.
```

Value iteration (VI)

solving Bellman optimality equations with iterative methods:

ullet approximate V^* with the sequence $V^{(0)},V^{(1)},V^{(2)},\ldots$, where

$$V^{(i+1)}(s) = \max_{a \in \mathcal{A}} \left[r(s, a) + \gamma \sum_{s' \in \mathcal{S}} p(s' \mid s, a) V^{(i)}(s') \right]$$

$$V^{(0)}, V^{(1)}, \dots, V^{(i)}, \dots$$
 converges to V^* as $i \to \infty$

• can be considered as policy improvement + (1-sweep) truncated policy evaluation

Value iteration (VI)

```
initialize V(s) for all s \in \mathcal{S} arbitrarily, if s is not terminal, otherwise 0. repeat for s \in \mathcal{S} do V(s) \coloneqq \max_{a \in \mathcal{A}} \left[ r(s,a) + \gamma \sum_{s' \in \mathcal{S}} p(s' \mid s,a) V(s') \right]. end for until stop criterion reached. output a deterministic policy \pi \coloneqq \operatorname{argmax}_{a \in \mathcal{A}} \left[ r(s,a) + \gamma \sum_{s' \in \mathcal{S}} p(s' \mid s,a) V(s') \right].
```