
Probabilistic Graphical Models

Prof. Joschka Boedecker and Hao Zhu

Department of Computer Science
University of Freiburg

4. Bayesian networks

• Representation

• Inference

• Parameter learning

• Structure learning

Outline

• Representation

• Inference

• Parameter learning

• Structure learning

Representation | Bayesian networks 4-3

Bayesian network

• structure: directed acyclic graph (DAG),
each node corresponds to one variable

• parameters: conditional probability table,
contains the probability of each instance of
the variable given its parents

P(X | pa(X))

X1

X2 X3

X4 X5 X6

Representation | Bayesian networks 4-4

Structure

given a probability distribution P of X = (X1, . . . , Xn), and its graphical representation G

mappings: correspondence between the conditional independence in P and in G

• types of mappings

– D-map: all the conditional independence relations in P are satisfied in G

– I-map: all the conditional independence relations in G are true in P

– P-map: or perfect map, it is a D-map and an I-map

• graph G and probability distribution P are compatible if G is an I-map of P

• minimal I-map: all the conditional independence relations implied by G are true in P , and
if any arc is deleted in G this condition is lost

Representation | Bayesian networks 4-5

Structure

d-separation

given a graph G and sets of nodes X, Y , and Z

• a path p is d-separated (blocked) by a set of nodes Z if and only if

1. p contains a chain i→ m→ j or a fork i← m→ j =⇒ m ∈ Z

2. p contains a collider i→ m← j =⇒ m /∈ Z & no descendant of m is in Z

• (X ⊥⊥ Y | Z) =⇒ Z blocks every path from X to Y

• examples:

X Z1 Z2 Z3 Y

– X and Y are d-separated given Z2

– X and Y are d-connected given Z1

Z1

X Z2 Y

– X and Y cannot be d-separated by any
set of nodes

Representation | Bayesian networks 4-6

Structure

Markov assumption: any node X is conditionally independent of all nodes in graph G that
are not descendants of X given pa(X)

• pa(X): contour of X

Markov blanket

(X ⊥⊥ G−X |mb(X))⇐⇒ P(X | G−X) = P(X |mb(X))

• Markov blanket of X consists of

– the parents of X
– the children of X
– the other parents of the children of X

Representation | Bayesian networks 4-7

Structure

example: Bayesian network representation of probability distribution

P(X1, . . . , Xn) =

n∏
i=1

P(Xi | pa(Xi))



pa(X1) = ∅,
pa(X2) = {X1},
pa(X3) = ∅,
pa(X4) = {X2},
pa(X5) = {X2, X3},
pa(X6) = {X2, X3}



X1

X2 X3

X4 X5 X6

P(X1, . . . , X6) = P(X1)P(X2 | X1)P(X3)P(X4 | X2)P(X5 | X2, X3)P(X6 | X2, X3)

Representation | Bayesian networks 4-8

Parameters

P(Xi | pa(Xi)), i = 1, 2, . . .

canonical models

• mostly for binary variables

• examples: noisy-OR, noisy-AND, noisy-max, noise-min

Representation | Bayesian networks 4-9

Parameters

noisy-OR

• given effect E and possible causes C1, . . . , Cn

• assumptions:

– independence of exceptions (not necessarily true for E = true):

P(E = false | C1, . . . , Cn) =
n∏

i=1

P(E = false | Ci)

– responsibility:

P(E = false | Ci = false) = 1, i = 1, . . . , n

C1 C2
. . . Cn

E

• representation: let qi = P(E = false | Ci = true), if k out of n causes are true

P(E = false | C1, . . . , Cn) =
k∏

i=1

qi and P(E = true | C1, . . . , Cn) = 1−
k∏

i=1

qi

Representation | Bayesian networks 4-10

Parameters

example: noisy-OR

• q1 = q2 = q3 = 0.1

C1 0 0 0 0 1 1 1 1

C2 0 0 1 1 0 0 1 1

C3 0 1 0 1 0 1 0 1

P(E = 0) 1 0.1 0.1 0.01 0.1 0.01 0.01 0.001

P(E = 1) 0 0.9 0.9 0.99 0.9 0.99 0.99 0.999

Representation | Bayesian networks 4-11

Parameters

graphical representations

• idea: within each conditional probability table, the same probability values tend to be
repeated several times

• structure: decision tree, decision diagram

A

B

C

E

G

D

C

E

G

F

G

0.9

0

0

0 0.9

0

0

0 0.9

0

0 0.9

decision tree

A

B

D

F

E 0.9

0

G

C

decision diagram

Representation | Bayesian networks 4-12

Outline

• Representation

• Inference

• Parameter learning

• Structure learning

Inference | Bayesian networks 4-13

Belief propagation

• exact inference for singly connected graphs (trees, polytrees)

• convergence is not guaranteed on general Bayesian networks

P(xi | E) =
P(E | xi)P(xi)

P(E)

• node X divide the network into two
independent subtrees:

– E−: evidence of the rooted tree in X

– E+: all other evidence

E+

E− X

Inference | Bayesian networks 4-14

Belief propagation

P(xi | E) =
P(E | xi)P(xi)

P(E)

=
P(E−, E+ | xi)P(xi)

P(E)

=
P(E− | xi)P(E+ | xi)P(xi)

P(E)

=
P(E− | xi)P(xi | E+)P(E+)�

��P(xi)

P(E)���P(xi)

=
1

Z
P(xi | E+)P(E− | xi)

=
1

Z
µ(xi)λ(xi)

• 1
Z = P(E+)

P(E) : normalization constant

• auxiliary variables:

– µ message

µ(xi) = P(xi | E+)

– λ message

λ(xi) = P(E− | xi)

Inference | Bayesian networks 4-15

Belief propagation

bottom-up propagation

λ(xi) = P(E− | xi) =
∏
k

P(E
(k)
− | xi)

• E
(k)
− : evidence coming from the tree rooted in the kth child Y (k) of X

P(E
(k)
− | xi) =

∑
y(k)∈Y (k)

P(E
(k)
− | xi, y(k))P(y(k) | xi)

=
∑

y(k)∈Y (k)

P(E
(k)
− | y(k))P(y(k) | xi)

=
∑

y(k)∈Y (k)

λ(y(k))P(y(k) | xi)

W

Y (1) Y (2)

X
λ(Y (1)) λ(Y (2))

λ(X)

Inference | Bayesian networks 4-16

Belief propagation

top-down propagation

µ(xi) = P(xi | E+) =
∑
w∈W

P(xi | E+, w)P(w | E+) =
∑
w∈W

P(xi | w)P(w | E+)

• W = pa(X): the parent node of X

P(w | E+) =
1

Z
µ(w)

∏
E

(k)
W− ̸=E−

P(E
(k)
W− | w)

=
1

Z
µ(w)

∏
X(k) ̸=X

∑
x(k)∈X(k)

λ(x(k))P(x(k) | w)

• X(k): the kth child of W

• E
(k)
W−: the evidence coming from the tree rooted in X(k)

W

Y (1) Y (2)

X
µ(X) µ(X)

µ(W)

Inference | Bayesian networks 4-17

Belief propagation

example

1. bottom-up propagation:

• initial conditions: λ(E) = (1, 0), λ(F) = (1, 1)

λ(D) =

[
1

0

]T [
0.9 0.5

0.1 0.5

]
⊙

[
1

1

]T [
0.7 0.4

0.3 0.6

]

=

[
0.9

0.5

]
⊙

[
1

1

]
=

[
0.9

0.5

]

λ(C) =

[
0.9

0.5

]T [
0.9 0.7

0.1 0.3

]
=

[
0.86

0.78

]

C

D

E F

c1 c2

0.8 0.2

c1 c2

d1 0.9 0.7

d2 0.1 0.3

d1 d2

e1 0.9 0.5

e2 0.1 0.5

d1 d2

f1 0.7 0.4

f2 0.3 0.6

• evidence: E = e1

Inference | Bayesian networks 4-18

Belief propagation

2. top-down propagation

• initial condition: µ(C) = (0.8, 0.2)

µ(D) =

[
0.8

0.2

]T [
0.9 0.1

0.7 0.3

]
=

[
0.86

0.14

]

µ(F) =

[
0.86

0.14

]
⊙

[
1

0

]T [
0.9 0.5

0.1 0.5

]T [
0.7 0.3

0.4 0.6

]

=

[
0.57

0.27

]

C

D

E F

c1 c2

0.8 0.2

c1 c2

d1 0.9 0.7

d2 0.1 0.3

d1 d2

e1 0.9 0.5

e2 0.1 0.5

d1 d2

f1 0.7 0.4

f2 0.3 0.6

• evidence: E = e1

Inference | Bayesian networks 4-19

Belief propagation

3. obtain the posterior probabilities

P(C) =
1

Z

[
0.8

0.2

]
⊙

[
0.86

0.78

]
=

1

Z

[
0.69

0.16

]
=

[
0.81

0.19

]

P(D) =
1

Z

[
0.86

0.14

]
⊙

[
0.9

0.5

]
=

1

Z

[
0.77

0.07

]
=

[
0.92

0.08

]

P(F) =
1

Z

[
0.57

0.27

]
⊙

[
1

1

]
=

1

Z

[
0.57

0.27

]
=

[
0.68

0.32

]

C

D

E F

c1 c2

0.8 0.2

c1 c2

d1 0.9 0.7

d2 0.1 0.3

d1 d2

e1 0.9 0.5

e2 0.1 0.5

d1 d2

f1 0.7 0.4

f2 0.3 0.6

• evidence: E = e1

Inference | Bayesian networks 4-20

Variable elimination

given a Bayesian network representing the joint probability distribution

X = {X1, . . . , Xn} = {XH ∪XE ∪XR}

• XH : variables to calculate the posterior probability

• XE : evidence variables

• XR: remaining variables

P(XH | XE) =
P(XH , XE)

P(XE)

P(XH , XE) =
∑
XR

P(X) and P(XE) =
∑
XH

P(XH , XE)

Inference | Bayesian networks 4-21

Variable elimination

example

A

B C

D E

P(A,D) =
∑
B

∑
C

∑
E

P(A,B,C,D,E)

=
∑
B

∑
C

∑
E

P(A)P(B | A)P(C | A)P(D | B,C)P(E | C)

= P(A)
∑
B

[
P(B | A)

∑
C

[
P(C | A)P(D | B,C)

∑
E

P(E | C)

]]
Inference | Bayesian networks 4-22

Variable elimination

interaction graph

• heuristic for selecting a good elimination order

• obtaining interaction graphs through elimination:

– eliminate the direction of the arcs from the original
Bayesian network, and add additional arcs between
each pair of non-connected variables having
common children

– each time a variable Xj is eliminated, the
interaction graph is modified by adding an arc
between each pair of neighbors of Xj that are not
connected, and deleting variable Xj from the graph

A

B C

D E

A

B C

D

A

B C

A

B

A

E

D

CB

Inference | Bayesian networks 4-23

Variable elimination

• min-degree elimination: eliminate the variable with the smallest number of neighbors in
the current interaction graph

• min-fill elimination: eliminate the variable that leads to adding the minimum number of
edges to the interaction graph

Inference | Bayesian networks 4-24

Conditioning

idea: instantiated variables block the propagation of the evidence in a Bayesian network

• cut the graph at instantiated variables, transform a multi-connected graph into a polytree

• apply the belief propagation algorithm

• if the variables to instantiate are unknown, set them to each of their possible values, and
then do propagation for each value

• the posterior probabilities for unknown variables are then a weighted combination of the
probabilities from each propagation

Inference | Bayesian networks 4-25

Conditioning

suppose instantiating variable A transforms the multi-connected
Bayesian network to a polytree

P(X | E) =
∑
a∈A

P(X | E, a)P(a | E)

• P(X | E, a): posterior probability of X obtained from belief
propagation for each a ∈ A

• P(a | E): combination weight

A′

B C

D E

A′′

P(a | E) =
1

Z
P(a)P(E | a)

• 1
Z : normalization constant

• P(a): obtained from belief propagation without evidence

• P(E | a): probability of evidence variables obtained from propagation with A = a

Inference | Bayesian networks 4-26

Graph theory background for junction tree algorithm

• G is a complete graph if there is an edge between each pair of nodes

• complete set of G is a set that induces a complete subgraph of G

• clique C is a subset of graph G that is a maximal complete set (there is no other
complete set in G that contains C)

1

2 3

4 5

C1

C2

C3

Inference | Bayesian networks 4-27

Graph theory background for junction tree algorithm

ordering

given graph G = (V,E) with n nodes

• ordering α assigns a label to each node

α = (V1, . . . , Vn)

• Vi is before Vj according to the ordering if i < j

• an ordering α of G is a perfect ordering if

adj(Vi) ∩ {V1, . . . , Vi−1}

is a complete subgraph of G for all Vi

1

2 3

4 5

C1

C2

C3

Inference | Bayesian networks 4-28

Graph theory background for junction tree algorithm

running intersection property

given graph G = (V,E) with m cliques

• ordering β assigns a label to each clique

β = (C1, . . . , Cm)

• an ordering β has the running intersection property
if for every Ci with i > 1, there exists some Cj with
j < i such that

Ci ∩ {C1, . . . , Ci−1} ⊆ Cj

– Cj : the parent of Ci

1

2 3

4 5

C1

C2

C3

Inference | Bayesian networks 4-29

Graph theory background for junction tree algorithm

• chord is an edge that connects two of the nodes in a circuit but is not part of the circuit

1

2 3

4 5

C1

C2

C3

– the circuit 1→ 2→ 4→ 3→ 1 has a chord that connects nodes 2 and 3

• G is triangulated if every simple circuit of length greater than three in G has a chord

Inference | Bayesian networks 4-30

Graph theory background for junction tree algorithm

maximum cardinality search

• finding a perfect ordering of triangulated graphs

given triangulated graph G = (V,E) with n nodes.
1. Assign index 1 to any node from V .
repeat

2. Assign the next index to one non-indexed node
with the highest number of adjacent indexed nodes.
until all nodes are numbered.

1

2 3

4 5

C1

C2

C3

Inference | Bayesian networks 4-31

Graph theory background for junction tree algorithm

given a perfect ordering, the following process orders the
cliques of G that has the running intersection property:

given perfectly ordered, triangulated graph G = (V,E)
with m cliques.
1. Assign index m to the clique that has the node with
the highest index.
repeat

2. Assign indexm−1 to one non-indexed clique that
includes the next highest indexed node.
until all cliques are numbered.

1

2 3

4 5

C1

C2

C3

Inference | Bayesian networks 4-32

Junction tree algorithm

idea: transform Bayesian network to singly connected graph via clustering of nodes

process: transformation + belief propagation

transformation

1. Eliminate the directionality of the arcs.

2. Moralize the graph by adding an arc between pairs of nodes with common children, and
add additional arcs if necessary to make the graph triangulated.

3. Order the nodes in the graph with maximum cardinality search.

4. Obtain and order the cliques of the graph such that the order satisfies the running
intersection property.

5. Build a junction tree according to the clique ordering.

Inference | Bayesian networks 4-33

Junction tree algorithm

example

A

B C

D E

1

2 3

4 5

1, 2, 3

2, 3

2, 3, 4

3

3, 5

Inference | Bayesian networks 4-34

Junction tree algorithm

preprocessing

1. Determine the set of variables for each clique Ci.

2. Determine the set of variables that are shared with the previous (parent) clique Si.

3. Determine the set of other variables Ri that are in Ci but not in Si.

4. Calculate the potential of each clique as ψ(Ci) =
∏

X∈Ri
P(X | pa(X)).

Inference | Bayesian networks 4-35

Junction tree algorithm

bottom-up propagation

1. Start from the leaf clique, calculate the λ message to send to the parent clique:
λ(Ci) =

∑
Ri
ψ(Ci).

2. Update the potential of each clique with the λ messages from its children:
ψ′(Cj) = λ(Ci)ψ(Cj).

3. Repeat the previous two steps until reaching the root clique, and obtain
P(Croot) = ψ′(Croot).

Inference | Bayesian networks 4-36

Junction tree algorithm

top-down propagation

1. Start from the root clique, calculate the µ message to send to each child node Ci by its
parent Cj : µ(Ci) =

∑
Cj−Si

P(Cj).

2. Update the potential of each clique when receiving the µ message from its parent and

obtain: P(Ci) = ψ′(Ci)
µ(Ci)
λ(Ci)

.

3. Repeat the previous two steps until reaching the leaf nodes in the junction tree.

• after belief propagation, each clique has the joint marginal probability of the variables that
conform it

• the marginal posterior probabilities of each variable can be obtained from the clique via
marginalization

Inference | Bayesian networks 4-37

Junction tree algorithm

example

A

B C

D E

1

2 3

4 5

1, 2, 3

2, 3

2, 3, 4

3

3, 5

1. preprocessing:

C1 = {A,B,C} C2 = {B,C,D} C3 = {C,E}
S1 = ∅ S2 = {B,C} S3 = {C}
R1 = {A,B,C} R2 = {D} R3 = {E}
ψ(C1) = P(A)P(B | A)P(C | A) ψ(C2) = P(D | B,C) ψ(C3) = P(E | C)

Inference | Bayesian networks 4-38

Junction tree algorithm

2. bottom-up propagation:

λ(C3) =
∑
E

ψ(C3) =
∑
E

P(E | C)

ψ′(C2) = ψ(C2)λ(C3) = P(D | B,C)
∑
E

P(E | C)

λ(C2) =
∑
D

ψ′(C2) =
∑
D

P(D | B,C)
∑
E

P(E | C)

ψ′(C1) = ψ(C1)λ(C2)

= P(A)P(B | A)P(C | A)
∑
D

P(D | B,C)
∑
E

P(E | C)

A

B C

D E

1

2 3

4 5

1, 2, 3

2, 3

2, 3, 4

3

3, 5

Inference | Bayesian networks 4-39

Junction tree algorithm

P(C1) = ψ′(C1)

= P(A)P(B | A)P(C | A)
∑
D

P(D | B,C)
∑
E

P(E | C)

=
∑
D,E

P(A)P(B | A)P(C | A)P(D | B,C)P(E | C)

=
∑
D,E

P(A,B,C,D,E)

= P(A,B,C)

A

B C

D E

1

2 3

4 5

1, 2, 3

2, 3

2, 3, 4

3

3, 5

Inference | Bayesian networks 4-40

Junction tree algorithm

3. top-down propagation

µ(C2) =
∑

C1−S2

P(C1) =
∑
A

P(A,B,C)

P(C2) = ψ′(C2)
µ(C2)

λ(C2)

=
P(D | B,C)

∑
E P(E | C)

∑
A P(A,B,C)∑

D P(D | B,C)
∑

E P(E | C)
= P(D | B,C)P(B,C)

= P(B,C,D)

A

B C

D E

1

2 3

4 5

1, 2, 3

2, 3

2, 3, 4

3

3, 5

Inference | Bayesian networks 4-41

Junction tree algorithm

µ(C3) =
∑

C2−S3

P(C2) =
∑
B,D

P(B,C,D)

P(C3) = ψ′(C3)
µ(C3)

λ(C3)

=
P(E | C)

∑
B,D P(B,C,D)∑

E P(E | C)
= P(E | C)P(C)

= P(C,E)

A

B C

D E

1

2 3

4 5

1, 2, 3

2, 3

2, 3, 4

3

3, 5

Inference | Bayesian networks 4-42

Junction tree algorithm

4. marginalization

P(A) =
∑

B,C P(C1)

P(B) =
∑

A,C P(C1)

P(C) =
∑

A,B P(C1)

P(D) =
∑

B,C P(C2)

P(E) =
∑

C P(C3)

A

B C

D E

1

2 3

4 5

1, 2, 3

2, 3

2, 3, 4

3

3, 5

Inference | Bayesian networks 4-43

Sampling based methods

idea

• simulate the Bayesian network several times

• posterior probabilities of unknown variables are approximated by the frequency of each
value in the sample space

• estimation accuracy depends on the number of samples

• computational cost is not affected by the complexity of the network

Inference | Bayesian networks 4-44

Sampling based methods

logic sampling

1. Generate sample values for all root nodes of the Bayesian network according to their prior
probabilities P(X).

2. Generate samples for the children of the sampled nodes, according to their conditional
probabilities P(X | pa(X)).

3. Repeat the second step until all leaf nodes are reached.

P(X = xk) =
1

n

n∑
i=1

Ixk
(xi)

• Ixk
(xi) = 1 if xk = xi, and 0 otherwise

• if there is evidence, all samples that are not consistent with the evidence are discarded

Inference | Bayesian networks 4-45

Sampling based methods

likelihood weighting

• generate weights for all samples instead of discarding the non-consistent ones

given non-instantiated nodes H and evidence E, calculate weight for each sample i:

wi = P(E | Hi)

then the posterior probability of possible values of each variable is estimated as a weighted
average over all n samples:

P(X = xk) =

∑n
i=1 wiIxk

(xi)∑n
i=1 wi

Inference | Bayesian networks 4-46

Outline

• Representation

• Inference

• Parameter learning

• Structure learning

Parameter learning | Bayesian networks 4-47

Parameter learning

objective

• given the network structure

• estimating the conditional probability tables from data

example: estimate the conditional probability table for variable C with two parents A and B
given the observed n samples

P(C = ck | A = ai, B = bj) =

∑n
i′=1 Iai,bj ,ck(ai′ , bi′ , ci′)∑n

i′=1 Iai,bj (ai′ , bi′)

• I is the indicator function

• useful only if the dataset is ‘good’

Parameter learning | Bayesian networks 4-48

Smoothing

objective: dealing with non-observed events, which leads to zero probability value

idea: estimate the posterior distribution of the parameters given some priors

uniform prior (additive smoothing)

given m-valued discrete variable X, and a dataset with n samples

P(xi) =
α+

∑n
i′=1 Ixi

(xi′)

αm+ n
, i = 1, . . . ,m

• with no observed sample:

P(xi) =
1

m
, i = 1, . . . ,m

• parameter estimation converges to the true data distribution with n→∞:

lim
n→∞

P(xi) = lim
n→∞

α+
∑n

i′=1 Ixi
(xi′)

αm+ n
=

∑n
i′=1 Ixi

(xi′)

n
, i = 1, . . . ,m

Parameter learning | Bayesian networks 4-49

Smoothing

Beta prior

for random variable X ∼ Beta(α, β):

EBeta(α,β)[X] = P(X = 1 | α, β) = α

α+ β

given binary variable X, and a dataset with n samples

P(X = 1) =
α+

∑n
i′=1 I1(xi′)

α+ β + n

• P(X = 0) = 1−P(X = 1)

• (α, β): shape parameters

– α
α+β

: expert’s prior for X = 1

– α+ β: confidence about the prior

Parameter learning | Bayesian networks 4-50

Smoothing

example

• prior: EBeta(α,β)[X] = 0.7

• dataset: 40 positive cases among 100 samples

parameter estimation for different confidences:

• low confidence (α+ β = 10): P(X = 1) = 7+40
10+100 = 0.43

• medium confidence (α+ β = 100): P(X = 1) = 70+40
100+100 = 0.55

• high confidence (α+ β = 1000): P(X = 1) = 700+40
1000+100 = 0.67

Parameter learning | Bayesian networks 4-51

Smoothing

Dirichlet prior: extending the Beta prior to m-valued random variables

for m-dimensional random vector X ∼ Dir(α):

EDir(α)[Xi] = P(xi | α) =
αi

αT1
, i = 1, . . . ,m

given m-valued variable X, and a dataset with n samples

P(xi) =
αi +

∑n
i′=1 Ixi

(xi′)

αT1+ n
, i = 1, . . . ,m

• α ∈ Rm: shape parameters

– αi

αT 1
: expert’s prior for X = xi

– αT1: confidence about the prior

Parameter learning | Bayesian networks 4-52

Missing data

missing values for one or more variables in some samples:
• remove all the samples with missing values

– acceptable only if there is sufficient data

• substitute the missing value by the most common value of that variable

– may bias the model since the information from the other variables is not taken into account

• estimate the missing value based on the other variables in the corresponding sample:

1. Learn Bayesian network network parameters based on the samples with complete observations.

2. For each sample with missing values:

2.1 Instantiate all the known variables in the sample.

2.2 Through probabilistic inference obtain the posterior probabilities of the missing variables.

2.3 Assign to each unknown variable the value with highest posterior probability, or sample one
value according to the posterior probability.

2.4 Add this completed sample to the database.

3. Re-estimate the model parameters based on the completed dataset.

Parameter learning | Bayesian networks 4-53

Missing data

hidden nodes: a variable or set of variables in the model cannot be observed

• expectation-maximization (EM) algorithm

1. Initializing the missing parameters with random values.

2. E-step: the missing data values are estimated based on the current parameters.

3. M-step: the parameters are updated based on the estimated data.

4. Repeat the last two steps until convergence.

Parameter learning | Bayesian networks 4-54

Discretization

unsupervised discretization

• equal width:
– dividing the range of a variable into k equal bins

– each bin has a size of sup(X)−inf(X)
k

• equal data:
– dividing (sup(X), inf(X)) into k intervals with each having the same number of data points

– the intervals not necessarily have the same width

supervised discretization

• variables are discretized to optimize this task

• determine the optimal partition of (inf(X), sup(X)) w.r.t. some score function (accuracy,
likelihood, etc.)

• solve a combinatorial optimization problem using hill-climbing, simulated annealing,
genetic algorithms, etc.

Parameter learning | Bayesian networks 4-55

Outline

• Representation

• Inference

• Parameter learning

• Structure learning

Structure learning | Bayesian networks 4-56

Tree learning

• dependencies between random variables can be represented with a tree-structure

• procedure:

– establishing undirected edges between variables (tree skeleton learning)

– determining the direction of the edges

Structure learning | Bayesian networks 4-57

Tree learning

skeleton learning: Chow-Liu procedure (CLP)

given a set of random variables X = {X1, . . . , Xn}

DKL(P, P̃) =
∑
x∈X

P(x) log

(
P(x)

P̃(x)

)

• approximation error of the joint distribution of X by a tree-structure

• DKL: KL-divergence measure

• P(x): true distribution

• P̃(x): distribution obtained from some tree including variables X

• evaluating the KL-divergence for all possible trees is very expensive

Structure learning | Bayesian networks 4-58

Tree learning

• mutual information between any pair of variables Xi, Xj ∈ X:

I(Xi, Xj) =
∑

xi∈Xi,xj∈Xj

P(xi, xj) log

(
P(xi, xj)

P(xi)P(xj)

)

• given tree G = (X,E), the sum of the mutual information of the edges:

W (X) =
∑

(Xi,Xj)∈E

I(Xi, Xj) =

n−1∑
i=1

I(Xi,pa(Xi))

– minimizing DKL(P, P̃) is equivalent to maximizing W (X) over E

Structure learning | Bayesian networks 4-59

Tree learning

Chow-Liu procedure (CLP)

1. Obtain the mutual information I(Xi, Xj) for all pairs of variables Xi ∈ X, Xj ∈ X.

2. Order the mutual information values in descending order.

3. Select the pair (Xi, Xj) with maximum I(Xi, Xj) and connect the two variables with an
edge, this constitutes the initial tree.

4. Add the pair with the next highest mutual information to the tree if they do not make a
cycle, otherwise skip it and continue with the following pair.

5. Repeat the previous step until all the variables are in the tree.

Structure learning | Bayesian networks 4-60

Tree learning

direction learning

• based on independence tests on variable triplets

• given three variables X, Y , and Z, there are three possibilities for their dependency:

– sequential: X → Y → Z

– divergent: X ← Y → Z

– convergent: X → Y ← Z

• (X ⊥⊥ Z | Y) =⇒ X → Y → Z or X ← Y → Z (indistinguishable)

• (X /⊥⊥ Z | Y) =⇒ X → Y ← Z (used for edge direction assignment)

Structure learning | Bayesian networks 4-61

Tree learning

1. Iterate over the network until a convergent variable triplet is found. We will call the
variable to which the arcs converge a multi-parent node.

2. Starting with a multi-parent node, determine the directions of other arcs using
independence tests for variable triplets. Continue this procedure until it is no longer
possible.

3. Repeat the first two steps until no other directions can be determined.

• no guarantee that the direction for all the arcs in the tree can be obtained

• external semantics can be used to infer the directions of the left undirected edges

Structure learning | Bayesian networks 4-62

Tree learning

example

X1

X2 X3 X4

X5

X1

X2 X3 X4

X5

X1

X2 X3 X4

X5

X1

X2 X3 X4

X5

• test for {X1, X2, X4}: (X2 /⊥⊥ X4 | X1) =⇒ X2 → X1 ← X4

• test for {X1, X2, X3} and {X1, X3, X4}:
– (X2 ⊥⊥ X3 | X1), (X3 ⊥⊥ X4 | X1) =⇒ X1 → X3

– otherwise, X1 ← X3

• test for {X1, X3, X5}, the same as above

Structure learning | Bayesian networks 4-63

Score-based methods

idea

• structure learning as combinatorial optimization w.r.t. some score function S

• generally NP-hard

• heuristic methods: hill-climbing, simulated annealing, genetic algorithms

likelihood score
given observed dataset D, graph G and its parameters θG:

SLL(G) = lD(θG) = logP(D | θG, G)

• lD(θG): log-likelihood of dataset D parameterized by θG

• find network structure by maximum likelihood estimation (MLE)

– may result in overfitting

Structure learning | Bayesian networks 4-64

Score-based methods

obtain the posterior probability of the structure given the data with the Bayes rule

P(G | D) = P(D | G)P(G)

P(D)

• P(D): normalization factor

Bayesian score

SB(G) = logP(D | G) + logP(G)

• P(G): prior over network structures

Structure learning | Bayesian networks 4-65

Score-based methods

• P(D | G): marginal likelihood of the data

P(D | G) =
∫
θG

P(D | θG, G)P(θG | G) dθG

– P(D | θG, G): likelihood of the data given the network G and its parameter θG

– P(θG | G): prior distribution over different parameter values for the network G

• find network structure by marginal likelihood maximization

– measuring the expected likelihood, averaged over different possible choices of θG, instead of
the maximum (most optimistic) likelihood

– more conservative in the estimation of the goodness of the mode, avoid overfitting

Structure learning | Bayesian networks 4-66

Score-based methods

example: Bayesian information criterion (BIC)

• Dirichlet parameter prior for all parameters in the network

• number of samples n→∞

SBIC(G) = lD(θG)−
k

2
log n

= logP(D | θG, G)−
k

2
log n

• k: number of parameters in the network

• n: number of samples in the dataset

• trade off fit to data with model complexity

Structure learning | Bayesian networks 4-67

PC algorithm

idea

• first recovers the skeleton of the network, then determines the direction of the edges

• both steps are based on independence tests

1. Establish a fully connected undirected graph between all variables.

2. For each pair of variables, determines their conditional independence given some subset of
the other variables. Eliminate the edge between this pair of variables if the independence
measure is below some threshold value.

3. Determine the direction of the network skeleton based on independence tests for variable
triplets.

Structure learning | Bayesian networks 4-68

	Representation
	Inference
	Parameter learning
	Structure learning

