# **Probabilistic Graphical Models**

Prof. Joschka Boedecker and Hao Zhu

Department of Computer Science University of Freiburg

universität freiburg

# 2. Bayesian classifiers

Probabilistic classification
 Probabilistic classification problems
 Naive Bayesian classifiers
 Augmented Bayesian classifiers
 Semi-naive Bayesian classifiers

Multi-label classification
 Multi-dimensional classification problems
 Basic approaches
 Chain classifiers

### **Outline**

- Probabilistic classification
   Probabilistic classification problems
   Naive Bayesian classifiers
   Augmented Bayesian classifiers
   Semi-naive Bayesian classifiers
- Multi-label classification
   Multi-dimensional classification problems
   Basic approaches
   Chain classifiers

## Probabilistic classification problems

given a set of samples X and a set of class labels Y ( $\mathbf{dom}(Y) \subseteq \mathbf{Z}_+$ )

- ullet 'ordinary' classifier:  $f\colon X \to Y$
- probabilistic classifier:

$$f(x) = (\ldots, \mathbf{P}(y_i \mid x), \ldots), \quad i = 1, \ldots, \mathbf{card}(Y)$$

$$-f(x)^T \mathbf{1} = 1$$

$$- \hat{y} = \operatorname{argmax}_{y} \mathbf{P}(y \mid x)$$

## Probabilistic classification problems

### Bayesian approach

$$\mathbf{P}(y \mid x) = \frac{\mathbf{P}(x \mid y)\mathbf{P}(y)}{\mathbf{P}(x)}$$

- P(x): normalizing constant independent of labels
- P(y): prior on class labels
- $P(x \mid y)$ : likelihood of sample x under label y

$$\mathbf{P}(x \mid y) = \mathbf{P}(x_1, \dots, x_n \mid y)$$
  
= 
$$\mathbf{P}(x_1 \mid y)\mathbf{P}(x_2 \mid x_1, y) \cdots \mathbf{P}(x_n \mid x_{n-1}, \dots, x_1, y)$$

- can be difficult to calculate

# Naive Bayesian classifiers

**assumption**:  $x_1, \ldots, x_n$  are independent given y

$$\mathbf{P}(y \mid x) = \frac{\mathbf{P}(x \mid y)\mathbf{P}(y)}{\mathbf{P}(x)} \propto \mathbf{P}(y)\mathbf{P}(x_1, \dots, x_n \mid y) = \mathbf{P}(y) \prod_{i=1}^n \mathbf{P}(x_i \mid y)$$

### parameter learning

• prior  $\mathbf{P}(y)$ :

$$\mathbf{P}(y_i) = \frac{1}{\mathbf{card}(Y)}$$
 or  $\mathbf{P}(y_i) = \frac{\# \text{ samples in class } y_i}{\# \text{ samples in total}}$ 

• likelihood  $P(x \mid y)$ :

$$\mathbf{P}(x_k \mid y_i) = \frac{\text{\# samples in class } y_i \text{ with feature } x_k}{\text{\# samples in class } y_i}$$

for all  $k = 1, \ldots, n, y_i \in Y$ 

## Naive Bayesian classifiers

### handling continuous features: Gaussian naive Bayes

$$p(x_k \mid y_i) = \frac{1}{\sqrt{2\pi}\sigma_{k|y_i}} \exp\left(-\frac{(x_k - \mu_{k|y_i})^2}{2\sigma_{k|y_i}^2}\right), \quad k = 1, \dots, n$$

- $\mu_{k|y_i} = \mathbf{E}[X_k \mid y_i], \ k = 1, \dots, n$
- $\sigma_{k|y_i} = \sqrt{\mathbf{var}(X_k \mid y_i)} = \sqrt{\mathbf{E}\left[\left(X_k \mathbf{E}[X_k \mid y_i]\right)^2 \mid y_i\right]}, k = 1, \dots, n$
- $\mathbf{P}(x_k \mid y_i) \propto p(x_k \mid y_i)$

## **Augmented Bayesian classifiers**

**assumption**: some dependency structure (tree, DAG, ...) exists between  $x_1, \ldots, x_n$  given y



tree augmented Bayesian classifiers



Bayesian network augmented Bayesian classifiers

### parameter learning

$$\mathbf{P}(x \mid y) = \mathbf{P}(x_1, \dots, x_n \mid y) = \prod_{i=1}^n \mathbf{P}(x_i \mid \mathbf{pa}(x_i), y)$$

### Semi-naive Bayesian classifiers

**basic idea**: naive Bayes + feature selection

• eliminate or join interdependent features given the class label

#### feature selection metrics

• local measure: e.g., mutual information

• global measure: e.g., performance of the classifier with and without the feature

#### model structure learning process

• bottom-up: start from an empty structure and add features

• top-down: from a full structure with all the features and eliminate (or combine) features

parameter learning: the same as naive Bayesian classifiers

## Semi-naive Bayesian classifiers

example: top-down structure learning



### **Outline**

- Probabilistic classification
   Probabilistic classification problems
   Naive Bayesian classifiers
   Augmented Bayesian classifiers
   Semi-naive Bayesian classifiers
- Multi-label classification
   Multi-dimensional classification problems
   Basic approaches
   Chain classifiers

# Multi-dimensional classification problems

given a set of samples X and a set of class labels Y ( $\mathbf{dom}(Y) \subseteq \mathbf{Z}_+^m$ ) probabilistic classifier f:

$$f(x) = (\ldots, \mathbf{P}(y \mid x), \ldots) = (\ldots, \mathbf{P}(y_1, \ldots, y_m \mid x), \ldots)$$

- $\bullet$   $y \in Y$  is a m-dimensional vector
- $\bullet \ f(x)^T \mathbf{1} = 1$
- $\hat{y} = \operatorname{argmax}_{y} \mathbf{P}(y \mid x)$

multi-label classification:  $dom(Y_i) = \{0, 1\}, i = 1, \dots, m$ 

### **Basic approaches**

#### binary relevance

- assumption: no dependencies between all pairs of classes
- ullet solve m independent binary classification problems
- ullet a classifier is independently learnt for each class  $Y_1,\ldots,Y_m$
- ullet final prediction is a simple concatenation of results from all classifier,  $\hat{y}=(\hat{y}_1,\ldots,\hat{y}_m)$

### label power-set

- basic idea: transform multi-label classification to single-class scenario
- define a mapping  $g \colon Y \to Y'$  from  $\operatorname{\mathbf{dom}}(Y) \subseteq \mathbf{Z}_+^m$  to  $\operatorname{\mathbf{dom}}(Y') \subseteq \mathbf{Z}_+$
- ullet learn a single-class classifier on Y' given X
- interactions between classes are implicitly considered
- $\bullet$  card(Y') increases exponentially w.r.t. m

basic idea: generalize the binary relevance approach to considering some dependencies between classes

- m binary classifiers  $(f_1,\ldots,f_m)$  linked in a chain, each corresponding to one class
- ullet the predictions  $\hat{y}_1,\ldots,\hat{y}_{i-1}$  from  $f_1,\ldots,f_{i-1}$  is incorporated into the features of  $f_i$

$$\hat{y}_1 = \operatorname{argmax}_{y_1} \mathbf{P}(y_1 \mid x)$$

$$\hat{y}_i = \operatorname{argmax}_{y_i} \mathbf{P}(y_i \mid x, \hat{y}_1, \dots, \hat{y}_{i-1}), \quad i = 2, \dots, m$$

model performance depends on the order of classes in the chain

#### circular chain classifier

- $(f_1, \ldots, f_m)$  are connected in a circular way
- the first cycle:

$$\hat{y}_1 = \operatorname{argmax}_{y_1} \mathbf{P}(y_1 \mid x)$$

$$\hat{y}_i = \operatorname{argmax}_{y_i} \mathbf{P}(y_i \mid x, \hat{y}_1, \dots, \hat{y}_{i-1}), \quad i = 2, \dots, m$$

• from the second cycle:

$$\hat{y}_i = \underset{y_i}{\operatorname{argmax}} \mathbf{P}(y_i \mid x, \hat{y}_{-i}), \quad i = 1, \dots, m$$

each binary classifier in the chain receives the predictions of all other classifiers as additional feature

repeated for a prefixed number of cycles or until convergence

### Bayesian chain classifier

• connection between  $(f_1, \ldots, f_m)$  represented as a DAG

$$\mathbf{P}(y \mid x) = \mathbf{P}(y_1, \dots, y_m \mid x) = \prod_{i=1}^m \mathbf{P}(y_i \mid \mathbf{pa}(y_i), x)$$

• to get final prediction  $\hat{y}$ , approximate the hard combinatorial optimization problem

maximize (over 
$$y$$
)  $\prod_{i=1}^{m} \mathbf{P}(y_i \mid \mathbf{pa}(y_i), x)$ 

with a sequence of independent optimization problems

maximize (over 
$$y_i$$
)  $\mathbf{P}(y_i \mid \mathbf{pa}(y_i), x)$ 

for all 
$$i = 1, \ldots, m$$

### example



