Probabilistic Graphical Models

Prof. Joschka Boedecker and Hao Zhu

Department of Computer Science University of Freiburg

universität freiburg

2. Bayesian classifiers

Probabilistic classification
 Probabilistic classification problems
 Naive Bayesian classifiers
 Augmented Bayesian classifiers
 Semi-naive Bayesian classifiers

Multi-label classification
 Multi-dimensional classification problems
 Basic approaches
 Chain classifiers

Outline

- Probabilistic classification
 Probabilistic classification problems
 Naive Bayesian classifiers
 Augmented Bayesian classifiers
 Semi-naive Bayesian classifiers
- Multi-label classification
 Multi-dimensional classification problems
 Basic approaches
 Chain classifiers

Probabilistic classification problems

given a set of samples X and a set of class labels Y ($\mathbf{dom}(Y) \subseteq \mathbf{Z}_+$)

- ullet 'ordinary' classifier: $f\colon X \to Y$
- probabilistic classifier:

$$f(x) = (\ldots, \mathbf{P}(y_i \mid x), \ldots), \quad i = 1, \ldots, \mathbf{card}(Y)$$

$$-f(x)^T \mathbf{1} = 1$$

$$- \hat{y} = \operatorname{argmax}_{y} \mathbf{P}(y \mid x)$$

Probabilistic classification problems

Bayesian approach

$$\mathbf{P}(y \mid x) = \frac{\mathbf{P}(x \mid y)\mathbf{P}(y)}{\mathbf{P}(x)}$$

- P(x): normalizing constant independent of labels
- P(y): prior on class labels
- $P(x \mid y)$: likelihood of sample x under label y

$$\mathbf{P}(x \mid y) = \mathbf{P}(x_1, \dots, x_n \mid y)$$

=
$$\mathbf{P}(x_1 \mid y)\mathbf{P}(x_2 \mid x_1, y) \cdots \mathbf{P}(x_n \mid x_{n-1}, \dots, x_1, y)$$

- can be difficult to calculate

Naive Bayesian classifiers

assumption: x_1, \ldots, x_n are independent given y

$$\mathbf{P}(y \mid x) = \frac{\mathbf{P}(x \mid y)\mathbf{P}(y)}{\mathbf{P}(x)} \propto \mathbf{P}(y)\mathbf{P}(x_1, \dots, x_n \mid y) = \mathbf{P}(y) \prod_{i=1}^n \mathbf{P}(x_i \mid y)$$

parameter learning

• prior $\mathbf{P}(y)$:

$$\mathbf{P}(y_i) = \frac{1}{\mathbf{card}(Y)}$$
 or $\mathbf{P}(y_i) = \frac{\# \text{ samples in class } y_i}{\# \text{ samples in total}}$

• likelihood $P(x \mid y)$:

$$\mathbf{P}(x_k \mid y_i) = \frac{\text{\# samples in class } y_i \text{ with feature } x_k}{\text{\# samples in class } y_i}$$

for all $k = 1, \ldots, n, y_i \in Y$

Naive Bayesian classifiers

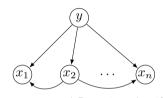
handling continuous features: Gaussian naive Bayes

$$p(x_k \mid y_i) = \frac{1}{\sqrt{2\pi}\sigma_{k|y_i}} \exp\left(-\frac{(x_k - \mu_{k|y_i})^2}{2\sigma_{k|y_i}^2}\right), \quad k = 1, \dots, n$$

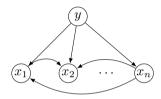
- $\mu_{k|y_i} = \mathbf{E}[X_k \mid y_i], \ k = 1, \dots, n$
- $\sigma_{k|y_i} = \sqrt{\mathbf{var}(X_k \mid y_i)} = \sqrt{\mathbf{E}\left[\left(X_k \mathbf{E}[X_k \mid y_i]\right)^2 \mid y_i\right]}, k = 1, \dots, n$
- $\mathbf{P}(x_k \mid y_i) \propto p(x_k \mid y_i)$

Augmented Bayesian classifiers

assumption: some dependency structure (tree, DAG, ...) exists between x_1, \ldots, x_n given y



tree augmented Bayesian classifiers



Bayesian network augmented Bayesian classifiers

parameter learning

$$\mathbf{P}(x \mid y) = \mathbf{P}(x_1, \dots, x_n \mid y) = \prod_{i=1}^n \mathbf{P}(x_i \mid \mathbf{pa}(x_i), y)$$

Semi-naive Bayesian classifiers

basic idea: naive Bayes + feature selection

• eliminate or join interdependent features given the class label

feature selection metrics

• local measure: e.g., mutual information

• global measure: e.g., performance of the classifier with and without the feature

model structure learning process

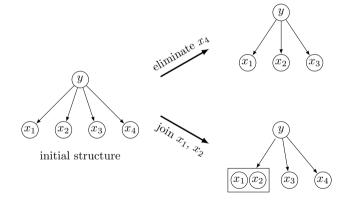
• bottom-up: start from an empty structure and add features

• top-down: from a full structure with all the features and eliminate (or combine) features

parameter learning: the same as naive Bayesian classifiers

Semi-naive Bayesian classifiers

example: top-down structure learning



Outline

- Probabilistic classification
 Probabilistic classification problems
 Naive Bayesian classifiers
 Augmented Bayesian classifiers
 Semi-naive Bayesian classifiers
- Multi-label classification
 Multi-dimensional classification problems
 Basic approaches
 Chain classifiers

Multi-dimensional classification problems

given a set of samples X and a set of class labels Y ($\mathbf{dom}(Y) \subseteq \mathbf{Z}_+^m$) probabilistic classifier f:

$$f(x) = (\ldots, \mathbf{P}(y \mid x), \ldots) = (\ldots, \mathbf{P}(y_1, \ldots, y_m \mid x), \ldots)$$

- \bullet $y \in Y$ is a m-dimensional vector
- $\bullet \ f(x)^T \mathbf{1} = 1$
- $\hat{y} = \operatorname{argmax}_{y} \mathbf{P}(y \mid x)$

multi-label classification: $dom(Y_i) = \{0, 1\}, i = 1, \dots, m$

Basic approaches

binary relevance

- assumption: no dependencies between all pairs of classes
- ullet solve m independent binary classification problems
- ullet a classifier is independently learnt for each class Y_1,\ldots,Y_m
- ullet final prediction is a simple concatenation of results from all classifier, $\hat{y}=(\hat{y}_1,\ldots,\hat{y}_m)$

label power-set

- basic idea: transform multi-label classification to single-class scenario
- define a mapping $g \colon Y \to Y'$ from $\operatorname{\mathbf{dom}}(Y) \subseteq \mathbf{Z}_+^m$ to $\operatorname{\mathbf{dom}}(Y') \subseteq \mathbf{Z}_+$
- ullet learn a single-class classifier on Y' given X
- interactions between classes are implicitly considered
- \bullet card(Y') increases exponentially w.r.t. m

basic idea: generalize the binary relevance approach to considering some dependencies between classes

- m binary classifiers (f_1,\ldots,f_m) linked in a chain, each corresponding to one class
- ullet the predictions $\hat{y}_1,\ldots,\hat{y}_{i-1}$ from f_1,\ldots,f_{i-1} is incorporated into the features of f_i

$$\hat{y}_1 = \operatorname{argmax}_{y_1} \mathbf{P}(y_1 \mid x)$$

$$\hat{y}_i = \operatorname{argmax}_{y_i} \mathbf{P}(y_i \mid x, \hat{y}_1, \dots, \hat{y}_{i-1}), \quad i = 2, \dots, m$$

model performance depends on the order of classes in the chain

circular chain classifier

- (f_1, \ldots, f_m) are connected in a circular way
- the first cycle:

$$\hat{y}_1 = \operatorname{argmax}_{y_1} \mathbf{P}(y_1 \mid x)$$

$$\hat{y}_i = \operatorname{argmax}_{y_i} \mathbf{P}(y_i \mid x, \hat{y}_1, \dots, \hat{y}_{i-1}), \quad i = 2, \dots, m$$

• from the second cycle:

$$\hat{y}_i = \underset{y_i}{\operatorname{argmax}} \mathbf{P}(y_i \mid x, \hat{y}_{-i}), \quad i = 1, \dots, m$$

each binary classifier in the chain receives the predictions of all other classifiers as additional feature

repeated for a prefixed number of cycles or until convergence

Bayesian chain classifier

• connection between (f_1, \ldots, f_m) represented as a DAG

$$\mathbf{P}(y \mid x) = \mathbf{P}(y_1, \dots, y_m \mid x) = \prod_{i=1}^m \mathbf{P}(y_i \mid \mathbf{pa}(y_i), x)$$

• to get final prediction \hat{y} , approximate the hard combinatorial optimization problem

maximize (over
$$y$$
) $\prod_{i=1}^{m} \mathbf{P}(y_i \mid \mathbf{pa}(y_i), x)$

with a sequence of independent optimization problems

maximize (over
$$y_i$$
) $\mathbf{P}(y_i \mid \mathbf{pa}(y_i), x)$

for all
$$i = 1, \ldots, m$$

example

