
Probabilistic Graphical Models

Prof. Joschka Boedecker and Hao Zhu

Department of Computer Science
University of Freiburg



1. Introduction

• Probabilistic graphical models

• Mathematical background
Basic concepts in probability
Random variables
Set conditional independence
Graphs

• Course information



Outline

• Probabilistic graphical models

• Mathematical background
Basic concepts in probability
Random variables
Set conditional independence
Graphs

• Course information

Probabilistic graphical models | Introduction 1-3



Probabilistic graphical models (PGMs)

example: medical diagnosis

• 2 binary-valued diseases: Flu and Hayfever

• 4-valued variable: Season

• 2 binary-valued symptoms: Congestion and Muscle-pain

• probability space: 2× 2× 4× 2× 2 = 64 values

• diagnosis query: how likely the patient is to have the flu given that it is fall, and that she
has sinus congestion but no muscle pain

P(F = true | S = fall, C = true,M = false)
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Probabilistic graphical models (PGMs)

graphical representation

Season

Flu Hayfever

Muscle-pain Congestion

independencies

(F ⊥⊥ H | S)
(C ⊥⊥ S | F,H)

(M ⊥⊥ H,C | F )

(M ⊥⊥ C | F )

factorization

P(S, F,H,C,M) = P(S)P(F | S)
P(H | S)P(C | F,H)P(M | F )

• parameter space: 4 + 4× 2 + 4× 2 + 2× 2× 2 + 2× 2 = 32 values

• diagnosis query: P(C | F,H, S) = P(C | F,H)
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Probabilistic graphical models (PGMs)

• compact, tractable, transparent representation of variables and dependencies

– human expert can understand and evaluate its semantics and properties

– accurate reflection of our understanding of a domain

• effective inference

– answering queries using the distribution as our model of the world

– computing the posterior probability of some variables given evidence on others

• automatic learning of a model from data

– provides a good approximation to our past experience

– combining human expert knowledge and data information
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Real-world applications

Where would you apply probabilistic graphical models?
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Real-world applications

• images: generation, denoising

• language: generation, translation

• audio: super-resolution, speech synthesis, speech recognition

• economics: causal inference

• science: error-correcting codes, computational biology, ecology

• health care and medicine: diagnosis
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Real-world applications

image denoising

• restore old photographs based on probabilistic graphical models that does a good job at
modeling the posterior distribution p(original image | noisy image)
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Real-world applications

speech recognition

• infer spoken words from audio signals with variants of hidden Markov models
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Real-world applications

error-correcting codes

• detect and correct communication errors with graphical models
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Deep learning and PGMs

Why do we still need PGMs in the age of deep learning?
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Deep learning and PGMs

combining deep learning architectures and probabilistic modeling techniques can be
advantageous in

• generative models: variational autoencoders (VAEs), diffusion models

• inference: estimating the distribution of unobserved variables given observed data

• interpretability and uncertainty: interpretable representation of data and XAI

• causality: causal discovery and causal-based learning
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Deep learning and PGMs

diffusion models

• directed Markov chain structure

• model a sequence of random variables {x0, . . . , xT }

• each xt is an intermediate between a uniform random distribution and the data distribution
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Deep learning and PGMs

transformer architecture

• fully connected graphical model

• scaled dot-product attention

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V

Probabilistic graphical models | Introduction 1-15



Outline

• Probabilistic graphical models

• Mathematical background
Basic concepts in probability
Random variables
Set conditional independence
Graphs

• Course information

Mathematical background | Introduction 1-16



Basic concepts in probability

axioms of probability

• 0 ≤ P(A) ≤ 1

• P(sure proposition) = 1

• P(A or B) = P(A) +P(B) if A and B are mutually exclusive

marginal probability

P(A) =

n∑
i=1

P(A,Bi)

if {B1, . . . , Bn} is a set of exhaustive and mutually exclusive propositions
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Basic concepts in probability

conditional probability P(A | B)

• A and B are independent if P(A | B) = P(A)

• A and B are conditionally independent given C if P(A | B,C) = P(A | C)

product rule

P(A,B) = P(A | B)P(B)

• chain rule

P(E1, . . . , En) = P(E1)P(E2 | E1) · · ·P(En | En−1, . . . , E1)
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Basic concepts in probability

Bayes’ theorem

P(H | e) = P(e | H)P(H)

P(e)

• P(H): prior probability

• P(e | H): likelihood

• P(H | e): posterior probability
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Random variables

given a random variable X with dom(X) ⊆ R

• expected value of X:

E[X] =
∑
x

xP(x)

• expectation of function g of X:

E[g(X)] =
∑
x

g(x)P(x).

• variance of X:
var(X) = E

[
(X −E[X])

2
]

– standard deviation of X: σ(X) =
√

var(X)
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Random variables

given two random variables X,Y with dom(X),dom(Y ) ⊆ R

• covariance of X and Y :

cov(X,Y ) = E[(X −E[X])(Y −E[Y ])]

• correlation coefficient of X and Y :

ρ(X,Y ) =
cov(X,Y )

σ(X)σ(Y )

• regression coefficient of X on Y :

r(X,Y ) = ρ(X,Y )
σ(X)

σ(Y )
=

cov(X,Y )

var(Y )
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Random variables

continuous random variables

P(a ≤ X ≤ b) =

∫ b

a

p(x) dx

• p(x): density function

• translation between discrete and continuous random variables:∫ ∞

−∞
p(x) dx ⇐⇒

∑
x

P(x)

• expected value of continuous random variable X:

E[X] =

∫ ∞

−∞
xp(x) dx
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Random variables

example: Gaussian distribution N (µ, σ2)

p(x) =
1√
2πσ

e−
(x−µ)2

2σ2

• µ: mean of random variable X

• σ2: variance of random variable X

• standard Gaussian distribution: N (0, 1)
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Set conditional independence

let V = {V1, V2, . . .}, and X,Y, Z ⊆ V

conditionally independent set X and Y given Z:

(X ⊥⊥ Y | Z) =⇒ P(x | y, z) = P(x | z), for all {y, z | P(y, z) > 0}

• marginal independence: (X ⊥⊥ Y | ∅)

• (X ⊥⊥ Y | Z) =⇒ P(Vi | Vj , Z) = P(Vi | Z), for all Vi ∈ X, Vj ∈ Y

– the converse is not necessarily true
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Graphs

A graph G consists of

• a set V of vertices (or nodes)

• a set E of edges (or links)

– directed or undirected

path: ((W,Z), (Z, Y ), (Y,X), (X,Z))

• directed: ((W,Z), (Z, Y ))

• undirected: ((W,Z), (Z, Y ), (Y,X))

directed acyclic graph (DAG)

• a directed graph without directed cycles

W

Z X

Y

W

Z X

Y
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Contents

1. Introduction

2. Bayesian classifiers

3. Markov models

4. Bayesian networks

5. Inference with Monte Carlo methods

6. Markov decision problems

7. Control as probabilistic inference

8. Graphical causal models

9. Deep learning and graphical models
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Organization

• 6 ETCS

• course number: 11E13MO-1228

• every Tuesday 16:15 – 17:45 and Wednesday 12:15 – 13:45

• course material and forum on ILIAS

• exam:

– open-book

– date: tbd (probably some day between Sep. 9th and Sep. 13th)
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Exercises

• not mandatory

• sample solutions will be presented on Wednesdays, 1 week after exercise release

• answer questions of others and ask your own questions in the ILIAS forum

• time management options:

7 – 9 hours per ex. little exam prep. RECOMMENDED

5 – 6 hours per ex. more exam prep. MINIMUM

0 hours per ex. ∞ exam prep. IMPOSSIBLE
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Team

Joschka Boedecker Hao Zhu
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Textbook

Probabilistic Graphical Models
Lecture notes and exercises

Hao Zhu
Joschka Boedecker

Department of Computer Science
University of Freiburg

Lecture notes and exercises

Probabilistic Graphical Models: Principles and Applications (2nd edition)
Luis Enrique Sucar (2021)

https://link.springer.com/book/10.1007/978-3-030-61943-5

Advances in Computer Vision and Pattern Recognition

Luis Enrique Sucar

Probabilistic 
Graphical 
Models
Principles and Applications

Second Edition
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Other useful materials

Causality (2nd edition)
Judea Pearl (2009)
http://bayes.cs.ucla.edu/BOOK-2K

Probabilistic Graphical Models: Principles and Techniques
Daphne Koller and Nir Friedman (2009)

https://mitpress.mit.edu/9780262013192/probabilistic-graphical-models
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Other useful materials

Probabilistic Machine Learning: An introduction
Kevin P. Murphy (2022)
hhttps://probml.github.io/pml-book/book1.html

Probabilistic Machine Learning: Advanced Topics
Kevin P. Murphy (2023)

https://probml.github.io/pml-book/book2.html
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Other useful materials

• Probabilistic Graphical Models Specialization (Coursera)

– Probabilistic Graphical Models 1: Representation

– Probabilistic Graphical Models 2: Inference

– Probabilistic Graphical Models 3: Learning

• notes from CS228 - Probabilistic Graphical Models (Stanford University)
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https://www.coursera.org/specializations/probabilistic-graphical-models
https://www.coursera.org/learn/probabilistic-graphical-models?specialization=probabilistic-graphical-models
https://www.coursera.org/learn/probabilistic-graphical-models-2-inference?specialization=probabilistic-graphical-models
https://www.coursera.org/learn/probabilistic-graphical-models-3-learning?specialization=probabilistic-graphical-models
https://ermongroup.github.io/cs228-notes/
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