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Probabilistic graphical models (PGMs)

example: medical diagnosis
e 2 binary-valued diseases: Flu and Hayfever

e 4-valued variable: Season

e 2 binary-valued symptoms: Congestion and Muscle-pain

probability space: 2 x 2 x 4 X 2 X 2 = 64 values

e diagnosis query: how likely the patient is to have the flu given that it is fall, and that she
has sinus congestion but no muscle pain

P(F =true | S = fall,C = true, M = false)
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Probabilistic graphical models (PGMs)

graphical representation independencies factorization

(F 1L H|S) P(S,F,H,C,M)=P(S)P(F | S5)
Cen D Crwionr > (AL S| F H) P(H | S)P(C | F, H)P(M | F)
(M 1L H,C|F)
(M 1L C | F)

e parameter space: 4 +4 X 2+4x2+2x2x2+4+2x2=232values

e diagnosis query: P(C' | F,H,S) =P(C | F, H)
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Probabilistic graphical models (PGMs)

e compact, tractable, transparent representation of variables and dependencies
— human expert can understand and evaluate its semantics and properties

— accurate reflection of our understanding of a domain
o effective inference
— answering queries using the distribution as our model of the world

— computing the posterior probability of some variables given evidence on others

e automatic learning of a model from data
— provides a good approximation to our past experience

— combining human expert knowledge and data information
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Real-world applications

Where would you apply probabilistic graphical models?
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Real-world applications

e images: generation, denoising

e language: generation, translation

e audio: super-resolution, speech synthesis, speech recognition

e economics: causal inference

e science: error-correcting codes, computational biology, ecology

e health care and medicine: diagnosis
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Real-world applications

image denoising

e restore old photographs based on probabilistic graphical models that does a good job at
modeling the posterior distribution p(original image | noisy image)
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Real-world applications

speech recognition

“He ate the cookies on the couch”

e infer spoken words from audio signals with variants of hidden Markov models
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Real-world applications

error-correcting codes

Transmitter noise Receiver

Ethernet cable,
Wireless,
or Hard disk

lterative message passing decoding

e detect and correct communication errors with graphical models
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Deep learning and PGMs

Why do we still need PGMs in the age of deep learning?
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Deep learning and PGMs

combining deep learning architectures and probabilistic modeling techniques can be
advantageous in

¢ generative models: variational autoencoders (VAEs), diffusion models
e inference: estimating the distribution of unobserved variables given observed data
e interpretability and uncertainty: interpretable representation of data and XAl

e causality: causal discovery and causal-based learning
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Deep learning and PGMs

diffusion models

Pe(xt—1|xt)
S s SN e S @
. K\\ ’//
q(xt|xt—1)

e directed Markov chain structure

v

e model a sequence of random variables {zg,...,z7}

e each x; is an intermediate between a uniform random distribution and the data distribution
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Deep learning and PGMs

transformer architecture

e fully connected graphical model

e scaled dot-product attention

Attention(Q, K, V) = softma (QKT) Vv
ention(Q, K,V) = x| ——
Vi
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Basic concepts in probability

axioms of probability
e 0<P(4) <1
e P(sure proposition) = 1

e P(Aor B)=P(A) + P(B) if A and B are mutually exclusive

marginal probability

P(4)=) P(4,B)
i=1
if {B1,...,Bn} is a set of exhaustive and mutually exclusive propositions
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Basic concepts in probability

conditional probability P(A | B)
e A and B are independent if P(A | B) = P(A)

e A and B are conditionally independent given C if P(A | B,C) =P(A | C)

product rule

P(A,B) = P(A | B)P(B)

e chain rule

P(E:,...,E,) =P(E))P(Ey | By)---P(Ey, | En_1,...,E1)
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Basic concepts in probability

Bayes’ theorem

e P(H): prior probability
o P(c| H): likelihood

e P(H | e): posterior probability
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Random variables
given a random variable X with dom(X) C R

e expected value of X:

e expectation of function g of X:

e variance of X:
var(X) = E [(X . E[X]ﬂ

— standard deviation of X: o(X) = y/var(X)
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Random variables

given two random variables X, Y with dom(X),dom(Y) C R

e covariance of X and Y:
cov(X,Y) =E[X — EX]))(Y — E[Y])]

e correlation coefficient of X and Y:

cov(X,Y)

e regression coefficient of X on Y

r(X,Y)=p(X,Y) Z(();)) = C(:;(r)((};})/)
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Random variables

continuous random variables
b
P(angb):/ p(x) dx

e p(z): density function

e translation between discrete and continuous random variables:

/00 p(z) de < ZP(:E)

—00

e expected value of continuous random variable X:

E[X] = / " ap() do

— 00
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Random variables

example: Gaussian distribution N (u, 02)

1 ERCEL
e 202

p(z) = 5

e ;12 mean of random variable X
e o2: variance of random variable X

e standard Gaussian distribution: A(0,1)
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Set conditional independence

let V.={V,V,,...},and X, Y, ZCV
conditionally independent set X and Y given Z:

(X LY |2) = Pa|y2)=P(|2), forall {y,2] Py,2) >0}
e marginal independence: (X 1LY | 0)

e (X1Y|Z) = P(V;|V;,2)=P(V;| Z), forall Ve X, V; €Y

— the converse is not necessarily true
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Graphs

A graph G consists of
e aset V of vertices (or nodes)

e a set F of edges (or links)
— directed or undirected

path: (W, 2),(2,Y), (Y, X), (X, Z))
o directed: (W, 2),(Z,Y))
e undirected: (W, 2),(Z,Y), (Y, X))
directed acyclic graph (DAG)

e a directed graph without directed cycles
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Contents

Introduction

Bayesian classifiers

Markov models

Bayesian networks

Inference with Monte Carlo methods
Markov decision problems

Control as probabilistic inference

Graphical causal models
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Deep learning and graphical models
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Organization

6 ETCS

e course number: 11E13MO-1228

every Tuesday 16:15 — 17:45 and Wednesday 12:15 — 13:45
e course material and forum on ILIAS

® €Xam:

— open-book

— date: tbd (probably some day between Sep. 9th and Sep. 13th)

Course information | Introduction



Exercises

not mandatory

sample solutions will be presented on Wednesdays, 1 week after exercise release
e answer questions of others and ask your own questions in the ILIAS forum

e time management options:
7 — 9 hours per ex. | little exam prep. | RECOMMENDED
5 — 6 hours per ex. | more exam prep. | MINIMUM
0 hours per ex. oo exam prep. | IMPOSSIBLE
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Team

Joschka Boedecker Hao Zhu
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Textbook

Probabilistic Graphical Models

Lecture notes and exercises

Hao Zhu Lecture notes and exercises

Joschka Boedecker

Department of Computer Science
University of Freiburg

Probabilistic Graphical Models: Principles and Applications (2nd edition)
Luis Enrique Sucar (2021)
https://link.springer.com/book/10.1007/978-3-030-61943-5
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https://link.springer.com/book/10.1007/978-3-030-61943-5

Other useful materials

CAUSALITY

~ SECOND EDITION No

Causality (2nd edition)
Judea Pearl (2009)
http://bayes.cs.ucla.edu/BO0K-2K

i
MODELS, REASONING.
AND INFERENCE

JUDEA PEARL

Probabilistic Graphical Models: Principles and Techniques
Daphne Koller and Nir Friedman (2009)

https://mitpress.mit.edu/9780262013192/probabilistic-graphical-models
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http://bayes.cs.ucla.edu/BOOK-2K
https://mitpress.mit.edu/9780262013192/probabilistic-graphical-models

Other useful materials

Probabilistic Machine Learning: An introduction
i, Kevin P. Murphy (2022)

Probabilistic hhttps://probml.github.io/pml-book/bookl.html
Machine Learning

An Introduction

Kevin P, Murphy

Probabilistic Machine Learning: Advanced Topics
Kevin P. Murphy (2023)
https://probml.github.io/pml-book/book2.html
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hhttps://probml.github.io/pml-book/book1.html
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Other useful materials

e Probabilistic Graphical Models Specialization (Coursera)
— Probabilistic Graphical Models 1: Representation

— Probabilistic Graphical Models 2: Inference

— Probabilistic Graphical Models 3: Learning

e notes from CS228 - Probabilistic Graphical Models (Stanford University)
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https://www.coursera.org/specializations/probabilistic-graphical-models
https://www.coursera.org/learn/probabilistic-graphical-models?specialization=probabilistic-graphical-models
https://www.coursera.org/learn/probabilistic-graphical-models-2-inference?specialization=probabilistic-graphical-models
https://www.coursera.org/learn/probabilistic-graphical-models-3-learning?specialization=probabilistic-graphical-models
https://ermongroup.github.io/cs228-notes/
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