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Monte Carlo integration

e zcR"
f:R"—= R™
p(x): target distribution of X

target distribution as posterior p(z | y)
— use the unnormalized distribution p(z) = p(z,y)

— normalize the result with Z = [ p(z,y) dz = p(y)

Monte Carlo (MC) integration: draw n random samples z ~ p(x)

X)) = [ sl dw~—2f
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Monte Carlo integration

let © = E[f(X)] be the exact mean, [i be the MC approximation
e with independence samples:

(ﬂ—u)%N(O,&?D

- 6% =LY, (fle) — @)

e for large enough n:
52 52
p <g1.961/0 <pu< ﬂ+1.96\/0> ~ 0.95
n n

- \/%2: (numerical) standard error, denotes the uncertainty about our p estimation

— standard error of u estimation is independent of the integration dimensionality
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Monte Carlo integration

example: estimating w by MC integration
e given a (Euclidean) ball in R?: B(r) = {z,y | 2 + y*> < r?}

o the area of the ball S =mr? = [* [" Ip(z,y) dady

— Ip: indicator function of ball B(r), equals to 1 for points inside the ball, and 0 outside

o let p(x),ply) ~U(—r,T)
7= 58 = 0@ [[ Inpp@p() dody
- %47"2 / / I (z,y)p(z)ply) dedy

1
~ 4 - I iy 9Yi
X n ;:1 B(7i, i)
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Sampling from simple distributions

inverse probability transform

U~U0,1) = FYU)~F

1.0
e F: cumulative density function (CDF)
of target distribution —
< 0.5 7
e F~1: the inverse of CDF F =
0.0 -
e proof: 0 9
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Sampling from simple distributions

example: sampling from Exp()\)

pk(x):{ e~ x>0 . FA(;E):{

0 <0
_ log(1 — w)
= F; '(u) = I —

e dom(F; ') =[0,1)

e sample U ~ U(0,1), then F; ' (U) ~ Exp()\)
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Rejection sampling

given:
e target distribution p(x) = p(x)/Z,, where
Z, = [p(z) du

e proposal distribution ¢(z), satisfying Cq(z) > p(z)
for some C' € R

rejection sampling

1. Sample z; ~ g(x). oken

2. Sample u; ~ U(0,Cq(x;)).

3. If u; > p(x;), reject the sample, otherwise accept it.

o q(x; | accept) = p(z;)
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Rejection sampling

proof

= / q(accept | z;) dx; = q(accept) = ST T

= q(x; | accept) =

q(zi,accept) _ p(zi) C_ p(xi)
q(accept) c z, Zy,
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Rejection sampling

q(accept) = %

e g(accept) = 1/C if p is a normalized target distribution

e example: p(x) = N(0,021), q(x) = N(0,021) (07 > 07)

— in n dimensions, optimum C = (04/0p)"

— acceptance rate decreases exponentially with dimension
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Importance sampling

direct importance sampling with normalized target distribution:

BUCO) = [ fple) do= | f(x)zggq(x) dz

e ¢(x): proposal distribution

e supp(p) C supp(q): the proposal is non-zero whenever the target is non-zero
draw n samples z ~ ¢(x)

p(xi)

® Wi = @)

. importance weight

e unbiased estimate of the true mean E[f(X)]
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Importance sampling

self-normalized importance sampling (SNIS) with unnormalized target distribution p(x):

draw n samples x ~ ¢(z)

0= [ late) as = L@ e _ I [5834@)] ala) do
oGy e TE] o) do

7Zn1wz z
~ N % Wf
RS ITRp

e ¢(x): proposal distribution, supp(p) C supp(q)

® W = fjgi‘g unnormalized weight

o W, = <“——: normalized weight
il =1 wi/

o p(z) ~p(z) =D Wd(z — x;), and Z, ~ Zp = %Z?:l W;

Monte Carlo methods | Inference with Monte Carlo methods

5-13



Outline

e Markov chain Monte Carlo
Metropolis-Hastings algorithm
Gibbs sampling
Hamiltonian Monte Carlo

Markov chain Monte Carlo | Inference with Monte Carlo methods



Markov chain Monte Carlo (MCMC)

idea

e construct a Markov chain on state space X, whose stationary distribution is the target
density p*(x)

e by drawing (correlated) samples g, 21, ... from the Markov chain, we can perform Monte
Carlo integration w.r.t. p*

e the initial samples from the chain do not come from the stationary distribution, and
should be discarded (burn in)
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Metropolis-Hastings (MH) algorithm

idea
at each step:

e propose to move from x to «’ with proposal distribution g(a’ | x)

e decide whether to accept this proposal, or to reject it, according to some acceptance
probability A

e if the proposal is accepted, the new state is x/, otherwise the new state is the same as the
current state x
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Metropolis-Hastings (MH) algorithm

acceptance probability A

e symmetric proposal ¢(2’ | x) = q(z | 2'):

o)

— if 2’ is more probable than x, we definitely move there (since 1;**((?:)) > 1)

— if 2’ is less probable than x, we move there depending on the probability ratio
e asymmetric proposal g(2’ | ) # q(z | #’): Hastings correction

p(2")q(x | z')

A=min{l,a}, a= p*(x)g(z | x)
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Metropolis-Hastings (MH) algorithm

e we should be able to evaluate target distribution p*(z)

e valid proposal ¢: supp(p*) C U,supp(q(- | z))
e sampling from unnormalized target distribution p*(z) = 4 p(x):

(B(=")/Zp)a(x | ') _ p(a')q(x | )

o =

(p(@)/Zp)a(@" | ) px)g(a’ | z)
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Metropolis-Hastings (MH) algorithm

given proposal distribution q.
initialize .
repeat

Sample ¢’ ~ g(2’ | z).

. pr(E)g(=|z")
Compute o := AOICADR

Compute acceptance probability A := min{1, a}.

Sample u ~ (0, 1).

' u < A (accept)
x  u> A (reject).
until number of iterations reached.

Set new sample to x :=
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Metropolis-Hastings (MH) algorithm

convergence analysis

o MH defines a Markov chain with transition matrix

o | @) = { a(a’ [ 1) A’ | 2) v Fa
q(@ | @) + 3,4, q@ | 2)(1—A(2" | z)) otherwise

e if the target distribution p* is the stationary distribution of this Markov chain, then it
satisfies the detailed balance criterion

p(a’ | 2)p*(z) = p(x | «")p* (')
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Metropolis-Hastings (MH) algorithm

proof

e assume that the Markov chain is ergodic and irreducible

e given two states x and z’, we have

p*(x)q(@’ [ ) <p*(z)q(z [ ") or p"(x)q(a’|z) = p"(a)g(x | 2')

e without losing generality, we can assume

p*()a(a’ | z) > p*(a")q(z | ')
/ pr(@")q(z | =')
= = e o) <!
= A(@' |z) =z’ |x) and A(z|2') =
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Metropolis-Hastings (MH) algorithm

. p(a’ | x) = q(a’ | 2)A(z" | z) = q(2" | x) el 1)~ 7@ q(a | 2
p(z | 2') =gz | 2)A(x | 2") = q(z | 2')

= p*(x)p(a | x) = p*(a’)q(x | 2")

= p*(z)p(z’ | z) = p*(2")p(z | 2)

= detailed balence is satisfied by p*
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Metropolis-Hastings (MH) algorithm
proposal distributions g
e independence sampler: ¢(2’ | x) = q(2'), e.g., ' ~ N (11, 2)
e random walk Metropolis (RWM):
'~ N(x,0%I) <= (2’ — x) ~ N(0,0°1)

e composing proposals:

gz’ | z) = szqi

— w: mixing weights, and w71 =1

— if each ¢; is valid individually and w > 0, the overall mixture proposal ¢ is also valid
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Metropolis-Hastings (MH) algorithm

example: sampling from a mixture of Gaussians with RWM

MH with A/(0,8%) proposal

MH with A/(0,1%) proposal MH with N(0,5007) proposal
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Gibbs sampling

e a special case of MH algorithm
e exploiting conditional independence properties of a graphical model on X to automatically
create a good proposal ¢, with 100% acceptance probability

idea: sample each variable in turn, conditioned on the values of all the other variables in the
distribution

example: sample some variable X € R? according to

xy ~ p() | z2, x3)
xhy ~ pah | 27, x3)

vy ~ p(af | 2, 75)
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Gibbs sampling

e p(x} | x_;): full conditional for variable X

e if X, is a known variable, we do not sample it, but it may be used as input to the another
conditional distributions

e if we represent p(z) as a graphical model,

ay ~ plag | v—;) = p(a; | mb(z;))

e we should have access to the analytical expression of target distribution p to derive the full
conditionals for each X;
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Gibbs sampling

connections to MH

e Gibbs sampling is a special case of MH using a sequence of proposals

(@ | z)=p@ |z ), _(z',), i=1,...,n

- XeR"

— I, _,: indicator function

e proof of 100% acceptance probability: for sampling each X;, we have 2/, = x_;, thus

e ) pll | el Jplal ple | o)
p@)gi(’ |z)  plz; | z—i)p(z—i)p(z; | z—;)
_ p(@i | z—i)p(z—i)p(x; | i) -1
p(x; | x—z)p(x—i)p($§ | x_4)
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Gibbs sampling

example: Gibbs sampling for Ising models
for a 2-dimensional lattice G = (X, E):

e |attice model:

p(l“):le |

(Xi,X;)€E

— ij(xi, x;): potential function of clique C' = {X;, X}
e Ising model:

— X; are binary foralli=1,...,n
— potential function expressed as

Ti = Ty

=exp(Jziz;
@ £ 2 p( J)

J
Wij (s, x5) = { :,J
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Gibbs sampling

to sample for an n-dimensional random vector X following an Ising model,

p(xi ‘ x_i) X H ’(/)Z'j(l‘i,l‘j), 7 = 1,...,7’7,

X;cadj(X;)

HXjGadj(Xi) %‘j(% =+1,2;)

= plx; =+1|z_;)

exp(J ZXj eadj(X;) j)

a HXJEadj(X,i) Yij(zs = +1,25) + HXandj(Xi) Yij(zi = —1,2;5)

exp(J ZXjeadj(Xi) zj) + exp(_JZXjGadj(Xi) ;)
_ exp(Jn;)
exp(Jn;) + exp(—Jn;)

® 7N = ZXjeadj(Xi) Ly
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Gibbs sampling

Metropolis within Gibbs
e use MH algorithm to sample from the full conditionals

/ / / B
to sample z} ~ p(@; | 21,1, Tit1:n):

1. Propose zi ~ q(z} | x;).
2. Compute the acceptance probability A; = min{1, a;}, where

(@] | @)1, iv1n)q(@ | 7))
p(xi | x/l;i_lvl'iJrl:n)q(x;/ | mz)

Q; =

3. Sample u ~ U(0,1).
4. Set o =z} if u < A;, and 2} = z; otherwise.
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Hamiltonian Monte Carlo (HMC)

idea: create proposal ¢ based on gradient information

Hamiltonian mechanics
the total energy of a particle rolling around an energy landscape is

H(0,v) =E0) + K(v)

6 € R™: position

e v € R™: momentum

(0,v): phase space

E(0): potential energy

K(v) = $vTS7 0: kinetic energy, where & € 87 is the mass matrix

H(0,v): total energy (Hamiltonian)
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Hamiltonian Monte Carlo (HMC)

e trajectory of the particle can be obtained by solving Hamilton’s equations:

@ _on oK
dt — v v
dv oH  0O&

at 00 00

e energy is conserved under Hamiltonian mechanics, since

dH = (OH dO;  OH dv; N (OHOH  OMOM\
dt_Z(%dt+3v¢dt)_;(aeiavi_aeidvj_o

i=1
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Hamiltonian Monte Carlo (HMC)

to solve Hamilton’s equations in discrete time:

e Euler's method:

n dv o€
= pa— =V — N—
Vi1 = Vg ndt It o, t 7780 o,
do oK
[0 =0 — =0 —_— .
111 t + ndt A t+n 90 .

— 1): step size

— if K(v) = 20”57 "0, the second term reduces to

Orr1 =0 + 712711%
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Hamiltonian Monte Carlo (HMC)

o modified Euler’'s method:

n dv o€
v =0 — =V —N—
t+1 t T di Dt o, t 7769 o,
do oK
0t+1:9t+nj :9t+na—
t 9:9t,vzvt+1 v

V=Vt+1

— slightly more accurate than Euler's method

— asymmetry of this method can cause some theoretical problems
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Hamiltonian Monte Carlo (HMC)

e leapfrog integrator:

n o0&

Vt+1/2 = V¢ — 290
6=0,

oK
Orp1 =0t +n—o—

8U V=V¢41/2

n o€
Vt+1 = Vgy1/2 — 290 .
0=0;41

— symmetrized version of the modified Euler's method
— can be extended to multiple leapfrog steps, i.e., performing a half step update of v at the

beginning and end of the trajectory, and alternating between full step updates of 6 and v in
between
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Hamiltonian Monte Carlo (HMC)

the HMC algorithm
e establish a new target by introducing an auxiliary variable v to the initial target
distribution p(6):

p(0,v) = %exp(—?—l(@,v)) = %exp (—5(9) - ;UTE_L(})

e after sampling w.r.t. p(6,v), we just ‘throw away’ the v's so that

_ _ 1 —5(9)/ Lo_iorsty 0 1 g
p(9)—/p(9,v) dv = de Zve 2 dv = de
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Hamiltonian Monte Carlo (HMC)

suppose the previous state of the Markov chain is (6;—1,v:—1), to sample the next state,
e set the initial position to 6, = 6;_1, and sample a new random momentum v} ~ N (0, %)

starting from (6{), v(), perform L leapfrogs to get the proposed state (6*,v*) = (67,,v})

check divergence of the simulated trajectory, if Ho # Hr, reject the sample

if the trajectory is not diverged, compute the MH acceptance probability as

p(0*,v%)

A=min< 1,
{ p(at—lavt—l)

} = min {1, exp (—H (0", v*) + H(Os—_1,v:-1))}

— the transition probabilities cancel since the proposal is reversible

accept the proposal with probability A by setting (0:,v:) = (8*,v*), otherwise reject it
((0¢,v¢) = (0r—1,v¢-1))
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Hamiltonian Monte Carlo (HMC)

given the number of leapfrog steps L, the step size 1, and the covariance matrix X.
repeat

Generate random momentum v;—1 ~ N (0, 3).

Set (6(),v() = (Ot—1,vt—1).

Half step for momentum: v;/g = v — 2VE(H)).
fori=1,...,L—1do

0 :=06]_, +"72_1”l/—1/2'
Vis1y2 = Vg0 — NVED)).

end for
Full step for location: 6} =6} | + 772_17)/[,,1/2-
Half step for momentum: v} := U’L_1/2 — 2VET).
Obtain proposal (0*,v*) == (07, v}).
Compute acceptance probability A := min {1, exp (—H(0*,v*) + H(Or—1,ve—1))}.
Set 0; := 6* with probability A, other wise 0y :== 0;_1.
until number of iterations reached.

e we must pick a random momentum at the start of each iteration to ensure the sampler
explores the full space
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