Probabilistic Graphical Models

Prof. Joschka Boedecker and Hao Zhu

Department of Computer Science University of Freiburg

universität freiburg

5. Inference with Monte Carlo methods

Monte Carlo methods
 Monte Carlo integration
 Sampling from simple distributions
 Rejection sampling
 Importance sampling

 Markov chain Monte Carlo Metropolis-Hastings algorithm Gibbs sampling Hamiltonian Monte Carlo

Outline

- Monte Carlo methods
 Monte Carlo integration
 Sampling from simple distributions
 Rejection sampling
 Importance sampling
- Markov chain Monte Carlo Metropolis-Hastings algorithm Gibbs sampling Hamiltonian Monte Carlo

Monte Carlo integration

$$\mathbf{E}[f(X)] = \int f(x)p(x) \ dx$$

- $x \in \mathbf{R}^n$
- $f: \mathbf{R}^n \to \mathbf{R}^m$
- p(x): target distribution of X
- target distribution as posterior $p(x \mid y)$
 - use the unnormalized distribution $\tilde{p}(x) = p(x, y)$
 - normalize the result with $Z=\int p(x,y)\ dx=p(y)$

Monte Carlo (MC) integration: draw n random samples $x \sim p(x)$

$$\mathbf{E}[f(X)] = \int f(x)p(x) \ dx \approx \frac{1}{n} \sum_{i=1}^{n} f(x_i)$$

Monte Carlo integration

let $\mu = \mathbf{E}[f(X)]$ be the exact mean, $\hat{\mu}$ be the MC approximation

• with independence samples:

$$(\hat{\mu} - \mu) \to \mathcal{N}\left(0, \frac{\hat{\sigma}^2}{n}\right)$$

$$-\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (f(x_i) - \hat{\mu})^2$$

• for large enough n:

$$\mathbf{P}\left(\hat{\mu} - 1.96\sqrt{\frac{\hat{\sigma}^2}{n}} \le \mu \le \hat{\mu} + 1.96\sqrt{\frac{\hat{\sigma}^2}{n}}\right) \approx 0.95$$

- $-\sqrt{rac{\hat{\sigma}^2}{n}}$: (numerical) standard error, denotes the uncertainty about our μ estimation
- standard error of μ estimation is independent of the integration dimensionality

Monte Carlo integration

example: estimating π by MC integration

- given a (Euclidean) ball in \mathbf{R}^2 : $B(r) = \{x, y \mid x^2 + y^2 \le r^2\}$
- the area of the ball $S = \pi r^2 = \int_{-r}^r \int_{-r}^r I_B(x,y) \ dxdy$
 - I_B : indicator function of ball B(r), equals to 1 for points inside the ball, and 0 outside
- let $p(x), p(y) \sim \mathcal{U}(-r, r)$

$$\pi = \frac{1}{r^2} S = \frac{1}{r^2} (2r)(2r) \iint I_B(x, y) p(x) p(y) \ dxdy$$
$$= \frac{1}{r^2} 4r^2 \iint I_B(x, y) p(x) p(y) \ dxdy$$
$$\approx 4 \times \frac{1}{n} \sum_{i=1}^n I_B(x_i, y_i)$$

Sampling from simple distributions

inverse probability transform

$$U \sim \mathcal{U}(0,1) \implies F^{-1}(U) \sim F$$

- F: cumulative density function (CDF) of target distribution
- F^{-1} : the inverse of CDF F
- proof:

$$\mathbf{P}\left(F^{-1}(U) \le x\right) = \mathbf{P}(U \le F(x))$$
$$= F(x)$$

Sampling from simple distributions

example: sampling from $Exp(\lambda)$

$$p_{\lambda}(x) = \begin{cases} \lambda e^{-\lambda x} & x \ge 0 \\ 0 & x < 0 \end{cases} \implies F_{\lambda}(x) = \begin{cases} 1 - e^{-\lambda x} & x \ge 0 \\ 0 & x < 0 \end{cases}$$
$$\implies F_{\lambda}^{-1}(u) = -\frac{\log(1 - u)}{\lambda}$$

- $\mathbf{dom}(F_{\lambda}^{-1}) = [0, 1)$
- sample $U \sim \mathcal{U}(0,1)$, then $F_{\lambda}^{-1}(U) \sim \operatorname{Exp}(\lambda)$

Rejection sampling

given:

- target distribution $p(x) = \tilde{p}(x)/Z_p$, where $Z_p = \int \tilde{p}(x) \ dx$
- proposal distribution q(x), satisfying $Cq(x) \geq \tilde{p}(x)$ for some $C \in \mathbf{R}$

rejection sampling

- 1. Sample $x_i \sim q(x)$.
- 2. Sample $u_i \sim \mathcal{U}(0, Cq(x_i))$.
- 3. If $u_i > \tilde{p}(x_i)$, reject the sample, otherwise accept it.
- $q(x_i \mid \mathsf{accept}) = p(x_i)$

Rejection sampling

proof

$$\begin{split} q(\mathsf{accept} \mid x_i) &= \int_0^{\tilde{p}(x_i)} \frac{1}{Cq(x_i)} \; du = \frac{\tilde{p}(x_i)}{Cq(x_i)} \\ \Longrightarrow q(\mathsf{propose} \; \mathsf{and} \; \mathsf{accept} \; x_i) &= q(x_i)q(\mathsf{accept} \mid x_i) = q(x_i)\frac{\tilde{p}(x_i)}{Cq(x_i)} = \frac{\tilde{p}(x_i)}{C} \\ \Longrightarrow \int q(x_i)q(\mathsf{accept} \mid x_i) \; dx_i &= q(\mathsf{accept}) = \frac{\int \tilde{p}(x_i) \; dx_i}{C} = \frac{Z_p}{C} \\ \Longrightarrow q(x_i \mid \mathsf{accept}) &= \frac{q(x_i, \mathsf{accept})}{q(\mathsf{accept})} = \frac{\tilde{p}(x_i)}{C} \frac{C}{Z_p} = \frac{\tilde{p}(x_i)}{Z_p} = p(x_i) \end{split}$$

Rejection sampling

$$q(\mathsf{accept}) = \frac{Z_p}{C}$$

- ullet $q(\operatorname{accept}) = 1/C$ if \tilde{p} is a normalized target distribution
- \bullet example: $p(x)=\mathcal{N}(0,\sigma_p^2I)$, $q(x)=\mathcal{N}(0,\sigma_q^2I)$ $(\sigma_q^2\geq\sigma_p^2)$
 - in n dimensions, optimum $C = \left(\sigma_q/\sigma_p\right)^n$
 - acceptance rate decreases exponentially with dimension

Importance sampling

direct importance sampling with normalized target distribution:

$$\mathbf{E}[f(X)] = \int f(x)p(x) \ dx = \int f(x)\frac{p(x)}{q(x)}q(x) \ dx$$

- q(x): proposal distribution
- $\mathbf{supp}(p) \subseteq \mathbf{supp}(q)$: the proposal is non-zero whenever the target is non-zero draw n samples $x \sim q(x)$

$$\mathbf{E}[f(X)] \approx \frac{1}{n} \sum_{i=1}^{n} \frac{p(x_i)}{q(x_i)} f(x_i) = \frac{1}{n} \sum_{i=1}^{n} w_i f(x_i)$$

- $w_i = \frac{p(x_i)}{q(x_i)}$: importance weight
- ullet unbiased estimate of the true mean $\mathbf{E}[f(X)]$

Importance sampling

self-normalized importance sampling (SNIS) with unnormalized target distribution $\tilde{p}(x)$: draw n samples $x \sim q(x)$

$$\mathbf{E}[f(X)] = \int f(x)p(x) \ dx = \frac{\int f(x)\tilde{p}(x) \ dx}{\int \tilde{p}(x) \ dx} = \frac{\int \left[\frac{\tilde{p}(x)}{q(x)}f(x)\right]q(x) \ dx}{\int \left[\frac{\tilde{p}(x)}{q(x)}\right]q(x) \ dx}$$
$$\approx \frac{\frac{1}{n}\sum_{i=1}^{n} \tilde{w}_{i}f(x_{i})}{\frac{1}{n}\sum_{i=1}^{n} \tilde{w}_{i}} = \sum_{i=1}^{n} W_{i}f(x_{i})$$

- q(x): proposal distribution, $\mathbf{supp}(\tilde{p}) \subseteq \mathbf{supp}(q)$
- $\tilde{w}_i = \frac{\tilde{p}(x_i)}{q(x_i)}$: unnormalized weight
- $W_i = \frac{\tilde{w}_i}{\sum_{i'=1}^n \tilde{w}_{i'}}$: normalized weight
- $p(x) \approx \hat{p}(x) = \sum_{i=1}^{n} W_i \delta(x x_i)$, and $Z_p \approx \hat{Z}_p = \frac{1}{n} \sum_{i=1}^{n} \tilde{w}_i$

Outline

- Monte Carlo methods
 Monte Carlo integration
 Sampling from simple distributions
 Rejection sampling
 Importance sampling
- Markov chain Monte Carlo Metropolis-Hastings algorithm Gibbs sampling Hamiltonian Monte Carlo

Markov chain Monte Carlo (MCMC)

idea

- construct a Markov chain on state space X, whose stationary distribution is the target density $p^*(x)$
- by drawing (correlated) samples x_0, x_1, \ldots from the Markov chain, we can perform Monte Carlo integration w.r.t. p^*
- the initial samples from the chain do not come from the stationary distribution, and should be discarded (burn in)

idea

at each step:

- propose to move from x to x' with proposal distribution $q(x' \mid x)$
- \bullet decide whether to accept this proposal, or to reject it, according to some acceptance probability A
- ullet if the proposal is accepted, the new state is x', otherwise the new state is the same as the current state x

acceptance probability A

• symmetric proposal $q(x' \mid x) = q(x \mid x')$:

$$A = \min\left\{1, \frac{p^*(x')}{p^*(x)}\right\}$$

- if x' is more probable than x, we definitely move there (since $\frac{p^*(x')}{p^*(x)} > 1$)
- if x' is less probable than x, we move there depending on the probability ratio $\frac{p^*(x')}{p^*(x)}$
- asymmetric proposal $q(x' \mid x) \neq q(x \mid x')$: Hastings correction

$$A = \min\{1, \alpha\}, \quad \alpha = \frac{p^*(x')q(x \mid x')}{p^*(x)q(x' \mid x)}$$

- we should be able to **evaluate** target distribution $p^*(x)$
- valid proposal $q: \mathbf{supp}(p^*) \subseteq \cup_x \mathbf{supp}(q(\cdot \mid x))$
- sampling from unnormalized target distribution $p^*(x) = \frac{1}{Z_p}\tilde{p}(x)$:

$$\alpha = \frac{(\tilde{p}(x')/Z_p)q(x\mid x')}{(\tilde{p}(x)/Z_p)q(x'\mid x)} = \frac{\tilde{p}(x')q(x\mid x')}{\tilde{p}(x)q(x'\mid x)}$$

```
given proposal distribution q.
initialize x.
repeat
     Sample x' \sim q(x' \mid x).
     Compute \alpha := \frac{p^*(x')q(x|x')}{p^*(x)q(x'|x)}.
     Compute acceptance probability A := \min\{1, \alpha\}.
     Sample u \sim \mathcal{U}(0,1).
    Set new sample to x \coloneqq \left\{ \begin{array}{ll} x' & u \leq A \text{ (accept)} \\ x & u > A \text{ (reject)}. \end{array} \right.
until number of iterations reached.
```

convergence analysis

MH defines a Markov chain with transition matrix

$$p(x'\mid x) = \begin{cases} q(x'\mid x)A(x'\mid x) & x' \neq x \\ q(x\mid x) + \sum_{x' \neq x} q(x'\mid x)(1 - A(x'\mid x)) & \text{otherwise} \end{cases}$$

• if the target distribution p^* is the stationary distribution of this Markov chain, then it satisfies the **detailed balance** criterion

$$p(x' \mid x)p^*(x) = p(x \mid x')p^*(x')$$

proof

- assume that the Markov chain is ergodic and irreducible
- given two states x and x', we have

$$p^*(x)q(x' \mid x) < p^*(x')q(x \mid x')$$
 or $p^*(x)q(x' \mid x) \ge p^*(x')q(x \mid x')$

• without losing generality, we can assume

$$\begin{split} p^*(x)q(x'\mid x) &> p^*(x')q(x\mid x') \\ \Longrightarrow \alpha(x'\mid x) &= \frac{p^*(x')q(x\mid x')}{p^*(x)q(x'\mid x)} < 1 \\ \Longrightarrow A(x'\mid x) &= \alpha(x'\mid x) \quad \text{and} \quad A(x\mid x') = 1 \end{split}$$

$$\Rightarrow \begin{cases} p(x'\mid x) = q(x'\mid x)A(x'\mid x) = q(x'\mid x)\frac{p^*(x')q(x\mid x')}{p^*(x)q(x'\mid x)} = \frac{p^*(x')}{p^*(x)}q(x\mid x') \\ p(x\mid x') = q(x\mid x')A(x\mid x') = q(x\mid x') \end{cases}$$

$$\Rightarrow p^*(x)p(x'\mid x) = p^*(x')q(x\mid x')$$

$$\Rightarrow p^*(x)p(x'\mid x) = p^*(x')p(x\mid x')$$

$$\Rightarrow \text{detailed balence is satisfied by } p^*$$

proposal distributions q

- independence sampler: $q(x' \mid x) = q(x')$, e.g., $x' \sim \mathcal{N}(\mu, \Sigma)$
- random walk Metropolis (RWM):

$$x' \sim \mathcal{N}(x, \sigma^2 I) \iff (x' - x) \sim \mathcal{N}(0, \sigma^2 I)$$

composing proposals:

$$q(x' \mid x) = \sum_{i=1}^{m} w_i q_i(x' \mid x)$$

- w: mixing weights, and $w^T \mathbf{1} = 1$
- if each q_i is valid individually and $w \succeq 0$, the overall mixture proposal q is also valid

example: sampling from a mixture of Gaussians with RWM

- a special case of MH algorithm
- ullet exploiting conditional independence properties of a graphical model on X to automatically create a good proposal q, with 100% acceptance probability

idea: sample each variable in turn, conditioned on the values of all the other variables in the distribution

example: sample some variable $X \in \mathbf{R}^3$ according to

$$x_1' \sim p(x_1' \mid x_2, x_3)$$

$$x_2' \sim p(x_2' \mid x_1', x_3)$$

$$x_3' \sim p(x_3' \mid x_1', x_2')$$

- $p(x_i' \mid x_{-i})$: full conditional for variable X_i
- ullet if X_i is a known variable, we do not sample it, but it may be used as input to the another conditional distributions
- if we represent p(x) as a graphical model,

$$x_i' \sim p(x_i' \mid x_{-i}) = p(x_i' \mid \mathbf{mb}(x_i))$$

ullet we should have access to the analytical expression of target distribution p to derive the full conditionals for each X_i

connections to MH

• Gibbs sampling is a special case of MH using a sequence of proposals

$$q_i(x' \mid x) = p(x' \mid x_{-i})I_{x_{-i}}(x'_{-i}), \quad i = 1, \dots, n$$

- $-X \in \mathbf{R}^n$
- $I_{x_{-i}}$: indicator function
- proof of 100% acceptance probability: for sampling each X_i , we have $x'_{-i} = x_{-i}$, thus

$$\alpha = \frac{p(x')q_i(x \mid x')}{p(x)q_i(x' \mid x)} = \frac{p(x'_i \mid x'_{-i})p(x'_{-i})p(x_i \mid x'_{-i})}{p(x_i \mid x_{-i})p(x_{-i})p(x'_i \mid x_{-i})}$$
$$= \frac{p(x'_i \mid x_{-i})p(x_{-i})p(x_i \mid x_{-i})}{p(x_i \mid x_{-i})p(x_{-i})p(x'_i \mid x_{-i})} = 1$$

example: Gibbs sampling for Ising models for a 2-dimensional lattice G = (X, E):

• lattice model:

$$p(x) = \frac{1}{Z_p} \prod_{(X_i, X_j) \in E} \psi_{ij}(x_i, x_j)$$

- $\psi_{ij}(x_i, x_j)$: potential function of clique $C = \{X_i, X_j\}$
- Ising model:
 - X_i are binary for all $i = 1, \ldots, n$
 - potential function expressed as

$$\psi_{ij}(x_i, x_j) = \begin{cases} e^J & x_i = x_j \\ e^{-J} & x_i \neq x_j \end{cases} = \exp(Jx_i x_j)$$

to sample for an n-dimensional random vector X following an Ising model,

$$p(x_i \mid x_{-i}) \propto \prod_{X_j \in \mathbf{adj}(X_i)} \psi_{ij}(x_i, x_j), \quad i = 1, \dots, n$$

$$\Rightarrow p(x_i = +1 \mid x_{-i}) = \frac{\prod_{X_j \in \mathbf{adj}(X_i)} \psi_{ij}(x_i = +1, x_j)}{\prod_{X_j \in \mathbf{adj}(X_i)} \psi_{ij}(x_i = +1, x_j) + \prod_{X_j \in \mathbf{adj}(X_i)} \psi_{ij}(x_i = -1, x_j)}$$

$$= \frac{\exp(J \sum_{X_j \in \mathbf{adj}(X_i)} x_j)}{\exp(J \sum_{X_j \in \mathbf{adj}(X_i)} x_j) + \exp(-J \sum_{X_j \in \mathbf{adj}(X_i)} x_j)}$$

$$= \frac{\exp(J\eta_i)}{\exp(J\eta_i) + \exp(-J\eta_i)}$$

•
$$\eta_i = \sum_{X_i \in \mathbf{adj}(X_i)} x_j$$

Metropolis within Gibbs

• use MH algorithm to sample from the full conditionals

to sample $x_i' \sim p(x_i' \mid x_{1:i-1}', x_{i+1:n})$:

- 1. Propose $x_i'' \sim q(x_i'' \mid x_i)$.
- 2. Compute the acceptance probability $A_i = \min\{1, \alpha_i\}$, where

$$\alpha_i = \frac{p(x_i'' \mid x_{1:i-1}', x_{i+1:n})q(x_i \mid x_i'')}{p(x_i \mid x_{1:i-1}', x_{i+1:n})q(x_i'' \mid x_i)}.$$

- 3. Sample $u \sim \mathcal{U}(0,1)$.
- 4. Set $x'_i = x''_i$ if $u < A_i$, and $x'_i = x_i$ otherwise.

idea: create proposal q based on gradient information

Hamiltonian mechanics

the total energy of a particle rolling around an energy landscape is

$$\mathcal{H}(\theta, v) = \mathcal{E}(\theta) + \mathcal{K}(v)$$

- $\theta \in \mathbf{R}^n$: position
- $v \in \mathbf{R}^n$: momentum
- (θ, v) : phase space
- $\mathcal{E}(\theta)$: potential energy
- $\mathcal{K}(v) = \frac{1}{2}v^T\Sigma^{-1}v$: kinetic energy, where $\Sigma \in \mathbf{S}^n_{++}$ is the mass matrix
- $\mathcal{H}(\theta, v)$: total energy (Hamiltonian)

• trajectory of the particle can be obtained by solving **Hamilton's equations**:

$$\begin{cases} \frac{d\theta}{dt} = \frac{\partial \mathcal{H}}{\partial v} = \frac{\partial \mathcal{K}}{\partial v} \\ \frac{dv}{dt} = -\frac{\partial \mathcal{H}}{\partial \theta} = -\frac{\partial \mathcal{E}}{\partial \theta} \end{cases}$$

• energy is conserved under Hamiltonian mechanics, since

$$\frac{d\mathcal{H}}{dt} = \sum_{i=1}^{n} \left(\frac{\partial \mathcal{H}}{\partial \theta_i} \frac{d\theta_i}{dt} + \frac{\partial \mathcal{H}}{\partial v_i} \frac{dv_i}{dt} \right) = \sum_{i=1}^{n} \left(\frac{\partial \mathcal{H}}{\partial \theta_i} \frac{\partial \mathcal{H}}{\partial v_i} - \frac{\partial \mathcal{H}}{\partial \theta_i} \frac{\partial \mathcal{H}}{dv_i} \right) = 0$$

to solve Hamilton's equations in discrete time:

• Euler's method:

$$\begin{cases} v_{t+1} = v_t + \eta \frac{dv}{dt} \Big|_{\theta = \theta_t, v = v_t} = v_t - \eta \frac{\partial \mathcal{E}}{\partial \theta} \Big|_{\theta = \theta_t} \\ \theta_{t+1} = \theta_t + \eta \frac{d\theta}{dt} \Big|_{\theta = \theta_t, v = v_t} = \theta_t + \eta \frac{\partial \mathcal{K}}{\partial v} \Big|_{v = v_t}. \end{cases}$$

- $-\eta$: step size
- if $\mathcal{K}(v) = \frac{1}{2}v^T\Sigma^{-1}v$, the second term reduces to

$$\theta_{t+1} = \theta_t + \eta \Sigma^{-1} v_t$$

modified Euler's method:

$$\begin{cases} v_{t+1} = v_t + \eta \frac{dv}{dt} \Big|_{\theta = \theta_t, v = v_t} = v_t - \eta \frac{\partial \mathcal{E}}{\partial \theta} \Big|_{\theta = \theta_t} \\ \theta_{t+1} = \theta_t + \eta \frac{d\theta}{dt} \Big|_{\theta = \theta_t, v = v_{t+1}} = \theta_t + \eta \frac{\partial \mathcal{K}}{\partial v} \Big|_{v = v_{t+1}}. \end{cases}$$

- slightly more accurate than Euler's method
- asymmetry of this method can cause some theoretical problems

• leapfrog integrator:

$$\begin{cases} v_{t+1/2} = v_t - \frac{\eta}{2} \frac{\partial \mathcal{E}}{\partial \theta} \Big|_{\theta = \theta_t} \\ \theta_{t+1} = \theta_t + \eta \frac{\partial \mathcal{K}}{\partial v} \Big|_{v = v_{t+1/2}} \\ v_{t+1} = v_{t+1/2} - \frac{\eta}{2} \frac{\partial \mathcal{E}}{\partial \theta} \Big|_{\theta = \theta_{t+1}}. \end{cases}$$

- symmetrized version of the modified Euler's method
- can be extended to multiple leapfrog steps, i.e., performing a half step update of v at the beginning and end of the trajectory, and alternating between full step updates of θ and v in between

the HMC algorithm

• establish a new target by introducing an auxiliary variable v to the initial target distribution $p(\theta)$:

$$p(\theta, v) = \frac{1}{Z} \exp(-\mathcal{H}(\theta, v)) = \frac{1}{Z} \exp\left(-\mathcal{E}(\theta) - \frac{1}{2}v^T \Sigma^{-1}v\right)$$

ullet after sampling w.r.t. $p(\theta,v)$, we just 'throw away' the v's so that

$$p(\theta) = \int p(\theta, v) \ dv = \frac{1}{Z_{\theta}} e^{-\mathcal{E}(\theta)} \int \frac{1}{Z_{v}} e^{-\frac{1}{2}v^{T} \Sigma^{-1} v} \ dv = \frac{1}{Z_{\theta}} e^{-\mathcal{E}(\theta)}$$

suppose the previous state of the Markov chain is (θ_{t-1}, v_{t-1}) , to sample the next state,

- set the initial position to $\theta_0'=\theta_{t-1}$, and sample a new random momentum $v_0'\sim\mathcal{N}(0,\Sigma)$
- ullet starting from $(heta_0',v_0')$, perform L leapfrogs to get the proposed state $(heta^*,v^*)=(heta_L',v_L')$
- check divergence of the simulated trajectory, if $\mathcal{H}_0 \neq \mathcal{H}_L$, reject the sample
- if the trajectory is not diverged, compute the MH acceptance probability as

$$A = \min \left\{ 1, \frac{p(\theta^*, v^*)}{p(\theta_{t-1}, v_{t-1})} \right\} = \min \left\{ 1, \exp \left(-\mathcal{H}(\theta^*, v^*) + \mathcal{H}(\theta_{t-1}, v_{t-1}) \right) \right\}$$

- the transition probabilities cancel since the proposal is reversible
- accept the proposal with probability A by setting $(\theta_t, v_t) = (\theta^*, v^*)$, otherwise reject it $((\theta_t, v_t) = (\theta_{t-1}, v_{t-1}))$

```
given the number of leapfrog steps L, the step size \eta, and the covariance matrix \Sigma.
repeat
     Generate random momentum v_{t-1} \sim \mathcal{N}(0, \Sigma).
     Set (\theta'_0, v'_0) := (\theta_{t-1}, v_{t-1}).
     Half step for momentum: v'_{1/2} := v'_0 - \frac{\eta}{2} \nabla \mathcal{E}(\theta'_0).
     for l = 1, ..., L - 1 do
          \theta'_{l} := \theta'_{l-1} + \eta \Sigma^{-1} v'_{l-1/2}.
          v'_{l+1/2} := v'_{l-1/2} - \eta \nabla \mathcal{E}(\theta'_l).
     end for
     Full step for location: \theta'_{L} := \theta'_{L-1} + \eta \Sigma^{-1} v'_{L-1/2}.
     Half step for momentum: v_L' := v_{L-1/2}' - \frac{\eta}{2} \nabla \mathcal{E}(\theta_L').
     Obtain proposal (\theta^*, v^*) := (\theta'_I, v'_I).
     Compute acceptance probability A := \min \{1, \exp(-\mathcal{H}(\theta^*, v^*) + \mathcal{H}(\theta_{t-1}, v_{t-1}))\}.
     Set \theta_t := \theta^* with probability A, other wise \theta_t := \theta_{t-1}.
until number of iterations reached
```

 we must pick a random momentum at the start of each iteration to ensure the sampler explores the full space