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Monte Carlo integration

E[f(X)] =

∫
f(x)p(x) dx

• x ∈ Rn

• f : Rn → Rm

• p(x): target distribution of X

• target distribution as posterior p(x | y)
– use the unnormalized distribution p̃(x) = p(x, y)

– normalize the result with Z =
∫
p(x, y) dx = p(y)

Monte Carlo (MC) integration: draw n random samples x ∼ p(x)

E[f(X)] =

∫
f(x)p(x) dx ≈ 1

n

n∑
i=1

f(xi)
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Monte Carlo integration

let µ = E[f(X)] be the exact mean, µ̂ be the MC approximation

• with independence samples:

(µ̂− µ) → N
(
0,
σ̂2

n

)
– σ̂2 = 1

n

∑n
i=1 (f(xi)− µ̂)2

• for large enough n:

P

(
µ̂− 1.96

√
σ̂2

n
≤ µ ≤ µ̂+ 1.96

√
σ̂2

n

)
≈ 0.95

–
√

σ̂2

n
: (numerical) standard error, denotes the uncertainty about our µ estimation

– standard error of µ estimation is independent of the integration dimensionality
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Monte Carlo integration

example: estimating π by MC integration

• given a (Euclidean) ball in R2: B(r) = {x, y | x2 + y2 ≤ r2}

• the area of the ball S = πr2 =
∫ r

−r

∫ r

−r
IB(x, y) dxdy

– IB : indicator function of ball B(r), equals to 1 for points inside the ball, and 0 outside

• let p(x), p(y) ∼ U(−r, r)

π =
1

r2
S =

1

r2
(2r)(2r)

∫∫
IB(x, y)p(x)p(y) dxdy

=
1

r2
4r2

∫∫
IB(x, y)p(x)p(y) dxdy

≈ 4× 1

n

n∑
i=1

IB(xi, yi)
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Sampling from simple distributions

inverse probability transform

U ∼ U(0, 1) =⇒ F−1(U) ∼ F

• F : cumulative density function (CDF)
of target distribution

• F−1: the inverse of CDF F

• proof:

P
(
F−1(U) ≤ x

)
= P(U ≤ F (x))

= F (x)

0 2 4 6
0.0

0.5

1.0

U(
0,
1)

N (3, 1)

Monte Carlo methods | Inference with Monte Carlo methods 5-7



Sampling from simple distributions

example: sampling from Exp(λ)

pλ(x) =

{
λe−λx x ≥ 0

0 x < 0
=⇒ Fλ(x) =

{
1− e−λx x ≥ 0

0 x < 0

=⇒ F−1
λ (u) = − log(1− u)

λ

• dom(F−1
λ ) = [0, 1)

• sample U ∼ U(0, 1), then F−1
λ (U) ∼ Exp(λ)
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Rejection sampling

given:

• target distribution p(x) = p̃(x)/Zp, where
Zp =

∫
p̃(x) dx

• proposal distribution q(x), satisfying Cq(x) ≥ p̃(x)
for some C ∈ R

rejection sampling

1. Sample xi ∼ q(x).

2. Sample ui ∼ U(0, Cq(xi)).
3. If ui > p̃(xi), reject the sample, otherwise accept it.

• q(xi | accept) = p(xi)

reject
region

accept
region

Cq(xi)

p̃(xi)
ui

xi ∼ q(x)
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Rejection sampling

proof

q(accept | xi) =
∫ p̃(xi)

0

1

Cq(xi)
du =

p̃(xi)

Cq(xi)

=⇒ q(propose and accept xi) = q(xi)q(accept | xi) = q(xi)
p̃(xi)

Cq(xi)
=
p̃(xi)

C

=⇒
∫
q(xi)q(accept | xi) dxi = q(accept) =

∫
p̃(xi) dxi
C

=
Zp

C

=⇒ q(xi | accept) =
q(xi, accept)

q(accept)
=
p̃(xi)

C

C

Zp
=
p̃(xi)

Zp
= p(xi)
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Rejection sampling

q(accept) =
Zp

C

• q(accept) = 1/C if p̃ is a normalized target distribution

• example: p(x) = N (0, σ2
pI), q(x) = N (0, σ2

qI) (σ
2
q ≥ σ2

p)

– in n dimensions, optimum C = (σq/σp)
n

– acceptance rate decreases exponentially with dimension
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Importance sampling

direct importance sampling with normalized target distribution:

E[f(X)] =

∫
f(x)p(x) dx =

∫
f(x)

p(x)

q(x)
q(x) dx

• q(x): proposal distribution

• supp(p) ⊆ supp(q): the proposal is non-zero whenever the target is non-zero

draw n samples x ∼ q(x)

E[f(X)] ≈ 1

n

n∑
i=1

p(xi)

q(xi)
f(xi) =

1

n

n∑
i=1

wif(xi)

• wi =
p(xi)
q(xi)

: importance weight

• unbiased estimate of the true mean E[f(X)]
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Importance sampling

self-normalized importance sampling (SNIS) with unnormalized target distribution p̃(x):

draw n samples x ∼ q(x)

E[f(X)] =

∫
f(x)p(x) dx =

∫
f(x)p̃(x) dx∫
p̃(x) dx

=

∫ [ p̃(x)
q(x)f(x)

]
q(x) dx∫ [ p̃(x)

q(x)

]
q(x) dx

≈
1
n

∑n
i=1 w̃if(xi)

1
n

∑n
i=1 w̃i

=

n∑
i=1

Wif(xi)

• q(x): proposal distribution, supp(p̃) ⊆ supp(q)

• w̃i =
p̃(xi)
q(xi)

: unnormalized weight

• Wi =
w̃i∑n

i′=1
w̃i′

: normalized weight

• p(x) ≈ p̂(x) =
∑n

i=1Wiδ(x− xi), and Zp ≈ Ẑp = 1
n

∑n
i=1 w̃i
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Markov chain Monte Carlo (MCMC)

idea

• construct a Markov chain on state space X, whose stationary distribution is the target
density p∗(x)

• by drawing (correlated) samples x0, x1, . . . from the Markov chain, we can perform Monte
Carlo integration w.r.t. p∗

• the initial samples from the chain do not come from the stationary distribution, and
should be discarded (burn in)
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Metropolis-Hastings (MH) algorithm

idea
at each step:

• propose to move from x to x′ with proposal distribution q(x′ | x)

• decide whether to accept this proposal, or to reject it, according to some acceptance
probability A

• if the proposal is accepted, the new state is x′, otherwise the new state is the same as the
current state x
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Metropolis-Hastings (MH) algorithm

acceptance probability A

• symmetric proposal q(x′ | x) = q(x | x′):

A = min

{
1,
p∗(x′)

p∗(x)

}

– if x′ is more probable than x, we definitely move there (since p∗(x′)
p∗(x) > 1)

– if x′ is less probable than x, we move there depending on the probability ratio p∗(x′)
p∗(x)

• asymmetric proposal q(x′ | x) ̸= q(x | x′): Hastings correction

A = min {1, α} , α =
p∗(x′)q(x | x′)
p∗(x)q(x′ | x)

Markov chain Monte Carlo | Inference with Monte Carlo methods 5-17



Metropolis-Hastings (MH) algorithm

• we should be able to evaluate target distribution p∗(x)

• valid proposal q: supp(p∗) ⊆ ∪xsupp(q(· | x))

• sampling from unnormalized target distribution p∗(x) = 1
Zp
p̃(x):

α =
(p̃(x′)/Zp)q(x | x′)
(p̃(x)/Zp)q(x′ | x)

=
p̃(x′)q(x | x′)
p̃(x)q(x′ | x)
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Metropolis-Hastings (MH) algorithm

given proposal distribution q.
initialize x.
repeat

Sample x′ ∼ q(x′ | x).
Compute α := p∗(x′)q(x|x′)

p∗(x)q(x′|x) .

Compute acceptance probability A := min{1, α}.
Sample u ∼ U(0, 1).

Set new sample to x :=

{
x′ u ≤ A (accept)

x u > A (reject).

until number of iterations reached.
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Metropolis-Hastings (MH) algorithm

convergence analysis

• MH defines a Markov chain with transition matrix

p(x′ | x) =
{

q(x′ | x)A(x′ | x) x′ ̸= x

q(x | x) +∑x′ ̸=x q(x
′ | x)(1−A(x′ | x)) otherwise

• if the target distribution p∗ is the stationary distribution of this Markov chain, then it
satisfies the detailed balance criterion

p(x′ | x)p∗(x) = p(x | x′)p∗(x′)
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Metropolis-Hastings (MH) algorithm

proof

• assume that the Markov chain is ergodic and irreducible

• given two states x and x′, we have

p∗(x)q(x′ | x) < p∗(x′)q(x | x′) or p∗(x)q(x′ | x) ≥ p∗(x′)q(x | x′)

• without losing generality, we can assume

p∗(x)q(x′ | x) > p∗(x′)q(x | x′)

=⇒ α(x′ | x) = p∗(x′)q(x | x′)
p∗(x)q(x′ | x) < 1

=⇒ A(x′ | x) = α(x′ | x) and A(x | x′) = 1
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Metropolis-Hastings (MH) algorithm

=⇒


p(x′ | x) = q(x′ | x)A(x′ | x) = q(x′ | x)p

∗(x′)q(x | x′)
p∗(x)q(x′ | x) =

p∗(x′)

p∗(x)
q(x | x′)

p(x | x′) = q(x | x′)A(x | x′) = q(x | x′)

=⇒ p∗(x)p(x′ | x) = p∗(x′)q(x | x′)

=⇒ p∗(x)p(x′ | x) = p∗(x′)p(x | x′)

=⇒ detailed balence is satisfied by p∗
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Metropolis-Hastings (MH) algorithm

proposal distributions q

• independence sampler: q(x′ | x) = q(x′), e.g., x′ ∼ N (µ,Σ)

• random walk Metropolis (RWM):

x′ ∼ N (x, σ2I) ⇐⇒ (x′ − x) ∼ N (0, σ2I)

• composing proposals:

q(x′ | x) =
m∑
i=1

wiqi(x
′ | x)

– w: mixing weights, and wT1 = 1

– if each qi is valid individually and w ⪰ 0, the overall mixture proposal q is also valid
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Metropolis-Hastings (MH) algorithm

example: sampling from a mixture of Gaussians with RWM

Iterations

0

250

500

750

1000

Samp
les−100

−50
0

50
100

0.00

0.01

0.02

0.03

0.04

MH with N (0, 12) proposal

Iterations

0

250

500

750

1000

Samp
les−100

−50
0

50
100

0.00

0.02

0.04

0.06

0.08

MH with N (0, 5002) proposal

Iterations

0

250

500

750

1000

Samp
les−100

−50
0

50
100

0.00

0.01

0.02

0.03

MH with N (0, 82) proposal

Markov chain Monte Carlo | Inference with Monte Carlo methods 5-24



Gibbs sampling

• a special case of MH algorithm

• exploiting conditional independence properties of a graphical model on X to automatically
create a good proposal q, with 100% acceptance probability

idea: sample each variable in turn, conditioned on the values of all the other variables in the
distribution

example: sample some variable X ∈ R3 according to

x′1 ∼ p(x′1 | x2, x3)
x′2 ∼ p(x′2 | x′1, x3)
x′3 ∼ p(x′3 | x′1, x′2)
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Gibbs sampling

• p(x′i | x−i): full conditional for variable Xi

• if Xi is a known variable, we do not sample it, but it may be used as input to the another
conditional distributions

• if we represent p(x) as a graphical model,

x′i ∼ p(x′i | x−i) = p(x′i | mb(xi))

• we should have access to the analytical expression of target distribution p to derive the full
conditionals for each Xi
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Gibbs sampling

connections to MH

• Gibbs sampling is a special case of MH using a sequence of proposals

qi(x
′ | x) = p(x′ | x−i)Ix−i

(x′−i), i = 1, . . . , n

– X ∈ Rn

– Ix−i : indicator function

• proof of 100% acceptance probability: for sampling each Xi, we have x′−i = x−i, thus

α =
p(x′)qi(x | x′)
p(x)qi(x′ | x)

=
p(x′i | x′−i)p(x

′
−i)p(xi | x′−i)

p(xi | x−i)p(x−i)p(x′i | x−i)

=
p(x′i | x−i)p(x−i)p(xi | x−i)

p(xi | x−i)p(x−i)p(x′i | x−i)
= 1
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Gibbs sampling

example: Gibbs sampling for Ising models

for a 2-dimensional lattice G = (X,E):

• lattice model:

p(x) =
1

Zp

∏
(Xi,Xj)∈E

ψij(xi, xj)

– ψij(xi, xj): potential function of clique C = {Xi, Xj}
• Ising model:

– Xi are binary for all i = 1, . . . , n
– potential function expressed as

ψij(xi, xj) =

{
eJ xi = xj

e−J xi ̸= xj
= exp(Jxixj)

X1 X2 X3 X4 X5

X6 X7 X8 X9 X10

X11 X12 X13 X14 X15

X16 X17 X18 X19 X20
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Gibbs sampling

to sample for an n-dimensional random vector X following an Ising model,

p(xi | x−i) ∝
∏

Xj∈adj(Xi)

ψij(xi, xj), i = 1, . . . , n

=⇒ p(xi = +1 | x−i) =

∏
Xj∈adj(Xi)

ψij(xi = +1, xj)∏
Xj∈adj(Xi)

ψij(xi = +1, xj) +
∏

Xj∈adj(Xi)
ψij(xi = −1, xj)

=
exp(J

∑
Xj∈adj(Xi)

xj)

exp(J
∑

Xj∈adj(Xi)
xj) + exp(−J∑Xj∈adj(Xi)

xj)

=
exp(Jηi)

exp(Jηi) + exp(−Jηi)

• ηi =
∑

Xj∈adj(Xi)
xj
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Gibbs sampling

Metropolis within Gibbs

• use MH algorithm to sample from the full conditionals

to sample x′i ∼ p(x′i | x′1:i−1, xi+1:n):

1. Propose x′′i ∼ q(x′′i | xi).
2. Compute the acceptance probability Ai = min{1, αi}, where

αi =
p(x′′i | x′1:i−1, xi+1:n)q(xi | x′′i )
p(xi | x′1:i−1, xi+1:n)q(x′′i | xi)

.

3. Sample u ∼ U(0, 1).
4. Set x′i = x′′i if u < Ai, and x

′
i = xi otherwise.
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Hamiltonian Monte Carlo (HMC)

idea: create proposal q based on gradient information

Hamiltonian mechanics
the total energy of a particle rolling around an energy landscape is

H(θ, v) = E(θ) +K(v)

• θ ∈ Rn: position

• v ∈ Rn: momentum

• (θ, v): phase space

• E(θ): potential energy
• K(v) = 1

2v
TΣ−1v: kinetic energy, where Σ ∈ Sn

++ is the mass matrix

• H(θ, v): total energy (Hamiltonian)
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Hamiltonian Monte Carlo (HMC)

• trajectory of the particle can be obtained by solving Hamilton’s equations:
dθ

dt
=
∂H
∂v

=
∂K
∂v

dv

dt
= −∂H

∂θ
= −∂E

∂θ

• energy is conserved under Hamiltonian mechanics, since

dH
dt

=

n∑
i=1

(
∂H
∂θi

dθi
dt

+
∂H
∂vi

dvi
dt

)
=

n∑
i=1

(
∂H
∂θi

∂H
∂vi

− ∂H
∂θi

∂H
dvi

)
= 0
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Hamiltonian Monte Carlo (HMC)

to solve Hamilton’s equations in discrete time:

• Euler’s method: 
vt+1 = vt + η

dv

dt

∣∣∣∣
θ=θt,v=vt

= vt − η
∂E
∂θ

∣∣∣∣
θ=θt

θt+1 = θt + η
dθ

dt

∣∣∣∣
θ=θt,v=vt

= θt + η
∂K
∂v

∣∣∣∣
v=vt

.

– η: step size

– if K(v) = 1
2
vTΣ−1v, the second term reduces to

θt+1 = θt + ηΣ−1vt
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Hamiltonian Monte Carlo (HMC)

• modified Euler’s method:
vt+1 = vt + η

dv

dt

∣∣∣∣
θ=θt,v=vt

= vt − η
∂E
∂θ

∣∣∣∣
θ=θt

θt+1 = θt + η
dθ

dt

∣∣∣∣
θ=θt,v=vt+1

= θt + η
∂K
∂v

∣∣∣∣
v=vt+1

.

– slightly more accurate than Euler’s method

– asymmetry of this method can cause some theoretical problems
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Hamiltonian Monte Carlo (HMC)

• leapfrog integrator: 

vt+1/2 = vt −
η

2

∂E
∂θ

∣∣∣∣
θ=θt

θt+1 = θt + η
∂K
∂v

∣∣∣∣
v=vt+1/2

vt+1 = vt+1/2 −
η

2

∂E
∂θ

∣∣∣∣
θ=θt+1

.

– symmetrized version of the modified Euler’s method

– can be extended to multiple leapfrog steps, i.e., performing a half step update of v at the
beginning and end of the trajectory, and alternating between full step updates of θ and v in
between
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Hamiltonian Monte Carlo (HMC)

the HMC algorithm

• establish a new target by introducing an auxiliary variable v to the initial target
distribution p(θ):

p(θ, v) =
1

Z
exp(−H(θ, v)) =

1

Z
exp

(
−E(θ)− 1

2
vTΣ−1v

)

• after sampling w.r.t. p(θ, v), we just ‘throw away’ the v’s so that

p(θ) =

∫
p(θ, v) dv =

1

Zθ
e−E(θ)

∫
1

Zv
e−

1
2 v

TΣ−1v dv =
1

Zθ
e−E(θ)
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Hamiltonian Monte Carlo (HMC)

suppose the previous state of the Markov chain is (θt−1, vt−1), to sample the next state,

• set the initial position to θ′0 = θt−1, and sample a new random momentum v′0 ∼ N (0,Σ)

• starting from (θ′0, v
′
0), perform L leapfrogs to get the proposed state (θ∗, v∗) = (θ′L, v

′
L)

• check divergence of the simulated trajectory, if H0 ̸= HL, reject the sample

• if the trajectory is not diverged, compute the MH acceptance probability as

A = min

{
1,

p(θ∗, v∗)

p(θt−1, vt−1)

}
= min {1, exp (−H(θ∗, v∗) +H(θt−1, vt−1))}

– the transition probabilities cancel since the proposal is reversible

• accept the proposal with probability A by setting (θt, vt) = (θ∗, v∗), otherwise reject it
((θt, vt) = (θt−1, vt−1))
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Hamiltonian Monte Carlo (HMC)

given the number of leapfrog steps L, the step size η, and the covariance matrix Σ.
repeat

Generate random momentum vt−1 ∼ N (0,Σ).
Set (θ′0, v

′
0) := (θt−1, vt−1).

Half step for momentum: v′
1/2

:= v′0 − η
2
∇E(θ′0).

for l = 1, . . . , L− 1 do
θ′l := θ′l−1 + ηΣ−1v′

l−1/2
.

v′
l+1/2

:= v′
l−1/2

− η∇E(θ′l).
end for
Full step for location: θ′L := θ′L−1 + ηΣ−1v′

L−1/2
.

Half step for momentum: v′L := v′
L−1/2

− η
2
∇E(θ′L).

Obtain proposal (θ∗, v∗) := (θ′L, v
′
L).

Compute acceptance probability A := min {1, exp (−H(θ∗, v∗) +H(θt−1, vt−1))}.
Set θt := θ∗ with probability A, other wise θt := θt−1.

until number of iterations reached.

• we must pick a random momentum at the start of each iteration to ensure the sampler
explores the full space

Markov chain Monte Carlo | Inference with Monte Carlo methods 5-38


	Monte Carlo methods
	Monte Carlo integration
	Sampling from simple distributions
	Rejection sampling
	Importance sampling

	Markov chain Monte Carlo
	Metropolis-Hastings algorithm
	Gibbs sampling
	Hamiltonian Monte Carlo


