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Characterizing decision-making behavior

inverse reinforcement learning (IRL)

e consists in determining the underlying (intrinsic) reward function given expert demonstrations

e appears to be emerging as a valuable tool for constructing mathematical behavior models in
behavioral neuroscience and cognitive science research

multi-intention IRL

e extends IRL from the single, fixed reward function to multiple, non-stationary reward functions

e considers that animal’s goals can evolve over time due to, e.g., fatigue, satiation, and curiosity
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Related work

dynamical inverse reinforcement learning (DIRL) (Ashwood et al. [AJP22])
e extends maximum entropy IRL to non-stationary rewards
e achieved SOTA performance in animal behavior prediction

e parametrizes the animal’s reward function as a smoothly time-varying linear combination of a
small number of spatial reward maps with Gaussian random walk prior over weights

K
ri(s) = Z g 1 Uk (S)
k=1

— up € RIS the kth reward map
— ak,: € R: reward map mixing weight, where o ; = a.t—1 + € with ex ~ N(0,07)

e allows the instantaneous reward function to vary continuously in time

» demands have emerged on IRL with discrete time-varying reward functions, especially after
[ARS'22] suggesting that animals alternate between discrete strategies during decision-making
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Inverse Q-learning
(Kalweit et al. [KHWB20])

maximize Eg¢p [logP (£ | 7,)]
subject to  7,(s,a) = exp (Q(s,a) —log> expQ(s,-)), forall s€ S, a e A
Q(s,a) =7(s,a) + 7 ycs P(s,a,8" ) maxgea Q(s',a’), forall s € S, a € A

e optimization variable r: the unknown reward function

e problem data D: the set of expert demonstrations with each trajectory £ € D defined as a
sequence of state-action pairs: &€ = {(s0,a0),.--, (Sn,an)}

Boltzmann policy constraint guarantees the IRL problem is tractable

the transition probability P is not necessarily known
— model-based: closed-form inverse action-value iteration (1AVI) via least squares

— model-free: inverse Q-learning (IQL) via stochastic approximation
Hierarchical inverse Q-learning



Graphical representation of expert’s decision process

assumptions

e each expert demonstration is generated according to the Boltzmann optimal policy under one of
the reward functions in the set R = {ry,...,rx}, with each corresponding to one specific
intention

e the probability that one demonstration is generated under reward function r € R is controlled by
a Markov chain with initial state distribution IT and transition matrix A

B () -

() ()
A wiL i
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Hierarchical inverse Q-learning (HIQL)

solving IRL problems on such decision network with parameters © = {II, A, R} consists in determining
e a set of reward functions

e the reward function index for each demonstration

consider the expectation-maximization (EM) approach, let n = {zo, ..., 2,} be the predicted
sequence of reward function indexes for trajectory £ € D, each iteration of the EM process can be
written as an MLE problem:

maximize J(©T | ©) = E¢up,y [logP (§,7] ©1)]

e optimization variable: ©%
e problem data: D and ©
e the predicted indexes 1 is marginalized out in the expectation
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Hierarchical inverse Q-learning (HIQL)

solving the problem in page 9 is equivalent to solving a sequence of optimization problems:
maximize (over IT")  Eeup [Zf{zl P(z0=1]&,0)log Hj]

subject to ot >o, 1”71t =1

maximize (over AY)  Ee¢op [Zfil Zle S Pziii =4,z =7]&0)log A;}
subject to Af =0, 1TAI:1, i=1,...,K

maximize (over ) Eeup [Zf:() P(z =1|&,0)logm +(st, at)]
subject to 7 +(s,a) = exp (Q(s,a) —log > expQ(s,-)), foralls€ S, a € A
Q(s,a) =7 (s,a) + 7Y, cs P(s,a,s") maxae s Q(s',a), forall s€ S, a € A

e the Baum-Welch algorithm can be applied to obtain the posterior probabilities P(z; =i | £, ©)
and P(z-1 =1i,2e =7 [ £, 0)
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Hierarchical inverse Q-learning (HIQL)

e the first two optimization problems about II™ and AT is maximized by
I+ =5ED[P(z0 =i|&0)], i=1,...,K

A+ _ EEND,t [P(Zt—l = ?:7 2t :.] | 57 @)]

- _ L i=1
Bl Ecp,i [P(zi-1 =1 | £, 0O)] '

LK, =1, K

e the optimization problem about ;" can be solved by first sampling a demonstration subset D’
corresponding to 7" w.rt. P(z; =i | £,0), and then use the class of IQL algorithms to learn 7"
based on the sampled trajectories

Hierarchical inverse Q-learning 11
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Gridworld benchmark

()<
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o A = {left, right, up, down, stay}

e 10% probability to random state

Experiments

e 8% move towards (4, 4)

o mabandon: moye towards (0,0)

1: initialize 5 == (0,0), 7 :== 78% ¢ == 0.

2: repeat

3: an~ T.

4 s~ P(s,a,-).

5 if s has barrier ‘'#’ then

6: Switch to another policy (30%).
7 else if t =8 then

8 7 = abandon (5004)

9 end if

10: t=t+1.
11: until (0,0) or (4,4) is reached.
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Gridworld benchmark

0.0

« —=- ground truth
—— HIVAI (1 intention)

—0.51% ~— HIAVI (2 intentions)

—— DIRL (1 map)
—~1.04 —— DIRL (2 maps, 0 = 0.01)
—— DIRL (2 maps, 0 = 0.1)

—— DIRL (2 maps, 0 = 1)
—1.5 —— DIRL (2 maps, o = 10)

log-likelihood
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Gridworld benchmark

ground truth HIAVI DIRL
(1 intention) (2 intentions) (1 map) (2 maps, 0 = 0.01) (2 maps, 0 =0.1) (2 maps, 0 = 1) (2 maps, o = 10
=
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4. 0.0 2.1
HIAVI DIRL
1 intention 2 intentions 1 map 2 maps
o = 0.01 o =0.1 oc=1 o =10
‘goal’ 13.96 + 0.23 5.58 + 0.47 47.10 £ 0.00 27.63 £ 6.55 2.97 + 0.67 11.08 + 3.56 37.97 £ 1.29
‘abandon’ 45.55 + 0.07 6.39 + 1.80 48.17 £+ 0.00 45.90 £+ 0.15 45.48 £+ 0.49 48.15 + 0.05 48.15 + 0.06
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Real-world

Experiments

mice navigation benchmark
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action space: A = {left, right, reverse, stay}
card S = 127
deterministic transition function P

subjects: water restricted & unrestricted mice
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Real-world mice navigation benchmark

water restricted animals
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Real-world mice navigation benchmark

intention 1: 'tired’

intention 2: ‘thirsty’
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Real-world mice navigation benchmark

water unrestricted animals
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Real-world mice navigation benchmark

intention 1: 'exploring' intention 2: ‘tired’ .
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7] |_|: _, - |£‘ ::l _'|._.I.: 'j'—"'_'lf‘ 0.1 P('tired")
STT- - B I ES I P I PR 05
e '
E 'f\ :j .:|I.—| —'f\ 0.01 P (‘exploring’)
<
PN ) 0.0, T T
b-# # 2 Tedooe R
0 time

Experiments



Application to mice reversal-learning behavior

dynamic two-armed bandit task MDP formulation
e action space: A = {left, right}

o= — >< jo) e state space:
= J 0

8t = (Pr—tsee ey Proty; U1y -+, Qt—sy,)
e deterministic reward (water) delivery
— forall s; €S
e performance-dependent reward switch — 4, € Z, — history length

¢ € {hit, error} — history extrinsic reward

— a € A — history action

e unknown stochastic environment model P
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Application to mice reversal-learning behavior

—0.38 1 = o o o
- . S 0.4- = e— 40007
g —0401 A1 N 2 —o———2
= \ 2 ) d = O e |
= o2 2., an =3 L 3000
= X \ o0
8 (.44 b= wain < 2000 1
2 -4 test S
_046 T T T T T ’ T T T T T T T T T T T
1 2 3 4 5 F. 12 3 4 5 1 2 3 4 5
history length # intentions # intentions

e F.: forgetting Q-learning model [BNLS22]
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Application to mice reversal-learning behavior

0.894 == global fit =~ P(win-stay)

~o- P(switch) -0~ P(lose-switch)
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Conclusion

the class of HIQL algorithms
e outperforms the SOTA on both synthesized and real-world datasets

e can produce interpretable behavior characteristics
e characterized typical exploration behavior of rodents during value-based decision-making

compared to the SOTA for characterizing animal behavior,

e the assumptions about the underlying intention transition dynamics in HIQL align better with
those observed in real-world behavioral experiments

Conclusion
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