
Multi-convex Programming for
Discrete Latent Factor Models Prototyping
Hao Zhu, Shengchao Yan, Jasper Hoffmann, and Joschka Boedecker

IN-CODE Retreat, 2025 https://github.com/nrgrp/dlfm

•DLFMs appear in domains such as machine learning, economics, signal processing, control, etc.

• in neuroscience and psychology, DLFMs provide interpretable characterizations of neural popula-
tion activities and subject behavior

• currently, fitting a DLFM to some dataset relies on customized solver for individual models

– requires lots of background knowledge (both theoretical and technical) to implement

– limited to the targeted specific instance of DLFMs

– difficult to add regularization terms and constraints on the DLFM parameters and latent factors

• we propose a framework for specifying and solving DLFM fitting problems

– supports DLFMs with loss functions and constraints of the fitting problem convex (even the
fitting problem itself is not), including a wide range of regression and classification models

– allows the users to fit a DLFM to some dataset easily (within a couple of lines of code) in high
level human readable language, close to the math

Discrete latent factor models (DLFMs)

DLFMs are generally expressed as

z ∼ prob(z), y ∼ prob(y | x, z, θ)

• z ∈ {e1, . . . , eK} ⊆ RK is the latent factor (in vector form), θ is the model parameter

• x and y are the feature and observation, respectively

Standard DLFM fitting problems

minimize
∑m

i=1 z
T
i ri =

∑m
i=1 z

T
i (f (xi, yi; θ1), . . . , f (xi, yi; θK))

subject to zi ∈ {0, 1}K, card zi = 1, i = 1, . . . ,m

θi ∈ C, i = 1, . . . , K

(1)

• variables: model parameters θ1, . . . , θK and latent factors z1, . . . , zm

• data: feature-observation pairs {xi, yi}mi=1
• the feasible set C is closed and convex; the loss function f is convex and resolves to scalar

Regression models

f (x, y; θ) = g(xTθ − y)

• x, θ ∈ Rn, y ∈ R, g : R → R is some loss function, e.g.,

– (squared) ℓp-loss: g(u) = u2, g(u) = ∥u∥p for p ∈ [1,∞]

– Huber loss: f (u) = u2 for |u| ≤ δ, and f (u) = 2δ|u| − δ2 for |u| > δ

• nonscalar observations: g(u) = ∥u∥22, g(u) = ∥u∥1; g(U) = ∥U∥2F = tr(UTU)

Classification models

f (X, y; θ) = − log

(
yT expu∑p
i=1 expui

)
, u = Xθ

•X ∈ Rp×n, y ∈ {e1, . . . , ep} ⊆ Rp, θ ∈ Rn

• includes binary logistic regression as a special case

• readily adapted to deal with hinge loss or exponential loss

Constraints on model parameters

• nonnegative orthant θ ⪰ 0, unit norm ball ∥θ∥2 ≤ 1, probability simplex 1Tθ = 1

Heuristic solution via BCD

relaxing the mixed integer constraints in (1), we have

minimize
∑m

i=1 z
T
i ri =

∑m
i=1 z

T
i (f (xi, yi; θ1), . . . , f (xi, yi; θK))

subject to 0 ⪯ zi ⪯ 1, 1Tzi = 1, i = 1, . . . ,m

θi ∈ C, i = 1, . . . , K

(2)

to solve the multi-convex problem (2), in each block coordinate descent (BCD) iteration, we alter-
nate between solving the problems

(P)

minimize
∑m

i=1 z̃
T
i ri

subject to ri = (f (xi, yi; θk))
K
k=1, θk ∈ C

i = 1, . . . ,m, k = 1, . . . , K

(F)

minimize
∑m

i=1 z
T
i r̃i

subject to 0 ⪯ zi ⪯ 1, 1Tzi = 1

i = 1, . . . ,m

• P-problem has variables: θ1, . . . , θK and data {xi, yi}mi=1 from the dataset, z̃1, . . . , z̃m ∈ RK

corresponding to the optimal point of the F-problem in the last iteration

• F-problem has variables: z1, . . . , zm ∈ RK and data r̃i = (f (xi, yi; θ̃1), . . . , f (xi, yi; θ̃K)),
i = 1, . . . ,m, where θ̃1, . . . , θ̃K are the optimal point of the P-problem in the last iteration

Regularizations

• for sparse model parameters θ1, . . . , θK : λ
∑K

k=1 ∥θk∥1 with λ ≥ 0

• for sparse latent factor change: λ
∑m−1

i=1 Dkl(zi, zi+1) with λ ≥ 0 (Dkl is the KL-divergence)

Implementation

Specifying a problem

(only the commented lines need to be specified by the user)

1 import cvxpy as cp

2
3 ### problem data

4 xs = None # ndarray: dataset features

5 ys = None # ndarray: dataset observations

6 m = None # int: number of samples in the dataset

7
8 ### P-problem

9 K = None # int: number of latent factors

10 thetas = [] # list of cp.Variable objects: model parameters

11 r = [] # list of cp.Expression objects: loss functions

12 ztil = cp.Parameter ((m, K), nonneg=True)

13 Pobj = cp.sum(cp.multiply(ztil , cp.vstack(r).T))

14 Preg = 0 # cp.Expression: regularization on model parameters

15 Pconstr = [] # list of cp.Constraint objects: model parameter constraints

16 Pprob = cp.Problem(cp.Minimize(Pobj + Preg), Pconstr)

17
18 ### F-problem

19 rtil = cp.Parameter ((K, m))

20 z = cp.Variable ((m, K))

21 Fobj = cp.sum(cp.multiply(z, rtil.T))

22 Freg = 0 # cp.Expression: regularization on latent factors

23 Fconstr = [z >= 0, z <= 1, cp.sum(z, axis =1) == 1]

24 Fprob = cp.Problem(cp.Minimize(Fobj + Freg), Fconstr)

Running BCD iterations

(quit when the optimal values of the P- and F-problem converge)

1 while np.abs(Pobj.value - Fobj.value) > 1e-6:

2 ztil.value = np.abs(z.value)

3 Pprob.solve ()

4 rtil.value = cp.vstack(r).value

5 Fprob.solve ()

Examples

Hierarchical forgetting Q-learning

consider an agent performing a p-armed bandit:

• reward signal u(t) ∈ {0} ∪ {e1, . . . , ep} ⊆ Rp indicates if the action at time t− 1 is rewarded

• action at time t is selected under parameters θ(t) ∈ {θ1, . . . , θK} ⊆ Rn, according to

v(t) = X(t)θ(t), X(t) =
[
u(t) u(t− 1) · · · u(t− n + 1)

]
∈ Rp×n,

y(t) ∼ Cat({e1, . . . , ep}, exp v(t)/1T exp v(t))

the optimization problems in each BCD iterations are

(P)

minimize
∑m

t=1 z̃(t)
T r(t)

subject to r(t) = − log

(
y(t)T exp(X(t)θ1)
1T exp(X(t)θ1)

,
y(t)T exp(X(t)θ2)
1T exp(X(t)θ2)

)
, t = 1, . . . ,m

θ1 ≥ 0, θ1,1 ≥ · · · ≥ θ1,5, θ2 ≤ 0, θ2,1 ≤ · · · ≤ θ2,5

(F)
minimize

∑m
t=1 z(t)

T r̃(t) + λ
∑m−1

t=1 Dkl(z(t), z(t + 1))

subject to 0 ⪯ z(t) ⪯ 1, 1Tz(t) = 1, t = 1, . . . ,m

1

2

λ
=

0

latent factor

0

20

40
θ1

−10

0
θ2

0 100 200
t

1

2

λ
=

1

1 2 3 4 5
indices

0

5

10

1 2 3 4 5
indices

−4

−2

0

Figure 1: Colored solid lines: recovered latent factors and model parameters. Black dashed lines: ground truth.

Input-output hidden Markov model

consider a dataset generated according to

• ẑ(t) ∈ {1, . . . , K} from a K-state Markov chain, with coefficients θẑ(t) ∈ {θ1, . . . , θK} ⊆ Rn

• y(t) ∈ {0, 1} with prob(y(t) = 1) = 1/(1+exp(−x(t)Tθẑ(t))), given feature vector x(t) ∈ Rn

the optimization problems in each BCD iterations are

(P)

minimize
∑m

t=1 z̃(t)
T r(t) + λθ

∑3
k=1 ∥θk∥2

subject to r(t) = −
(
y(t)x(t)Tθk − log

(
1 + ex(t)

Tθk
))3

k=1
θ1,1 ≤ 0, θ2,1 ≥ 0, θ3,1 ≥ 0

t = 1, . . . ,m

(F)
minimize

∑m
t=1 z(t)

T r̃(t) + λz
∑m−1

t=1 Dkl(z(t), z(t + 1))

subject to 0 ⪯ z(t) ⪯ 1, 1Tz(t) = 1, t = 1, . . . ,m

−5 0 5
x̄

0.0

0.5

1.0

1/
(1

+
ex

p
(−

x
T
θ)

)

Figure 2: Colored solid lines:
recovered decision curve. Black
dashed lines: ground truth.

References

[BV04] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004.

[SDU+17] X. Shen, S. Diamond, M. Udell, Y. Gu, and S. Boyd. Disciplined multi-convex programming. In 29th Chinese
Control and Decision Conference (CCDC), pages 895–900. IEEE, 2017.

