Multi-convex Programming for
Discrete Latent Factor Models Prototyping

Hao Zhu, Shengchao Yan, Jasper Hoffmann, and Joschka Boedecker

IN-CODE Retreat, 2025

e DLFMs appear in domains such as machine learning, economics, signal processing, control, etc.

e in neuroscience and psychology, DLFMs provide interpretable characterizations of neural popula-
tion activities and subject behavior

e currently, fitting a DLFM to some dataset relies on customized solver for individual models

— requires lots of background knowledge (both theoretical and technical) to implement
— limited to the targeted specific instance of DLFMs
— difficult to add regularization terms and constraints on the DLFM parameters and latent factors

e we propose a framework for specifying and solving DLFM fitting problems

—supports DLFMs with loss functions and constraints of the fitting problem convex (even the
fitting problem itself is not), including a wide range of regression and classification models

— allows the users to fit a DLFM to some dataset easily (within a couple of lines of code) in high
level human readable language, close to the math

Discrete latent factor models (DLFMs)

DLFMs are generally expressed as
2 ~ prob(z), y~ prob(y |z, z2,0)

oz c{ey,...,ext C R™ is the latent factor (in vector form), 6 is the model parameter

e r and y are the feature and observation, respectively

Standard DLFM fitting problems

minimize > 2 = S 2 (f (i, y501), - f (2, 95 0K)
subject to z; € {0, 1}K, cardz; =1, i=1,....m (1)
beC, i=1,....K

e variables: model parameters 01, ..., 0 and latent factors 21, ..., z;,

o data: feature-observation pairs {z;,y;} m

e the feasible set C is closed and convex: the loss function f is convex and resolves to scalar

Regression models

f(z,y;0) = g(a'6 — y)

er, 0 c R" ye R, g: R— R is some loss function, e.g.,
— (squared) £)-loss: g(u) = u?, g(u) = [ul],, for p € [1, 00]
— Huber loss: f(u) = u® for |u| < §, and f(u) = 26|u| — 62 for |u| > §
(u) = [lully; 9(U) = |U||F = tr(UTV)

e nonscalar observations: g(u) =

Classification models

T
FX,y:0) = —log | |, u= X6
22'21 CXP Uy

o X e RP*" ye{eg,...,ep} CTRP, 6 R"”

e includes binary logistic regression as a special case

e readily adapted to deal with hinge loss or exponential loss

Constraints on model parameters

e nonnegative orthant § > 0, unit norm ball ||0||, < 1, probability simplex 179 = 1

O ~NO Ol B Wi

NN NN NNR PR PR R R R BFE 2
S~ DO NP O OO0 NO Ol Wih—+k O O

o1 &~ W N

NR Lab ‘”“IN-CODE

universitatfreiburg

Heuristic solution via BCD

relaxing the mixed integer constraints in (1), we have

minimize 7y zlry = Y 2N (f (s, v 01), - fwg 05 0K)
subject to 0 <z, <1, 11z =1, i=1,....m (2)
b, €C, 1=1,....K

to solve the multi-convex problem (2), in each block coordinate descent (BCD) iteration, we alter-
nate between solving the problems

ST

minimize Y " 257 Iy

minimize Y /", 2 7
P) subject to r; = (f(z;,y;; 0 K:, 0. €C F) subjectto 0 <2z <1, 1{z =1
k) k=1 k
v=1,....m, k=1,... K 1=1,...,m

e P-problem has variables: 01, ..., 0 and data {z;,y;},"; from the dataset, z1,...,%;, € RE
corresponding to the optimal point of the F-problem in the last iteration
zm € R™ and data 7 = (f(z,9::01), ..., f(wi,9i:0)),

, 05 are the optimal point of the P-problem in the last iteration

e F-problem has variables: zq,...
1=1,...,m, where 61, ...

Regularizations

O AT 16kl with A >0
D}ﬂ(%; zir1) with X > 0 (Dyq is the KL-divergence)

e for sparse model parameters 61, . ..

o for sparse latent factor change: A "

Implementation

Specifying a problem

(only the commented lines need to be specified by the user)

import cVvXpy as cp

problem data

xs = None # ndarray: dataset features

ys = None # ndarray: dataset observations

m = None # 1int: number of samples in the dataset

P-problem

K = None # 1int: number of latent factors

thetas = [] # list of cp.Variable objects: model parameters
r = [J] # list of cp.Expression objects: loss functions

ztil = cp.Parameter((m, K), nonneg=True)

Pobj = cp.sum(cp.multiply(ztil, cp.vstack(r).T))

Preg = 0 # cp.Expression: regularization on model parameters
Pconstr = [] # list of cp.Constraint objects: model parameter constraints
Pprob = cp.Problem(cp.Minimize (Pobj + Preg), Pconstr)

F-problem

rtil = cp.Parameter ((K, m))

z = cp.Variable ((m, K))

Fobj = cp.sum(cp.multiply(z, rtil.T))

Freg = 0 # cp.Expression: regularization on latent factors
Fconstr = [z >= 0, z <= 1, cp.sum(z, axis=1) == 1]

Fprob = cp.Problem(cp.Minimize(Fobj + Freg), Fconstr)

Running BCD iterations

(quit when the optimal values of the P- and F-problem converge)

while np.abs(Pobj.value - Fobj.value) > le-6:
ztil.value = np.abs(z.value)
Pprob.solve ()
rtil.value = cp.vstack(r).value
Fprob.solve ()

.]Ej

=

1

Of

https://github.com/nrgrp/dlfm

Examples

Hierarchical forgetting Q-learning

consider an agent performing a p-armed bandit:

e reward signal u(t) € {0} U {eq,...,ep} C RP indicates if the action at time ¢ — 1 is rewarded

e action at time t is selected under parameters 6(t) € {6;,...,0} C R", according to

o(t) = X(O0), X&) = |ult) ut—1) -
y(t) ~ Cat({e1,... ep}, expo(t)/11 expu(t))

u(t—n+1)} e RP*™,

the optimization problems in each BCD iterations are

minimize Zt 1 Z(t) r(t)

Fex) ()" exp(X (t)05) B
— log (p | leepr()X(t)Qz)) o t=1,....m

>915, Oy <0, 091 <---<ths

1,12
(F) Minimize z;zlz(t) Pt)Hz;nllpkl((t), 2(t + 1))
subject to 0 < z(t) <1, 11z(t)=1, t=1,...,m

(P) subject to r(t

6, >0,

latent factor 01 0,
5 - : 40 (E— e
-
| 20
~<
Q\
1 Ll 0 - \\r>—-—4>———4>————o
| | | | | | | |
Tnnnr] “F
R \
" T A \
AR RN T\
~ A B | : \
T PR : T \\
1 : : : : 1 1 : : 1 \
i = = I__I L_l I_J O_I zl}_-_-?____?____? 1 1 1 1 1
1 2 3 4 5 1 2 3 4 5

S
—_
~ O 4
(-}
DO
O—.
O

indices indices

Figure 1: Colored solid lines: recovered latent factors and model parameters. Black dashed lines: ground truth.

Input-output hidden Markov model

consider a dataset generated according to

0k} € R”
y(t) € {0, 1} with prob(y(t) =1) = 1/(1+exp(—a:(t)T(92(t>)), given feature vector z(t) € R"

2(t) € {1,..., K} from a K-state Markov chain, with coefficients 6,y € {61, . ..

the optimization problems in each BCD iterations are ;.% 1O~ X, 7
8
|
minimize S0 20T () + Mg S0y 10415 505
subject to 7(t) = — (y(t)z(t) 0 — log (1 + et ()" Oy o
011 <0, 021>0, 031>0 O'O__'5
t=1,....m
(F) minimize Zﬁl Z(()"‘ Az 1Dkl(() Z(t_i_ 1)) Figure 2: Colored solid lines:

recovered decision curve. Black

) T (t
subject to 0 < 2(¢t) <1, 11z (t)zl, t=1,...,m
dashed lines: ground truth.

References

[BV04] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004.

[SDUT17] X. Shen, S. Diamond, M. Udell, Y. Gu, and S. Boyd. Disciplined multi-convex programming. In 29th Chinese
Control and Decision Conference (CCDC), pages 895-900. IEEE, 2017.

