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Main Questions for Today

How do we explain goal-directed animal behavior given that we often see
objectively non-optimal behavior? Which factors contribute? What are the
animals optimizing for?

Response-Preparation Task (simplified):

lever press vibration cue

= Press lever until cue (vibration) occurs (delay 1.6s).
= After the cue, the rat has 0.6s to release the lever
» |f successful, the rat gets a treat.

Images courtesy of the Diester Lab
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Reinforcement Learning in a Nutshell
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State / _
Observation Action
a€ A
seS

Environment

p(s',rls,a) = Pr{S; = s, Ry =r|S;_1 = s, As_1 = a}

Goal: find policy that maximizes expected long-term reward
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States in Autonomous Driving Application
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The middle of the lane (a4

20 features total: - TS

Relative Distance

Max. 6 potential vehicles
surrounding the RL agent
Relative Angle
3 features per vehicle — 18

Relative Distance

Relative Velocity

Relative Angle

Relative Velocity
(for other vehicles relative to RL Agent)

2 features describing the RL agent
Velocity
Relative Angle
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Transition Probabilities
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Rewards
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@ = Stochastic vs

deterministic

= Dense vs

sparse
(delayed)
WG o) = Magnitude
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Markov Decision Process
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A finite Markov Decision Process (MDP) is a 4-tuple <S, A, p, R} where

= S is afinite number of states,

= A is afinite number of actions,

= p is the transition probability function p: S X R x & x A — [0, 1]
= R is a finite set of scalar rewards. We can then define expected reward

r(s,a) = E[Rt41]5: = s, At = q

Markov Property:
PI‘{SHL Rt+1\5t, At} — Pr{St+17 Rt+1\5t, At, sy SO) Ao}

The future is independent of the past given the present.
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Policy and overall Goal
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Policy determines action selection for each state:

= Stochastic: W(a’S) — Pr[At = a|St — 5]
= Deterministic: 77(5) — a

Goal for an RL agent in an MDP: find a policy that maximizes the expected
return, i.e. the (discounted) cumulative reward: (G

* Finite horizon:  argmaxE[R;y1 + Ry12 + Ryp3 + -+ - + Ry

= Infinite horizon: arg maxE[R;11 + YRiio + Y Rip3 + -+ = Z YRy kt1]
4 k=0

With discount 7Y € [0, 1] preventing infinite returns (converging geometric series)
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Policy in MDP example

-

-

+1

1

1

-

[Russel & Norvig, 2009]
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Actions:

Probability of executing action
successfully: 0.8

0.8
< B —) 0.1

0.1

Rewards:
-0.04 / step
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How will the policy change if we change the immediate reward
to -2 instead of -0.04?
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Policy in MDP example (changed rewards)

+1

- | -

!

[Russel & Norvig, 2009]

|
l

UNI
FREIBURG

Actions:

Probability of executing action
successfully: 0.8

0.8
< B —) 0.1

0.1

Rewards:
-2 / step

14



Value Function and Action-Value Function
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Value Function v=(s) is the expected return when starting in s and
following 7 :
’Uﬂ—(S) [Gt|St = S Z’)/ Rt—l—k—l—l St = S]
k=0

Action-Value Function ¢ is the expected return when starting in s,
taking action a and following 7 thereafter:
Z’Y Rt—i—k—i—l

k=0

QW(Saa) [Gt|St—S At—a St—S At—a
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Value Function Example

’UW(S) for immmediate reward of -0.04, discount of 1:

0.812 0.868 0.918 @
0.762 0.660

0 o
i 1‘ 0.655 0.611 0.388
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Bellman Optimality Equation

. A Bellman Equation expresses a relationship between the value of a state and the values 2 g
of its successor states - TS

. The Bellman Optimality Equation expresses that the value of a state under the optimal
policy 7, must equal the expected return for the best action in that state

v« (s) = max g, (s,a)
a

= maXEW* [Rt_|_1 + ’VGt—I—l‘St =S, At = CL]

a

= mélXEﬂ-* [Rt_|_1 + ’}/U*(St+1)’5t =S, At = CL]

= max Y p(s/, 7], 0)[r + yv.(s')]

s',r

. The value functionV«is the unique solution to the Bellman Optimality Equation

Bellman Equation for Vs We no longer need to search over all

/ policies, only over all actions recursively!
s, a)lr +




Value Iteration Algorithm

An algorithm that turns the Bellman Equation into an iterative update to solve
a given MDP

Value Iteration, for estimating 7 ~ 7,

Algorithm parameter: a small threshold # > 0 determining accuracy of estimation
Initialize V (s), for all s € 8T, arbitrarily except that V (terminal) =0

Loop:

| A<+0

| Loop for each s € 8:

| v <+ V(s)

| V(s) < maxq ), .p(s',7|s,a) [+ V()]
| A < max(A, v — V(s)])

until A < 6

Output a deterministic policy, m &~ 7, such that
m(s) = argmax, > .p(s',7[s,a) [r + 4V (s)]

From: [Sutton & Barto, 2018]
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Bellman Optimality Equation

Bellman Optimality Equation for Q-values

a(s,a) =Y _p(s',r]s,a)[r +

We no longer need to search over all
policies, only over all actions recursively!

Action selection: 7 (s) = argmaxg.(s,a)
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Calculating optimal Q-values: Q-Learning

[Watkins, 1989]

Algorithm parameters: step size a € (0, 1], small ¢ > 0
Initialize Q(s,a), for all s € 8T, a € A(s), arbitrarily except that Q(terminal,-) =0

Loop for each episode:
Initialize S
Loop for each step of episode:
Choose A from S using policy derived from @Q (e.g., e-greedy)
Take action A, observe R, S’
Q(S,A) < Q(S, A) + R + ymax, Q(S’,a) — Q(S, A)]
S+ 9

until S is terminal

Figure from: [Sutton & Barto, 2018]
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Standard vs Inverse RL

Standard RL:

estimate optimal policy
from state, action, and reward sequences

(St, Aty St+15sTt+19 -+« 5 St+n "“t+n)

1 learn

W@(S)

Environment

I

Rewards mms) RL mm) Behavior
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Inverse RL:

estimate unknown reward function
from state and action sequences

(Sta Aty St4+1, At415- - St—I—n)

1 learn

Ty (S, a)

Environment

1

Rewards 4==m IRL 4== Behavior
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Can we learn rewards from behavioral data?
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The problem is underspecified: many reward functions would explain the behavior!
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Can we learn rewards from behavioral data?

The problem is underspecified: many reward functions would explain the behavior!

2N

Idea:

Account for uncertainty in the reward function by assuming a
probabilistic behavior model that keeps action distribution in the
policy as broad (non-committed) as possible y

—> Maximum Entropy Inverse Reinforcement Learning

Problem: Needs to solve a full RL problem to convergence in the inner loop!
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Deep Inverse Q-Learning (with Constraints)

[G. Kalweit, M. Huegle, M. Werling, J. Boedecker, NeurlPS, 2020]

Joint work with:

Gabriel Maria Moritz
Kalweit Kalweit Werling
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Deep Inverse Q-Learning

[G. Kalweit, M. Huegle, M. Werling, J. Boedecker, NeurlPS, 2020]
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Probabilistic behavior assumption for the expert (here for two actions, a and b):

exp(Q*(S,CL)) _ 7TS(CL|S) and eXp(Q*<S,b>) _ 7'('8(5‘8)
exp(Q*(s,a)) + exp(Q*(s, b)) exp(Q* (s, a)) + exp(Q*(s, b))

= exp(Q"(s.)) + exp(Q*(s.)) = TP 120l _ exp(@s D)

wels) w0
7_‘_8 a|s
= exp(@"(5,) = 5 1 expl@(5.8)

Taking logs: Q*(s,a) = Q*(s,b) + log(n®(a|s)) — log(n® (b]s))
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Deep Inverse Q-Learning

[G. Kalweit, M. Huegle, M. Werling, J. Boedecker, NeurlPS, 2020]
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Q*(s,a) = Q*(s,b) + log(w* (a|s)) — log(n* (b]s))
Using:
Q*(s,a) =r(s,a) + 7 max Eg oM(s,a,50 Q7 (s, a")]

and replacing the Q-values above to solve for the immediate reward leads to:
’I“(S, a’) = log(ﬂ-g(a"s)) — ymax ES’NM(s,a,s’) [Q* (8/7 a/)] + T(S? b)

_ lOg(Trg(b|S)) + Y I’IIbE/i,X ES/NM(S,b,s’) [Q* (8/7 b/)]

Intuitively: immediate reward encodes the local probability of action a while
also ensuring the probability of the maximizing next action a‘under Q-learning
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Deep Inverse Q-Learning

[G. Kalweit, M. Huegle, M. Werling, J. Boedecker, NeurlPS, 2020]
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Defining: 75 = 10g(7T5(a|5)) - VHla?}X ES’NM(S,CL,S’)[Q*<S/7 a’)]

After some manipulation, the reward for n actions can be derived as:

1
r(s,a) =nf+—— > r(s,b) —n’.

n—1
beAs
This leads to three novel algorithms:
Inverse Action-Value Tabular (Constrained) IIDeep (anitralnfed)
lteration Inverse Q-Learning i P LRE G
IAVI (€nar b(e)iaL
discrete state-spaces, model- discrete state-spaces, sampling- continuous state-spaces, sampling-

based, non-linear rewards based, non-linear rewards based, non-linear rewards
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Inverse Q-Learning: Results

[G. Kalweit, M. Huegle, M. Werling, J. Boedecker, NeurlPS, 2020]
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Toy-Benchmark: @ outer color 1 objects
i outer color 2 objects
Objectworld © o2 o <o
@ other objects (distractors) *
D low/high reward actions
Ground Truth [AVI MaxEnt Single Step MaxEnt

IAVI IQL MaxEnt Single Step MaxEnt

EVD 0.09 £0.00 1.47+0.14 11.58£0.00 4.33 £0.00
Runtime  0.03+0.0h 0.354+0.0h 8.08+1.0h 12.240.8h
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Expert Demonstrations
on US Highway



Closed-form Inverse RL for Neural Decoding
[Kalweit et al., ICML Comp Bio WS, 2021]

. e // BrainLinks
Joint work with: é@ BrainTools
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Gabriel Maria llka | Mansour
Kalweit Kalweit Diester Alyahyay
(Hugle)
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Approach Summary

rat .
Q action

o oy

neural signals

intrinsic
reward

NS

I
intrinsic reward

behavioral chamber

new neural signals

g/ e

l apply p
I~/

I - . -
new intrinsic reward

l calculate () and T

Ry 4 X
TR

simulated behavior

@ Map neural signals to
intrinsic reward

@ Infer intrinsic reward from recorded
trajectories via inverse Q-learning

@ Predict behavior via intrinsic reward
function and Q-learning
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Training

Release probability

Exec. period

—

A ———

1 1

-1 0 1
Time from go cue (s)
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S :set of states

A : set of actions per state

R : reward

Q: Quality of state-action combination

Q:SxA—» R

Early trials Correct trials Late trials

S

A’ R release(a), r, release(a), r, [stay(b), release(a)], r,

1 30
2
——————————————————————————— 3 —
ag 4 Zoi
e5 14
S 16-18s 18-20s 20-22s 326 1Ou.
A A z7
stay(b), r_. stay(b),r.,, stay(),r,,, stay(b),r, 8
A, ]R stay(b),ro StaY(b), leget Y( ) cwe y( ) cue+l Y( ) cue+2 e+3 0 1,
L 1 > -1 0 1
Go cue Response window

Time flrom go cue (s)
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Reward Estmation via IAVI

e Boltzmann Distribution after Q-Learning e Real Distribution
100

Learned Reward

T Yed

% of Real Releases

100

™ Learned Reward

50

¢ ¥ed

25

% of Real Releases

0.0 0.5 1.0 1.5 2.0
Time [s]

IAVI returns a scalar reward function precisely encoding the recorded
behavior as an intermediate result, which can then be used for neural decoding
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Per-Trial Release Behavior Prediction

= Compare NeuRL (ours) to a random controller, logistic regression (LR) and

non-linear classification via neural-networks (NNC)

UNI

= For NeuRL and NNC, optimize hyperparameters with random search with 500
sampled configurations each

= Consider release prediction in a trial if controller assigns a probability of > €
(here € = 0.6) to action release in a given time step

= Results evaluated using 10-fold cross-validation on a test set

FREIBURG

Rat 1 Rat 2
Exact Match  Near 1 Match Near 2 Match | Exact Match  Near 1 Match  Near 2 Match
NeuRL | 0.36(+0.11) 0.49(4+0.13) 0.59(+0.09) | 0.44(+0.09) 0.62(+0.06) 0.70(+0.11)
NNC 0.21(+£0.09) 0.28(+0.12) 0.37(+0.17) 0.34(+0.10) 0.46(+0.09) 0.52(£0.10)
LR 0.15(40.07) 0.19(40.10) 0.29(40.08) 0.33(£0.09) 0.41(40.08) 0.47(40.10)
Random | 0.04(40.07) 0.2(£0.13) 0.29(+£0.15) 0.12(£0.06) 0.38(£0.07) 0.46(£0.10)
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Visualization of Latent Embeddings

t-SNE 2

Embedding of Classifier
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Testing

Prediction of behavior based

on updated Q-values

Qi (st ar) « F(Pp(se), ar) + ymaxEs,, aclQu-1(St41, @))]

!

Perturbed
action values

.

»
»

- ] 1
] 1
% 1 1
] ]
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Time from go cue (s)
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Pertubed Feature Matrix (pp

Forward Q-learning
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Inhibition Simulation |

% of Releases

100 H

75 =

90

25
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= Control * Inhibition of 80% (RFA to CFA)
* Inhibition of 60% (RFA to CFA) * Inhibition of 100% (RFA to CFA)

Time [s]
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Inhibition Simulation i

AAV-hSyn-C
hR2-EYFP

Time [s]

Reaction Time [s]

Reaction Time [s]

Simulation Real D
Rat Batch 1 Rat Batch 2
84 0.38 -
0.3
I 0.36
0.2 C
0.34 4 AAV-DIO-NpHR- qr-Retro-AAV-cre
0.1 , ,
G5 0.38
0.3 - -
1 0.36 -
0.2 4 ! ¢ :
0.34 : J
0.1 T T T I || Subcortical
Control  Inhibition of 60% Control  Inhibition of 60% | ! 208
v

(RFA to CFA)

(RFA to CFA)
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Outlook: IQL with Multiple Intentions

Recent (exciting!) extension by Hao Zhu

17 V Initial State
B \Water Resource
B Food Resource
—— Expert Trajectories

o=
il | ¥
Actions
State-value
'Hungry' "Thirsty'
i | d
+ -

UNI
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Performance of Reward Function Estimation

Ground Truth LV-IAVI LV-1QL IAVI QL

'Hungry'

>
L
=
=
LV-1AVI LV-IQL 1AVI IQL
EVD ‘Hungry’ 0.00 £0.00 0.00+0.00 21.42+0.00 21.38+0.00
‘Thirsty’ 0.0040.00 0.0040.00 38.00+0.00 38.05+ 0.00
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Colab Notebook:

https://colab.research.google.com/drive/1YbHBOV1JQ5e 0T5zIR-nmRwmMNOILY6v-?usp=sharing

Complete and play around with Value Iteration and Q-Learning for different tasks
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https://colab.research.google.com/drive/1YbHB0V1JQ5e_0T5zIR-nmRwmNOILY6v-?usp=sharing

Further Resources

\
Reinforcement ||\
Learning

An Introduction
econd edition

Richard S. Sutton and Andrew G. Barto

e
s

RLE

B voversit y of Alberta
Reinforcement t Learning
kil hine Learnin| g

ing, Algorithms, Human
Learning, Machine Learning Algorithms, Applie.

¥ 4.7 (3.3k reviews) )

Intermediate - Specialization - 3 - 6 Months

Standard RL text book (very accessible, free PDF):
http://incompleteideas.net/book/RLbook2020.pdf

Nice 4-part course on coursera:

https://www.coursera.org/specializations/reinforcement-learning
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http://incompleteideas.net/book/RLbook2020.pdf
https://www.coursera.org/specializations/reinforcement-learning

Further Resources

Google DeepMind
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Inﬁoduction to
Reinforcement ) ) . )
Learning with David https://www.deepmind.com/learning-resources/introduction-

Silver to-reinforcement-learning-with-david-silver

Very good “classic” RL course:

CS285 CALENDAR RESOURCES SYLLABUS STAFF MENU=

CS 285 at UC Berkeley

Deep Reinforcement Learning
o, e e £ e 1 Very comprehensive (Deep) RL course at UC Berkeley:

Lecture recordings from the current (Fall 2023) offering of the course: watch here

Looking for deep RL course materials from past years?
Recordings of lectures from Fall 2022 are here, and materials from previous offerings are here.

http://rail.eecs.berkeley.edu/deepricourse/

Email all staff (preferred): cs285-staff-fa2023@lists.cecs.berkeleyedu

—— Instructor Sergey Levine
. svlevine@eecs.berkeley.edu
Office Hours: After lecture

Head GS| Kyle Stachowicz
kstachowicz@berkeley.edu
Office Hours: Thursday 5PM-6PM

(BWW Room 1204)



https://www.deepmind.com/learning-resources/introduction-to-reinforcement-learning-with-david-silver
https://www.deepmind.com/learning-resources/introduction-to-reinforcement-learning-with-david-silver
http://rail.eecs.berkeley.edu/deeprlcourse/

