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Biconvex programming

minimize  fo(z,y)

IA

subject to  fi(z,y) <0, i=1,...,m
(Axz+0b)" (Cy+d) =0

variables z € R™, y € R"; fo, f1,- .., fm biconvex; A € RP*"™, C' € RP**

~

applications: approximation, fitting, statistical estimation, etc.

e matrix factorization, dictionary learning, latent factor models
e control with bilinear matrix inequalities
e blind deconvolution

e bilinear regression



Overview

disciplined biconvex programming (DBCP):

e domain specific language for biconvex programming

e an extension of CVXPY

e solution methods (roughly) based on alternate minimization

e supports fast modeling and prototyping of biconvex problems
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1. Biconvex programming

biconvex sets

biconvex functions

operations that preserves biconvexity
biconvex optimization problems

partial optimality



Biconvex sets

et Y CR", Y C R” be nonempty convex sets

BC X xYCR"7¥is a biconvex set, if

o fixye) — By={recX|(x,y) € B} CR" convex

e fixi€cX = Bz={ycY|(&,vy) € B} CR" convex

algebraic property:
e the intersection of (any number of) biconvex sets is biconvex

Biconvex programming



examples:

e S

e biconvex sets can be unconnected, e.g.,

B={(z,y) eR*| 2,y <0} U{(z,y) € R* | z,y > 0}

Biconvex programming



Biconvex functions

f: X xY — R is a biconvex function if

e dom f ={(z,y) €e X x Y| f(x,y) < oo} biconvex
o fixyec) = f;: X =R, z+— f(x,y) convex

e fixzteX = f;:: Y —>R,y— f(Z,y) convex

biconcave, biaffine, and bilinear functions are defined similarly

a-sublevel set of a biconvex function f: X x YV — R:
Co ={(z,y) edom [ | f(z,y) <a}, acR

Is a biconvex set

Biconvex programming



examples:
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Operations that preserve biconvexity

e nonnegative weighted sum:

— fi,..., fm biconvex, w € R = w1 f1 + -+ wy, fm biconvex

e pointwise maximum:

— f1,..., fm biconvex = max{fi,..., fm} biconvex

— {fi};ez biconvex (Z an index set) = sup,c7 fi biconvex

e biaffine precomposition:

— h: R — R convex = h((Az +b)" (Cy + d)) biconvex
(A e R™"™ C e R™* b deR™)

e compositionof h: R - R and g: X x Y — R:

_ .. h convex nondecreasing, g biconvex
— h o g biconvex if _ _ _
h convex nonincreasing, g biconcave

Biconvex programming



Biconvex optimization problems

minimize  fo(z,y)

subject to  fi(z,y) <0, i=1,...,m
0.

e r € X, yec ) are the problem variables
o fo,f1,...,fm: X xY — R are biconvex
® hi,...,hy,: X XY — R are biaffine

e difficult to solve in general (mostly NP-hard)

Biconvex programming



Partial optimality

let D be the feasible set of a biconvex problem

(x*,y*) € D is partially optimal to a biconvex optimization problem if

fO(iB*;y*) < fo(xay*) and fo(x*ay*) < fO(x*vy)

for all x € Dyx, y € Dy~

e every stationary point of a differentiable biconvex optimization problem
is partially optimal, and vice versa

e partially optimal points are not necessarily globally or even locally
optimal

e turn out to work quite well in practical applications

Biconvex programming 10
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2. Solving biconvex problems

e alternate convex search
e proximal regularization
e initialization

e infeasible start

11



Alternate convex search (ACS)

basic idea: alternate between convex subproblems in x and y

Algorithm 1 ALTERNATE CONVEX SEARCH.

given a starting point (90(0), y(o)) € D

k := 0.
repeat
(z,y*) <0,i=1,...
1. SCUH_l) = argmin fO(CU,y(k)) ' fl(a;)y k) =~ Y Z. ’ , M
reX hz(x,y( ))207 1217...

2. y(kﬂ) := argmin
yey

3. ki =k + 1.
until stopping criteria is satisfied.

{fO(x(k-l-l) y) ‘ fi(x(k+1)ay) <0,:=1,..

Solving biconvex problems

12



Proximal regularization

add proximal terms to the ACS subproblems: at the kth iteration, solve

x(kﬂ) = argminwéX fO(aja y(k>> + AHx o x<k)H§
subject to fz'(fl?,y("“)) <0, 1=1,....,m
hi(z,y*) =0, i=1,...,p

and

. 2

y* D= argming oy, fo(zF D, y) + Ay — yP|;
subject to  f;(z*tD 4) <0, i=1,...,m
hi(zFtD ) =0, i=1,...,p

e )\ > 0 is the regularization parameter
e large enough A — strongly convex subproblems

e better numerical performance and convergence properties

Solving biconvex problems
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Initialization

find (x,y)
subject to  fi(z,y) <0, i=1,...,m
hi(z,y) =0, i=1,...,p

e as hard as solving the original problem
heuristic via relaxation:
minimize  17s + [t
subjectto s> 0
filr,y) <s;, i=1,....m
hz(xvy):tu Z:].,,p

e variablesx € X,y ), se R", t € R?
e if optimal value is zero, then we have found a feasible point

e again, use ACS to solve the relaxation

Solving biconvex problems 14



Infeasible start

minimize  fo(z,y) +v(17s + [|¢]|,)
subjectto s >0
filr,y) <s;, i=1,....m
hi(:r;,y):ti, ’iZl,...,p
e variablesx € X, yec )Y, sc R™, t € R?
e v > ( is a penalty parameter

e arbitrary starting point (z(%,y() e X x )

e large engough v leads to final points feasible to the original problem

Solving biconvex problems
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3. Examples

e k-means clustering
e bilinear logistic regression
e sparse dictionary learning

e input-output hidden Markov model

16



k-means clustering
e given data pointsz; e R", i =1,...,m
e cluster into k£ groups

e minimize sum of squared distances to cluster centers

biconvex program formulation:

minimize Y7, 2T (|71 — @il - | — will?)
subjectto 0=z <1, 1lz, =1, i=1,....m
e variables Z1,...,Z € R™, z1,...,2m € R”

e I, are the cluster centers

e z; are the (soft) cluster assignment vectors

Examples

17



to specify the problem using dbcp:

1 xbar

s = cp.Variable ((k, n))

constr)

2zs = cp.Variable((m, k), nonneg=True)
3
4 0obj = cp.sum(cp.multiply(zs, cp.vstack ([
5 cp.sum(cp.square(xs - c), axis=1) for c in xbars
61).T))
7 constr = [zs <= 1, cp.sum(zs, axis=1) == 1]
8 prob = BiconvexProblem(cp.Minimize (obj), [[xbars], [zsl],
example:
2_
e m = 1000 points in R? .
5 07
e k = 4 clusters
— ) -
e ground truth centroids: .
(0,2), (0,-2), (2,0), (—2,0) —2.5

Examples

18



Bilinear logistic regression

e given a dataset (X;,y;), i = 1,...,m, where X; € R"*" are feature
matrices, y; € {0, 1} are binary labels

e to construct a bilinear classifier

) {1 tr(UTXV) >0
y:

0 otherwise

where U € R™" V € R**" are the classifier coefficients

maximum likelihood estimation problem:
maximize >_." . y; tr(UT X, V) —log(1 + exp(tr(U* X;V)))

Is biconvex in U and V

Examples
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to specify the problem using dbcp:

1U = cp.Variable((n, 1))
2V = cp.Variable ((k, r))
3

40bj = 0

5 for X, y in zip(Xs, ys):

6 obj += cp.sum(cp.multiply(y, cp.trace(U.T @ X @ V))
7 - cp.logistic(cp.trace(U.T @ X @ V)))

8 prob = BiconvexProblem(cp.Maximize (obj), [[U], [VI])

class 1 class 2
example: ‘Fé
=
e m = 360 §
handwritten digits of ‘0" and ‘1’ &0

e 8 x 8 pixel images (n =k = 8)

predicted

e rank r = 2

ol

Examples 20



1
2
3
4
5

Sparse dictionary learning
e given data matrix Y € R™*"

e find dictionary D € R™*¥ and sparse code X € R**" st. DX ~ Y
biconvex program formulation:

minimize  |[DX — Y% + o X||,
subject to || D||p <5

variables D, X; hyperparameters o, 5 > 0; || - ||; componentwise ¢;-norm

to specify the problem using dbcp:

D = cp.Variable ((m, k))
X = cp.Variable ((k, n))

obj = cp.Minimize(cp.sum_squares(D @ X - Y) + alpha * cp.norml (X))
prob = BiconvexProblem(obj, [[D], [X]], [cp.norm(D,’fro’) <= betal])

Examples



example:

e m=10,n=20, k=20, =1
o Y ¢ R™*" generated from standard normal distribution

e problem solved with different o from 1072 to 1

o o
TN @)
| |

|DX = Y||p/[IY]F
-
DO

=
-]
I

0 200 400
card X

Examples
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Input-output hidden Markov model (10-HMM)

given dataset {(x(t),y(t))},—, generated from a K-state |IO-HMM:

e x(t) € R" are the features, y(t) € {0,1} are the labels
e Z(t) € {1,..., K}: hidden state labels, modeled as a Markov chain

ﬁ(t) N Cat(pinit) t=20
Cat(pﬁ(t_l)) t>0

— Pinit € R™ (1Tpinit = 1): initial state distribution
— P, e REXE (P;;1 = 1): state transition matrix
— pst_1) € R is the 2(t — 1)th row of Py,

e response y(t) generated from a logistic model:

prob(y(t) =1) = 1/(1 + exp(—x(t)" Oz,)))
— O3 € {01,...,0k} € R" is the coefficient

Examples 23



model fitting problem: estimate parameters pinit, Pir, 01, ...,0Kk by
maximizing the data log-likelihood:

minimize —Y ", z(t)T(y(t)m(t)TQk —log(1 + eXP(x(t)Tek)))K

oo S N0klls + ax o7 Dia(2(t), 2(t + 1))

k=1

subject to 0 =< z(t) <1, 11z@t)=1, t=1,....m
0 €Cr, k=1,....K

e variables z(t) € R*, 6, € R"
e hyperparameters ay,a, > 0
e [y is the Kullback-Leibler divergence

e (C; are convex sets specifying prior knowledge on 6y

Examples 24



O ~NO 1B~ WDN =

e el i el el
O ~NO 1B W NP OO

example:

e m=1800,n =2, K = 3, P, =

o z(t) ~ (U(=5,5), 1)

e constraint sets Cy, given by: 01 ; < 0,

[ 0.95

0.025 0.025
0.025 0.95 0.025
0.025 0.025 0.95
92,1 Ei 07 93,1 Ei 07

022 > 039

cp.multiply(ys, xs @ thetas[k]) + cp.logistic(xs @ thetas[k])

thetas = cp.Variable ((X, n))
zs = cp.Variable((m, K), nonneg=True)
rs = [-
for k in range (K)]
obj = cp.Minimize (
cp.sum(cp.multiply(zs, cp.vstack(rs).T))
+ alpha_theta * cp.sum_squares (thetas)
+ alpha_z * cp.sum(cp.kl_div(zs[:-1]1, zs[1:]1)))
constr = [
thetas [0] [0] <= O,
thetas [1]1 [0] >= O,
thetas [2] [0] >= O,
thetas [1][1] >= thetas[2][1],
zs <= 1, cp.sum(zs, axis=1) == 1
]
prob = BiconvexRelaxProblem(obj, ([zs],

Examples

[thetas]),

constr)
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state
N
1

0 500 1000 1500
t

e ground truth shown in black dashed lines

Examples 26
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4. Summary

e summary

® resources

27



Summary

DBCP:

e modeling framework for biconvex optimization problems

e specify biconvex problems in a human readable way, close to the math

e enable fast experiment and prototyping of different problem structures

e fully open-sourced package dbcp, integrated with CVXPY ecosystem

Summary

28



Resources

® paper:

Disciplined biconvex programming.
H. Zhu and J. Boedecker. arXiv:2511.01813, November 2025.

e implementation: Python package dbcp

https://github.com/nrgrp/dbcp

e examples and tutorial:

https://github.com/nrgrp/dbcp/tree/main/examples

e this slides deck and many other useful materials:

https://haozhul0015.github.io

Summary

29


https://github.com/nrgrp/dbcp
https://github.com/nrgrp/dbcp/tree/main/examples
https://haozhu10015.github.io
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5. Appendices

e DBCP product ruleset

e Generalized inequality constraints

30



DBCP product ruleset

most DBCP rules are inherited from DCP, with additional product rules:

1. A valid DBCP convex product expression should include variables in
both the left-hand and right-hand expressions, and should be one of the
following forms:

affine * affine
affine-nonneg * convex or affine-nonpos * concave
convex-nonneg * convex-nonneg oOr CONCave-nonpos * concave-nonpos

2. There exists no loop in the variable interaction graph of the overall
expression, where the edge between two variables indicates that they
appear on different sides in a product expression as described in the
above rule.

Appendices 31



Generalized inequality constraints

minimize  fo(z,y)
subject to  fi(x,y) 2k, 0, +=1,....,m
hi(z,y) =0, i=1,...,p,
e variables x € X', y € ); fo biconvex; h; biaffine
o fi: X xY — R biconvex; inequality w.r.t. proper cones K; C R%

feasibility problem (relaxation):
minimize  17s + ||t]|,
subjectto s> 0

fi(xz,y) 2k, siex,, t=1,...,m
hz(xay):tza izla'“ap)

o ex, —x, 0 1s any positive element of cone IC;

e examples: (0,1) € R? for SOC in R%, I € R"™" for PSD cone S%

Appendices

32



References

[BV04] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University
Press, 2004.

[GPKO7] J. Gorski, F. Pfeuffer, and K. Klamroth. Biconvex sets and optimization with
biconvex functions: A survey and extensions. Mathematical Methods of
Operations Research, 66(3):373-407, 2007.

[ZB25] H. Zhu and J. Boedecker. Disciplined biconvex programming. arXiv Preprint
arXiv:2511.01813, 2025.



