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Biconvex programming

minimize f0(x, y)

subject to fi(x, y) ≤ 0, i = 1, . . . ,m

(Ax+ b)
T
(Cy + d) = 0

variables x ∈ Rn, y ∈ Rk; f0, f1, . . . , fm biconvex; A ∈ Rp×n, C ∈ Rp×k

applications: approximation, fitting, statistical estimation, etc.

• matrix factorization, dictionary learning, latent factor models

• control with bilinear matrix inequalities

• blind deconvolution

• bilinear regression

• . . .

1



Overview

disciplined biconvex programming (DBCP):

• domain specific language for biconvex programming

• an extension of CVXPY

• solution methods (roughly) based on alternate minimization

• supports fast modeling and prototyping of biconvex problems
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Disciplined Biconvex Programming — Zhu & Boedecker

1. Biconvex programming

• biconvex sets

• biconvex functions

• operations that preserves biconvexity

• biconvex optimization problems

• partial optimality
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Biconvex sets

let X ⊆ Rn, Y ⊆ Rk be nonempty convex sets

B ⊆ X × Y ⊆ Rn+k is a biconvex set, if

• fix ỹ ∈ Y =⇒ Bỹ = {x ∈ X | (x, ỹ) ∈ B} ⊆ Rn convex

• fix x̃ ∈ X =⇒ Bx̃ = {y ∈ Y | (x̃, y) ∈ B} ⊆ Rk convex

algebraic property:

• the intersection of (any number of) biconvex sets is biconvex
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examples:

0

• biconvex sets can be unconnected, e.g.,

B = {(x, y) ∈ R2 | x, y < 0} ∪ {(x, y) ∈ R2 | x, y > 0}
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Biconvex functions

f : X × Y → R is a biconvex function if

• dom f = {(x, y) ∈ X × Y | f(x, y) < ∞} biconvex

• fix ỹ ∈ Y =⇒ fỹ : X → R, x 7→ f(x, ỹ) convex

• fix x̃ ∈ X =⇒ fx̃ : Y → R, y 7→ f(x̃, y) convex

biconcave, biaffine, and bilinear functions are defined similarly

α-sublevel set of a biconvex function f : X × Y → R:

Cα = {(x, y) ∈ dom f | f(x, y) ≤ α}, α ∈ R

is a biconvex set

Biconvex programming 6



examples:

f(x, y) = xy
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Operations that preserve biconvexity

• nonnegative weighted sum:

– f1, . . . , fm biconvex, w ∈ Rm
+ =⇒ w1f1 + · · ·+ wmfm biconvex

• pointwise maximum:

– f1, . . . , fm biconvex =⇒ max{f1, . . . , fm} biconvex

– {fi}i∈I biconvex (I an index set) =⇒ supi∈I fi biconvex

• biaffine precomposition:

– h : R → R convex =⇒ h((Ax+ b)
T
(Cy + d)) biconvex

(A ∈ Rm×n, C ∈ Rm×k, b, d ∈ Rm)

• composition of h : R → R and g : X × Y → R:

– h ◦ g biconvex if
h convex nondecreasing, g biconvex

h convex nonincreasing, g biconcave
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Biconvex optimization problems

minimize f0(x, y)

subject to fi(x, y) ≤ 0, i = 1, . . . ,m

hi(x, y) = 0, i = 1, . . . , p

• x ∈ X , y ∈ Y are the problem variables

• f0, f1, . . . , fm : X × Y → R are biconvex

• h1, . . . , hp : X × Y → R are biaffine

• difficult to solve in general (mostly NP-hard)
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Partial optimality

let D be the feasible set of a biconvex problem

(x⋆, y⋆) ∈ D is partially optimal to a biconvex optimization problem if

f0(x
⋆, y⋆) ≤ f0(x, y

⋆) and f0(x
⋆, y⋆) ≤ f0(x

⋆, y)

for all x ∈ Dy⋆, y ∈ Dx⋆

• every stationary point of a differentiable biconvex optimization problem
is partially optimal, and vice versa

• partially optimal points are not necessarily globally or even locally
optimal

• turn out to work quite well in practical applications
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2. Solving biconvex problems

• alternate convex search

• proximal regularization

• initialization

• infeasible start
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Alternate convex search (ACS)

basic idea: alternate between convex subproblems in x and y

Algorithm 1 Alternate convex search.

given a starting point (x(0), y(0)) ∈ D
k := 0.

repeat

1. x
(k+1) := argmin

x∈X

{
f0(x, y

(k)
)

∣∣∣∣ fi(x, y
(k)) ≤ 0, i = 1, . . . ,m

hi(x, y
(k)) = 0, i = 1, . . . , p

}

2. y
(k+1) := argmin

y∈Y

{
f0(x

(k+1)
, y)

∣∣∣∣ fi(x
(k+1), y) ≤ 0, i = 1, . . . ,m

hi(x
(k+1), y) = 0, i = 1, . . . , p

}

3. k := k + 1.

until stopping criteria is satisfied.
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Proximal regularization

add proximal terms to the ACS subproblems: at the kth iteration, solve

x(k+1) := argminx∈X f0(x, y
(k)) + λ∥x− x(k)∥22

subject to fi(x, y
(k)) ≤ 0, i = 1, . . . ,m

hi(x, y
(k)) = 0, i = 1, . . . , p

and

y(k+1) := argminy∈Y f0(x
(k+1), y) + λ∥y − y(k)∥22

subject to fi(x
(k+1), y) ≤ 0, i = 1, . . . ,m

hi(x
(k+1), y) = 0, i = 1, . . . , p

• λ ≥ 0 is the regularization parameter

• large enough λ =⇒ strongly convex subproblems

• better numerical performance and convergence properties
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Initialization

find (x, y)

subject to fi(x, y) ≤ 0, i = 1, . . . ,m

hi(x, y) = 0, i = 1, . . . , p

• as hard as solving the original problem

heuristic via relaxation:

minimize 1Ts+ ∥t∥1
subject to s ⪰ 0

fi(x, y) ≤ si, i = 1, . . . ,m

hi(x, y) = ti, i = 1, . . . , p

• variables x ∈ X , y ∈ Y, s ∈ Rm, t ∈ Rp

• if optimal value is zero, then we have found a feasible point

• again, use ACS to solve the relaxation
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Infeasible start

minimize f0(x, y) + ν(1Ts+ ∥t∥1)
subject to s ⪰ 0

fi(x, y) ≤ si, i = 1, . . . ,m

hi(x, y) = ti, i = 1, . . . , p

• variables x ∈ X , y ∈ Y, s ∈ Rm, t ∈ Rp

• ν > 0 is a penalty parameter

• arbitrary starting point (x(0), y(0)) ∈ X × Y

• large engough ν leads to final points feasible to the original problem
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3. Examples

• k-means clustering

• bilinear logistic regression

• sparse dictionary learning

• input-output hidden Markov model
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k-means clustering

• given data points xi ∈ Rn, i = 1, . . . ,m

• cluster into k groups

• minimize sum of squared distances to cluster centers

biconvex program formulation:

minimize
∑m

i=1 z
T
i (∥x̄1 − xi∥22, . . . , ∥x̄k − xi∥22)

subject to 0 ⪯ zi ⪯ 1, 1Tzi = 1, i = 1, . . . ,m

• variables x̄1, . . . , x̄k ∈ Rn, z1, . . . , zm ∈ Rk

• x̄i are the cluster centers

• zi are the (soft) cluster assignment vectors
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to specify the problem using dbcp:
1 xbars = cp.Variable ((k, n))

2 zs = cp.Variable ((m, k), nonneg=True)

3

4 obj = cp.sum(cp.multiply(zs , cp.vstack ([

5 cp.sum(cp.square(xs - c), axis =1) for c in xbars

6 ]).T))

7 constr = [zs <= 1, cp.sum(zs , axis =1) == 1]

8 prob = BiconvexProblem(cp.Minimize(obj), [[ xbars], [zs]], constr)

example:

• m = 1000 points in R2

• k = 4 clusters

• ground truth centroids:
(0, 2), (0,−2), (2, 0), (−2, 0) −2.5 0.0 2.5

x1

−2

0

2

x
2
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Bilinear logistic regression

• given a dataset (Xi, yi), i = 1, . . . ,m, where Xi ∈ Rn×k are feature
matrices, yi ∈ {0, 1} are binary labels

• to construct a bilinear classifier

ŷ =

{
1 tr(UTXV ) ≥ 0

0 otherwise

where U ∈ Rn×r, V ∈ Rk×r are the classifier coefficients

maximum likelihood estimation problem:

maximize
∑m

i=1 yi tr(U
TXiV )− log(1 + exp(tr(UTXiV )))

is biconvex in U and V
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to specify the problem using dbcp:
1 U = cp.Variable ((n, r))

2 V = cp.Variable ((k, r))

3

4 obj = 0

5 for X, y in zip(Xs , ys):

6 obj += cp.sum(cp.multiply(y, cp.trace(U.T @ X @ V))

7 - cp.logistic(cp.trace(U.T @ X @ V)))

8 prob = BiconvexProblem(cp.Maximize(obj), [[U], [V]])

example:

• m = 360
handwritten digits of ‘0’ and ‘1’

• 8× 8 pixel images (n = k = 8)

• rank r = 2

gr
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h
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pr
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Sparse dictionary learning

• given data matrix Y ∈ Rm×n

• find dictionary D ∈ Rm×k and sparse code X ∈ Rk×n s.t. DX ≈ Y

biconvex program formulation:

minimize ∥DX − Y ∥2F + α∥X∥1
subject to ∥D∥F ≤ β

variables D, X; hyperparameters α, β > 0; ∥ · ∥1 componentwise ℓ1-norm

to specify the problem using dbcp:
1 D = cp.Variable ((m, k))

2 X = cp.Variable ((k, n))

3

4 obj = cp.Minimize(cp.sum_squares(D @ X - Y) + alpha * cp.norm1(X))

5 prob = BiconvexProblem(obj , [[D], [X]], [cp.norm(D,’fro’) <= beta])
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example:

• m = 10, n = 20, k = 20, β = 1

• Y ∈ Rm×n generated from standard normal distribution

• problem solved with different α from 10−2 to 1

0 200 400
cardX

0.0

0.2

0.4

0.6

||D
X
−
Y
|| F
/||
Y
|| F
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Input-output hidden Markov model (IO-HMM)

given dataset {(x(t), y(t))}mt=1 generated from a K-state IO-HMM:

• x(t) ∈ Rn are the features, y(t) ∈ {0, 1} are the labels

• ẑ(t) ∈ {1, . . . ,K}: hidden state labels, modeled as a Markov chain

ẑ(t) ∼
{

Cat(pinit) t = 0

Cat(pẑ(t−1)) t > 0

– pinit ∈ RK (1Tpinit = 1): initial state distribution

– Ptr ∈ RK×K (Ptr1 = 1): state transition matrix

– pẑ(t−1) ∈ RK is the ẑ(t− 1)th row of Ptr

• response y(t) generated from a logistic model:

prob(y(t) = 1) = 1/(1 + exp(−x(t)
T
θẑ(t)))

– θẑ(t) ∈ {θ1, . . . , θK} ⊆ Rn is the coefficient
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model fitting problem: estimate parameters pinit, Ptr, θ1, . . . , θK by
maximizing the data log-likelihood:

minimize −∑m
t=1 z(t)

T
(
y(t)x(t)

T
θk − log(1 + exp(x(t)

T
θk))

)K

k=1

+αθ

∑K
k=1 ∥θk∥

2
2 + αz

∑m−1
t=1 Dkl(z(t), z(t+ 1))

subject to 0 ⪯ z(t) ⪯ 1, 1Tz(t) = 1, t = 1, . . . ,m

θk ∈ Ck, k = 1, . . . ,K

• variables z(t) ∈ RK, θk ∈ Rn

• hyperparameters αθ, αz > 0

• Dkl is the Kullback-Leibler divergence

• Ck are convex sets specifying prior knowledge on θk
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example:

• m = 1800, n = 2, K = 3, Ptr =


0.95 0.025 0.025

0.025 0.95 0.025

0.025 0.025 0.95


• x(t) ∼ (U(−5, 5), 1)

• constraint sets Ck given by: θ1,1 ≤ 0, θ2,1 ≥ 0, θ3,1 ≥ 0, θ2,2 ≥ θ3,2

1 thetas = cp.Variable ((K, n))

2 zs = cp.Variable ((m, K), nonneg=True)

3
4 rs = [-cp.multiply(ys, xs @ thetas[k]) + cp.logistic(xs @ thetas[k])

5 for k in range(K)]

6 obj = cp.Minimize(

7 cp.sum(cp.multiply(zs, cp.vstack(rs).T))

8 + alpha_theta * cp.sum_squares(thetas)

9 + alpha_z * cp.sum(cp.kl_div(zs[:-1], zs[1:])))

10 constr = [

11 thetas [0][0] <= 0,

12 thetas [1][0] >= 0,

13 thetas [2][0] >= 0,

14 thetas [1][1] >= thetas [2][1] ,

15 zs <= 1, cp.sum(zs, axis =1) == 1

16 ]

17
18 prob = BiconvexRelaxProblem(obj , ([zs], [thetas ]), constr)
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4. Summary

• summary

• resources
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Summary

DBCP:

• modeling framework for biconvex optimization problems

• specify biconvex problems in a human readable way, close to the math

• enable fast experiment and prototyping of different problem structures

• fully open-sourced package dbcp, integrated with CVXPY ecosystem
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Resources

• paper:

Disciplined biconvex programming.
H. Zhu and J. Boedecker. arXiv:2511.01813, November 2025.

• implementation: Python package dbcp

https://github.com/nrgrp/dbcp

• examples and tutorial:

https://github.com/nrgrp/dbcp/tree/main/examples

• this slides deck and many other useful materials:

https://haozhu10015.github.io
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5. Appendices

• DBCP product ruleset

• Generalized inequality constraints
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DBCP product ruleset

most DBCP rules are inherited from DCP, with additional product rules:

1. A valid DBCP convex product expression should include variables in
both the left-hand and right-hand expressions, and should be one of the
following forms:

affine * affine

affine-nonneg * convex or affine-nonpos * concave

convex-nonneg * convex-nonneg or concave-nonpos * concave-nonpos

2. There exists no loop in the variable interaction graph of the overall
expression, where the edge between two variables indicates that they
appear on different sides in a product expression as described in the
above rule.

Appendices 31



Generalized inequality constraints

minimize f0(x, y)

subject to fi(x, y) ⪯Ki
0, i = 1, . . . ,m

hi(x, y) = 0, i = 1, . . . , p,

• variables x ∈ X , y ∈ Y; f0 biconvex; hi biaffine

• fi : X × Y → Rqi biconvex; inequality w.r.t. proper cones Ki ⊆ Rqi

feasibility problem (relaxation):

minimize 1Ts+ ∥t∥1
subject to s ⪰ 0

fi(x, y) ⪯Ki
sieKi

, i = 1, . . . ,m

hi(x, y) = ti, i = 1, . . . , p,

• eKi
⪰Ki

0 is any positive element of cone Ki

• examples: (0, 1) ∈ Rq for SOC in Rq; I ∈ Rn×n for PSD cone Sn
+
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