Disciplined Biconvex Programming

Hao Zhu'? and Joschka Boedecker!?

'IMBIT//BrainLinks-BrainTools
2Department of Computer Science, University of Freiburg

December 29, 2025

Abstract

We introduce disciplined biconvex programming (DBCP), a modeling framework for
specifying and solving biconvex optimization problems. Biconvex optimization prob-
lems arise in various applications, including machine learning, signal processing, com-
putational science, and control. Solving a biconvex optimization problem in practice
usually resolves to heuristic methods based on alternate convex search (ACS), which
iteratively optimizes over one block of variables while keeping the other fixed, so that
the resulting subproblems are convex and can be efficiently solved. However, designing
and implementing an ACS solver for a specific biconvex optimization problem usually
requires significant effort from the user, which can be tedious and error-prone. DBCP
extends the principles of disciplined convex programming to biconvex problems, allow-
ing users to specify biconvex optimization problems in a natural way based on a small
number of syntax rules. The resulting problem can then be automatically split and
transformed into convex subproblems, for which a customized ACS solver is then gen-
erated and applied. DBCP allows users to quickly experiment with different biconvex
problem formulations, without expertise in convex optimization. We implement DBCP
into the open source Python package dbcp, as an extension to the well known domain
specific language CVXPY for convex optimization.

Contents

1 Introduction
1.1 Previous and related work e
1.2 Outline e

2 Biconvex programming
2.1 Biconvex sets . ..o ..o e e e
2.2 Biconvex functions.
2.3 Biconvex optimization problemso oo

3 Solving biconvex problems
3.1 Alternate convex search e
3.2 Proximal regularizations L. L
3.3 nitialization L e
3.4 Infeasible start e

4 Disciplined biconvex programming

5 Implementation

6 Examples
6.1 Nonnegative matrix factorization
6.2 Bilinear logistic regression oL oL
6.3 k-meansclustering. L
6.4 Dictionary learning Lo
6.5 Blind deconvolution L oo
6.6 Fitting input-output hidden Markov models

A Biconvex problem with generalized inequality constraints

14

17
17
17
18
19
19
21

25

1 Introduction

We consider biconvex optimization problems, which consist in optimizing a biconvex objec-
tive function subject to a biconvex set constraint. Informally, by saying that a set (or func-
tion) is biconvex, we mean that it is convex in each of two blocks of variables when the other
block is fixed. Biconvex optimization problems arise in various applications, including ma-

chine learning | , ,], signal and image processing | , 1,
recommender systems | ,], control | , ,], and brain computer
interfaces |)].

Different from convex optimization problems, biconvex optimization problems are in
general nonconvex and can be very hard to solve. In fact, many of them have been shown
to be NP-hard (see | I, 1], and |] for some examples). Nevertheless,
various heuristic methods based on alternate conver search (ACS) |] exist for finding
good solutions to many biconvex optimization problems in practice. The basic idea of ACS-
type methods is to iteratively optimize over one block of variables while keeping the other
block fixed, such that each subproblem is convex and can be efficiently solved. Although
in the most general case, theoretical convergence of ACS-type methods is only guaranteed
to stationary points, these methods turn out to work quite well in practice and hence have
become the most popular choice for finding a satisfactory solution to biconvex optimization
problems.

Designing and implementing an ACS solver for a specific biconvex optimization problem
usually requires significant effort from the user, including properly partitioning the bicon-
vex problem into convex subproblems, implementing robust and efficient solvers for the
subproblems, and designing appropriate stopping criteria. Moreover, maintaining numeri-
cal stability and ensuring convergence of the ACS procedure typically necessitate integrating
appropriate regularizations or modifications into the subproblems to ensure properties such
as strong convexity and feasibility. With the help of domain specific languages (DSLs) for
convex optimization, such as CVXPY | ,], specifying and solving the (modified)
convex subproblems is largely simplified and automated, while the other steps still require
the user to have expert knowledge about convex analysis and programming, and can be
tedious and error-prone.

In this paper, we propose a modeling framework for biconvex optimization problems,
named disciplined biconvex programming (DBCP), which extends the ideas of disciplined
convex programming (DCP) |] to biconvex problems. DBCP for biconvex optimiza-
tion is analogous to DCP for convex optimization, which allows users to specify biconvex
optimization problems in a natural way based on a small number of syntax rules. When
an optimization problem description complies with the DBCP syntax rules, it is guaran-
teed to be a valid biconvex problem, and more importantly, it can be automatically split
and transformed into convex (specifically, DCP-compliant) subproblems and augmented, to
which a customized ACS solver is then generated and applied. Like DCP does for convex
optimization, DBCP makes it easy to specify and solve biconvex problems, allowing users
to quickly prototype and experiment with different biconvex problem formulations, with-
out expertise in (or even knowledge of) convex analysis and solution methods for biconvex
problems. In fact, most users might be unaware of the variable partition, transformation,
augmentation, and solution processes, from which a solution to the biconvex problem is
found. We implement DBCP into a Python package, named dbcp, as an extension of the
DSL CVXPY, which is fully open-sourced at

https://github. com/nrgrp/dbcp.

https://github.com/nrgrp/dbcp

1.1 Previous and related work

Biconvex analysis. The first notice of biconvexity structure in the context of mathematical
programming can be traced back to Falk et al. | | in the 1960s. Only a few papers exist
in the literature where biconvex sets are investigated. Most of the corresponding theoretical
results can be found in the papers of Aumann and Hart | | and Goh et al. |]
Biconvex functions appear regularly in practice and hence have been discussed widely in the
literature. Properties of biconvex functions that are most relevant to optimization problems
can be found in the works of Goh et al. |] and Gorski et al. |]. In addition,
biconvex functions play an important role in martingale theory, and, in particular, in the
analysis of Banach and Hilbert spaces | , , ,]. Biconvex functions
can also be used to derive results on the robust stability of control systems in practical
control engineering | :]. Thibault |], Jouak and Thibault [], and
Borwein | | analyzed the continuity and differentiability of measurable biconvex oper-
ators in topological vector spaces. Al-Khayyal and Falk [] published results on the
maximization of biconvex functions. In the most general case, very little can be said about
the global or even local optimality properties of biconvex optimization problems. Neverthe-
less, some useful properties of partial optimality conditions (i.e., conditions for stationary
points) of biconvex problems are discussed in | ,].

Solution methods for biconvex problems. Current solution methods for biconvex prob-
lems can be roughly categorized into two classes: heuristic methods and global optimization
methods. Heuristic methods for biconvex problems aim at finding stationary points of the
biconvex objective function, and are mostly based on the idea of alternately optimizing
two convex subproblems, i.e., the ACS-type methods. ACS methods are a special case of
block relaxation methods |))] where the variables are divided into disjoint
blocks, and in each step, only the variables of an active block are optimized while those of
the other blocks are fixed. In particular, for ACS, only two blocks of variables defined by
the convex subproblems are activated in cycles. Since the resulting subproblems are convex,
efficient convex minimization methods can be used to solve these subproblems. A survey
on ACS methods for biconvex optimization problems can be found in |]. Gorski et
al. | | showed that under weak assumptions all solution points generated by ACS form
a compact connected set and that each of these points is a stationary point of the objective
function. However, no better convergence results regarding local or global optimality prop-
erties can be obtained in general. Regarding the global optimization methods, Floudas and

Visweswaran [| adapted the idea of branch-and-bound |)] to solve biconvex
problems with global optimality. Detailed mathematical background and outline of this
algorithm are given in | , , , |, and some basic convergence properties

of this method are discussed in |].

Biconvex optimization applications. The practical usefulness of biconvex programming
in many applications is also increasingly well known. In machine learning, nonnegative
matrix factorization [, , |, dictionary learning |], and bilinear re-
gression [| are all well known biconvex optimization problems, which
have been w1dely apphed in representation learning, signal processing, and recommender
systems. The very popular k-means clustering problem can also be formulated as a bicon-
vex program |))]. Blind deconvolution problems [)]
are another important class of biconvex optimization problems for image processing and

communication. Other studies such as Mishra et al. |] and Fosson | | explored
biconvex structures in sparse learning and reweighted regression. Biconvex problems also
appear when dealing with bilinear matrix inequalities for bilinear control system synthe-
sis [, ,]. Finally, Dyrholm et al. |] and Shi et al. |]
applied bilinear discriminant component analysis techniques to brain computer interfaces.
We discuss some of these applications in more detail in §6.

Disciplined convex programming. DCP |] is a modeling framework for convex
optimization problems. If a mathematical optimization problem is written following the
DCP syntax ruleset, it is guaranteed to be a valid convex program, and can then be au-
tomatically transformed into the standard conic form [|, which can be handled by
generic conic solvers, such as OSQP |], ECOS |], SCS |], and Clara-
bel []. Many DSLs for convex optimization, such as YALMIP |], CVX | 1,
Convex.jl |], CVXPY |], and CVXR |], are based on the DCP rule-
set. Over the years, DCP has been extended to handle stochastic |], convex-
concave | |, geometric [], quasiconvex |[], and saddle |] prob-
lems. The most related extension of DCP to our work is disciplined multi-convex program-
ming |], which provides a DSL for specifying and solving multi-convex optimization
problems via block relaxation methods. However, it seems to be no longer actively sup-
ported or maintained. In this paper, we work with CVXPY and focus on biconvex problems
only, since most multi-convex problems in practice can be formulated as biconvex problems
by grouping variables appropriately.

1.2 Outline

This paper is not about establishing new theoretical results or computational methods for
biconvex optimization problems. Instead, we collect well known ideas and assemble them
into a disciplined DSL, for specifying and solving biconvex optimization problems in a
natural human-readable way which is close to the mathematical formulation. These ideas
are implemented in the open-source Python package dbcp, which extends CVXPY to support
biconvex programming.

The rest of this paper is organized as follows. In §2, we provide formal definitions for
biconvex sets, functions, and optimization problems, including some specific examples of
these objects, and briefly review their basic properties. In §3, we introduce the ACS-based
method for solving biconvex optimization problems, and discuss some practical augmen-
tations when dealing with initialization and numerical stability, which are all integrated
into the dbcp package. Then in §4, we introduce the DBCP biconvex syntax ruleset for
specifying biconvex optimization problems, as an extension of the DCP convex ruleset. The
implementation and basic usage of the provided Python package dbcp, where the functions
and features mentioned above are implemented, is discussed in §5. Finally, in §6, we present
some specific numerical examples for specifying and solving biconvex optimization problems
that frequently appear in practice using the dbcp package, to show the simplicity and ef-
fectiveness of our framework. These examples along with the corresponding code snippets
also serve as a preliminary tutorial for new users to get started with dbcp.

Figure 1 Examples of biconvex sets.

2 Biconvex programming

In this section, we provide formal definitions for biconvex sets, biconvex functions, and
biconvex optimization problems, to establish our notation, and briefly review some of the
basic properties of these objects. To start with, let X C R"™ and Y C R be two nonempty
closed convex sets. We should also note that throughout this paper, we use the convention
that functions are implicitly extended-valued, i.e., by writing f: A — R, we really mean
f: A— RU{oo}. In other words, a function defined on A can take the value co for some
points in A | ,].

2.1 Biconvex sets

Aset BCX x)YC R"* is a biconver set, if for every fixed y €), the set
B,={z e X|(z,y) e B}CR"

is convex, and for every fixed z € X, the set
B, ={y€ Y| (z,y) € B} CR"

is convex.

Obviously, a biconvex set is not necessarily convex in general. Figure 1 shows some
examples of biconvex sets which are not convex. In particular, a biconvex set does not even
have to be connected, as shown by the example

B={(z,y) € R? | z,y <0} U{(z,y) € R? | z,y > 0},

whose picture is shown on the right of figure 1.

An important property of biconvex sets is that, similar to convex sets, the intersection
of an arbitrary collection of biconvex sets is still a biconvex set [,].
2.2 Biconvex functions

A function f: X x Y — R is a biconvex function if its effective domain

dom f = {(z,y) € X x Y[f(2,y) < oo}

S
===

Figure 2 Graph of the biconvex function f(z,y) = zy>.

is a biconvex set, and for every fixed y €), the function
fy:X_>R7 fo(x7y)7
is convex in z, and for every fixed x € X, the function

fo: Y =R, y— f(z,y),

is convex in y. In other words, a biconvex function is the one that is convex in each of two
blocks of variables when the other block is fixed. We can also define biconcave, biaffine, and
bilinear functions similarly, by replacing the property of being convex for f, and f, by the
property of being concave, affine, or linear, respectively. Figure 2 shows an example of a
biconvex function given by f(z,y) = x%y>.

Now we list some basic properties of biconvex functions. We do not provide formal
proofs here; interested readers may refer to |] and [| for the corresponding
proofs and discussion of the following statements (which are more or less obvious with the
basic convex analysis toolbox []). Similar to convex functions, the sublevel sets of a
biconvex function f: X x Y — R, given by

Co = {(z,y) edom [| f(z,y) < a},

are biconvex sets, for any a € R. Also, many arithmetic properties that are valid for convex
functions can be transferred to the biconvex case:

o Nonnegative weighted sums. Evidently, if f is a biconvex function and w > 0, then the
function wf is biconvex. If f; and fy are both biconvex functions, then so is their sum
f1+ fo. In the general case, if f1,..., fi, are biconvex functions, and w1, ..., w, >0,
then the function

f=wifi+ -+ wnfm

is also biconvex.

o Composition with a biaffine mapping. Suppose h: R™ — R is convex, and g: X' x) —
R™ is biaffine, then the function f: X x ¥ — R, given by f(z,y) = h(g(x,y))
is biconvex. In particular, if h: R — R is convex, and A € R™", ¢ € R™*¥,
b,d € R™, then the function f: X x) — R, given by

F(x,y) = h((Az +)" (Cy + d))
is biconvex.

e Pointwise maximum and supremum. If fi,..., fm, are biconvex functions, then the
function

f(xay) = max{fl(aj7y)7 .- 7fm(x7y)}

is also biconvex. More generally, if {f;},.; is a family of biconvex functions indexed
by a set I, then the function

f(xvy) = sup fi(x’y)
i€l

is biconvex.

e Composition. 1If h: R — R is convex and nondecreasing, and g: X x Y — R is
biconvex, then the function f: X x ¥ — R, given by f(z,y) = h(g(z,y)) is biconvex.
This property can be easily extended to multivariate functions h: R™ — R that are
convex and nondecreasing in each argument. Interested readers may refer to | ,
§3.2.4] for more details.

We should note that the property of composition with a biaffine mapping above is a special
case of the more general composition property, but is of more practical importance, since
most biconvexity structures in applications arise from composing convex functions with
biaffine mappings. (See §6 for some examples.)

2.3 Biconvex optimization problems

A biconvex optimization problem is one of the form

minimize fo(z,y)
subject to fi(x,y) <0, i=1,...,m (2.1)
hi(a"ay):()) izlv"'vpa

where x € X, y €) are the optimization variables. The functions f;: X x Y — R,
i = 0,...,m, are biconvex, and h;: X x Y — R, ¢ = 1,...,p, are biaffine. Roughly
speaking, the problem (2.1) can be interpreted as minimizing a biconvex objective function
over a biconvex feasible set defined by biconvex inequality constraints and biaffine equality
constraints, since each of these constraints defines a biconvex set, and the intersection of
biconvex sets is still a biconvex set (c¢f. §2.1). The feasible set of (2.1) is defined as

fi(a"ay)g()) z:l,,m}

D= ,y) ed
{(x y) Omfo h7(x,y) :Oa v = 17"'7p

Different from convex optimization problems, in the most general case, very little can be
said about the global or even local optimality properties of biconvex optimization problems.

Instead, partial optimality is usually considered for biconvex optimization problems, which
is even weaker than local optimality. Suppose (z*,y*) € D is a feasible point of (2.1), then
(x*,y*) is a partially optimal point of (2.1) if for all x € Dy, y € Dy, we have

fo(x*’y*) < f0($7y*) and fo(l'*,y*) < f0($*7y)7

where
fo(z,y*) < o0
Dyp=caxeX| filz,y*)<0, i=1,..., ,
hl(‘r7y*) 07 1= 17 7p
and

fo(z*7y) <0
Dyx=cyeY| filzr,y) <0, i=1,...,m
hi(z*,y) =0, i=1,...,p

It can be shown that for a differentiable biconvex optimization problem, every stationary
point of fo over D is partially optimal, and vice versa []. However, such a point is
not necessarily a local optimum, as stationary points can be saddle points of the objective
function. Some necessary conditions for a partially optimal point of a biconvex problem
being a local optimum are discussed in |], but in general, no stronger results can be
obtained. Albeit a weak notion of optimality, partially optimal points for biconvex problems
are still widely used in practice, and often turn out to be good enough for many applications.

3 Solving biconvex problems

As a result of the optimality properties regarding biconvex optimization problems discussed
in §2.3, ‘solving’ a biconvex optimization problem in practice usually resolves to finding a
stationary point of the objective function over the feasible set. In this section, we introduce
the ACS heuristic for this purpose that is implemented in the DBCP framework, where the
basic idea is to transform the biconvex problem into two convex subproblems, which can
then be handled directly by DCP-type DSLs for convex optimization. We also discuss some
practical augmentations to ACS when dealing with the biconvex problem initialization and
numerical stability issues.

3.1 Alternate convex search

ACS as a minimization method is a special case of block relaxation methods |], where
the variables are divided into two disjoint blocks, and in each step, only the variables of
an active block are optimized while those of the other block are fixed. Specifically, for a
biconvex optimization problem of the form (2.1), ACS iterates between solving the following
two convex subproblems:

minimize fo(z,7)
subject to fi(z,9) <0, i=1,...,m (3.1)
h’i(‘rvg):(L 7::17"'71)’

where x € X is the variable, § €) is the fixed problem data, and

minimize fo(Z,y)
subject to fi(Z,y) <0, i=1,...,m (3.2)
h’i(ilvy):(L 7::17"'71)’
where y € Y is the variable, # € X is the fixed data. Since the problems (3.1) and (3.2)

are convex, efficient convex minimization methods can be used to solve these subproblems.
The full ACS procedure is summarized in the following algorithm.

Algorithm 3.1 ALTERNATE CONVEX SEARCH.

given a starting point (:10(0)7 y(m) e D.

k:=0.
repeat
1. Solve (3.1) with § = y™. Try to obtain
o s angmin { ooy ®) | PPV ER T L)
zEX hl(x7y):0, Z:1,~~~7p

and quit if infeasible.
2. Solve (3.2) with & = 2*+V. Try to obtain

fi@® T y) <

) <0, i‘—l,...,m}7 (3.4)

(k+1) . ; (k+1)
Yy == argmin < fo(z ,Y)
{ hi(z*V)y =0, i=1,...,p

yeY

and quit if infeasible.
3. k=k+1.

until stopping criteria is satisfied.

Gorski et al. |] showed that under weak assumptions, the sequence of objective
function values {fj (x(k),y(k))}iozo generated by ACS is monotonically nonincreasing and
convergent. Furthermore, if the sequence { (), y(*))} .~ converges to (z*, y*), then (z*,y*)
is a stationary point of fy (and hence, is a partially optimal point of (2.1)). We should
note that ACS is sensitive to initialization, 4.e., with different initial points (z(%),(®)),
the sequence {(x(k),y(k))}gozo generated through algorithm 3.1 may converge to different
stationary points of fy with (probably) different function values.

There are several ways to define the stopping criteria for ACS. A simple choice is to
stop when the difference of the objective values of (2.1) with the variable values obtained
between two consecutive iterations is below a certain threshold € > 0, i.e., quit when

|f0<x(k+1)a y(k+1)) - fO(x(k)a y(k))| < €. (35)

As a small variation, one may also use the difference between the optimal values of the
problems (3.1) and (3.2) in one iteration as the criterion, 7.e., quit when

[fo(z®™ D,y D) — fo(a™+D, 4)| < e. (3.6)

In practice, there is not much difference between using (3.5) and (3.6) as the termination
criteria of the ACS procedure, except that using the latter does not require storing the

10

objective value of (2.1) from the previous iteration. Other choices include limiting the
maximum number of iterations, or stopping when the changes of the optimization variables
are below certain thresholds, e.g., quit when

max{ [z — W,y -y} <,

for some € > 0.

3.2 Proximal regularizations

Directly solving the subproblems (3.1) and (3.2) in the algorithm 3.1 may lead to numerical
problems or slow convergence in practice. One possible reason for this is that the biconvex
objective function fy can be very ‘flat’ in some region along certain directions when one
block of variables is fixed (an example is shown in figure 2, in the region where = and y are
close to zero), where the convex solver for subproblems may have difficulty getting sufficient
progress in minimizing the objective along the descent direction. A common technique to
alleviate these issues is to add proximal regularization terms to the objective functions of the
subproblems. Specifically, in the (k + 1)th iteration of algorithm 3.1, instead of performing
(3.3) and (3.4), we try to perform the following updates:

2D = argmingey fo(e,y®) + Al -2
subject to fi(z,y®) <0, i=1,...,m (3.7)
hi(z,y®) =0, i=1,...,p,
and
YD = argmingey fo(@.y) + Ay — @
subject to fi(z* D y) <0, i=1,...,m (3.8)

hi(z®+))y =0, i=1,...,p,

where A > 0 is the regularization parameter. When A = 0, the updates (3.7) and (3.8) reduce
to (3.3) and (3.4), respectively. When A > 0, the proximal terms in (3.7) and (3.8) can be
interpreted as adding soft trust region constraints to the respective optimization variables,
which penalize large changes of the variables between two consecutive iterations, and in
particular, the problems in (3.7) and (3.8) become strongly convex. In practice, large A value
helps improve numerical stability when solving the convex subproblems [,].
It is also observed that adding the additional proximal regularizers can sometimes lead to
better final points, i.e., points with lower objective values | |, compared to those
from the original ACS procedure.

3.3 Initialization

Note that algorithm 3.1 requires a feasible starting point (x(o),y(o)) € D, since otherwise,
one of the subproblems (3.1) or (3.2) may be infeasible right at the first iteration. Formally,
the corresponding feasibility problem of a biconvex problem of the form (2.1) can be written
as
find (z,v)
subject to fi(z,y) <0, i=1,...,m (3.9)
hi(z,y)=0, i=1,...,p

11

with variables z € X and y €). Solving (3.9) directly can be as hard as solving the original
biconvex problem (2.1), and, actually, it can even be NP-hard |]. Here, we consider
the following heuristic via relaxation to find a feasible starting point:

minimize 17s + ||¢]|,

subject to s> 0
filx,y) <s;, i=1,....m
hi(x,y)=t;, i=1,...,p,

(3.10)

where z € X, y €) are the optimization variables, and s € R™ and ¢t € R? are the slack
variables to relax the constraints in (3.9). The subscripts i of s; and ¢; denote the ith entry
of the vectors s and t, respectively. Note that the relaxed biconvex feasibility problem (3.10)
is always feasible, since by choosing sufficiently large s and ¢, all constraints can be satisfied.
To solve (3.10), we can again use the ACS procedure introduced in §3.1. The full algorithm
is given below.

Algorithm 3.2 FINDING A FEASIBLE STARTING POINT.

given a starting point (z®,y®) e X x V.

k:=0.
repeat
s>~ 0
Lo @% s %) = argmin { 1Ts+||t]], | filz,y™) <si, i=1,....m
sERgg'%fERp hi(z, y(k>) =t;, i1=1,...,p
quit with (259 y®™) if 17s* 4 ||t*||, = 0.
s>~ 0
2. (¥ s*)= argmin 175 + e, | fi(@® Y y) <si, i=1,...,m
seRg"g,fERP hi(@* D gy =t;, i=1,...,p
quit with (24D 4Dy if 1Ts* 4 ||¢%]|, = 0.

3. k=k+1.

until maximum iterations are reached.

Different from algorithm 3.1, initiating algorithm 3.2 only requires a point in X x),
which is usually easy to obtain. If algorithm 3.2 quit with 17's*+||#*||, = 0 in some iteration,
then the returned point is a feasible point of the original biconvex problem (2.1), which can
then be used as a starting point for the ACS procedure in algorithm 3.1. However, we must
note that there is no guarantee that the algorithm 3.2 will find a feasible point for any
instance of the biconvex problem (2.1), even if such a point exists. In practice, as a generic
practical method, this approach seems to work quite well.

3.4 Infeasible start

Now we integrate the relaxation, which transforms the biconvex feasibility problem (3.9)
into (3.10), directly into the original biconvex problem (2.1), so that the ACS procedure can
be applied even when starting from an infeasible point. Let s € R™ and t € RP be slack

12

variables to relax the inequality and equality constraints of (2.1), respectively. We consider
the following relaxed biconvex optimization problem:

minimize fo(x,y) + v(17s + ||t[|,)
subject to s> 0
filr,y) <s;, i=1,...,m
hi(z,y) =t;, i=1,...,p,

(3.11)

where v > 0 is a penalty parameter. The problem (3.11) is always feasible, since by choosing
sufficiently large s and ¢, all constraints can be satisfied. Moreover, if the original biconvex
problem (2.1) is feasible, then for sufficiently large v, applying ACS to (3.11) will yield a
final point (z*,y*, s*,t*), such that 17s* + [[t*]|, = 0, i.e., (z*,y*) is feasible and partially
optimal for (2.1) [,]. The full algorithm is given as follows.

Algorithm 3.3 INFEASIBLE START ALTERNATE CONVEX SEARCH.

given a starting point (:E(O), y(o)) € X x Y and sufficiently large v > 0.

k:==0.
repeat
m P >_ 0
) seR™, teRP, s>
1. 2 .= argmin folz:y T) fie,y™) <siy i=1,...m
veX +r(17s + [|t]])

hi(%y(k)):tu t1=1,...,p
seR™, teRP, s=0
fi(m(k+1)7y)§5i, i=1,...,m
hi(@* D) =ti, i=1,...,p

(k+1)
2. y(k+1) = argmin fo(z TJJ)
vey +v(17s + It]];)

3. k=k+1.

until stopping criteria is reached.

Compared to algorithm 3.1, the infeasible start ACS procedure in algorithm 3.3 can
start from any point in X x), and hence, the initialization step via, e.g., algorithm 3.2,
can be avoided. The same termination criteria as those discussed in §3.1 can still be used
for algorithm 3.3. However, we must note that there is no guarantee that the final point
returned by algorithm 3.3 is feasible for the original biconvex problem (2.1), even if such a
point exists, since the penalty parameter ¥ may not be sufficiently large. In practice, the
value of v can be selected in an ad hoc manner, i.e., one may try to increase v and resolve
(3.11) if the final point returned by algorithm 3.3 is still infeasible for (2.1). Finally, the
proximal regularizations as in (3.7) and (3.8) can be readily integrated into the subproblems
in the algorithm 3.3 to improve numerical stability.

4 Disciplined biconvex programming

We now present the DBCP biconvex ruleset for modeling biconvex optimization problems
in a way that the biconvexity is easily verified by construction.

13

DCP convex ruleset. The DBCP ruleset is heavily based on the DCP convex ruleset,
which consists of a library of convex atomic functions, and a convex syntax ruleset that
prescribes how these atomic functions may be composed to express (more complex) convex
optimization problems |]. Specifically, all functions in a DCP-compliant problem
must be formed as an expression consisting of variables, constants or parameters, and atomic
functions. The sign, curvature, and monotonicity of each DCP expression can be determined
recursively from those of its constituent parts, based on which the convexity of the overall
problem can be verified by checking whether each function in the problem satisfies the DCP
composition rules | ,]. We make an observation that is critical for extending
DCP to DBCP: The basic arithmetic properties, in particular, the composition property,
of biconvex functions, as discussed in §2.2, are compatible with the DCP ruleset. In other
words, an optimization problem formed by verifiable biconvex expressions according to the
DCP ruleset is still biconvex.

DBCP product rule. To construct disciplined biconvex expressions, we first note that the
product of expressions that are both nonconstant is prohibited in DCP, since the convexity
of such expressions cannot be determined in general |]; however, most biconvex
expressions that appear in practice are constructed through variable multiplications. Hence,
we introduce the following product rule for DBCP:

1. A valid DBCP convex product expression should include variables in both the left-
hand and right-hand expressions, and should be one of the following forms:

affine * affine
affine-nonneg * conver or affine-nonpos * concave
CONVEL-NONNE * CONVEL-NONNEJ O CONCAVE-TONPOS * CONCAVE-NONPOS

The nonneg and nonpos qualifiers indicate that the expression is known to be nonneg-
ative or nonpositive, respectively.

2. There exists no loop in the variable interaction graph of the overall expression, where
the edge between two variables indicates that they appear on different sides in a
product expression as described in the above rule.

Note that the above DBCP product rules do not include constant/parameter-variable mul-
tiplications, since such expressions are already covered by the DCP product-free rule-
set []. The second rule is to prevent expressions like x * y, y * z, and z * x from
appearing simultaneously in the same optimization problem, which would lead to cyclic in-
teractions between the variables x, y, and z, where the biconvexity of the overall expression
cannot be guaranteed. According to the definition and basic properties of the biconvex
functions listed in §2.2, expressions formed according to the above DBCP product rule are
guaranteed to be biconvex.

5 Implementation

In this section, we introduce our Python implementation of the DBCP framework, as an
extension to CVXPY | ,]. The corresponding open-source package, named dbcp,
is available at

https://github.com/nrgrp/dbcp.

14

https://github.com/nrgrp/dbcp

w N

Biconvex atoms. Biconvex expressions in dbcp are created from fundamental atomic func-
tions. Most of the atoms used in dbcp are inherited from CVXPY, such as inner product and
elementwise multiplication. An example of the extended atoms that are not supported by
CVXPY is the one-dimensional discrete convolution operation between two ld-nonconstant
expressions, which can be called by the user via dbcp.convolve. It has the same behavior
as the convolve function in CVXPY, except that the first expression need not be a constant.
The biconvex atom library is extensible, so that the other additional atoms can be added
as necessary.

Specifying biconvex problems. Users can define their optimization variables, objective
functions, and constraints using the standard CVXPY syntax, and a biconvex problem is
constructed using:

prob = BiconvexProblem(obj, [x_var, y_var], constraints)

The argument obj is a DBCP-compliant biconvex expression representing the objective
function, x_var and y_var are lists of the biconvex optimization variables, and constraints
is a list of DBCP-compliant biconvex constraints. The arguments x_var and y_var define
the variable partition for the biconvex problem, so that each group is fixed when optimizing
over the other group during the ACS procedure. Note that it is not necessary to include
all variables that appear in the problem in x_var and y_var; those variables that are DCP-
compliant, i.e., those related to convex expressions, can be left out, since they do not have
to be fixed in any step of the ACS procedure. For example, to specify the biconvex problem

minimize || XY + 7 — Al

subject to || Z]|» <1,
where X € R™** Y € R*" Z € R™*"™ are optimization variables, and A € R™ " is
problem data, one may use the following code:

import cvxpy as cp
from dbcp import BiconvexProblem

X = cp.Variable ((m, k))

5 Y = cp.Variable ((k, n))

Z = cp.Variable((m, n))

obj = cp.Minimize(cp.norm(X @ Y + Z - A, ’fro’))
constraints = [cp.norm(Z, ’fro’) <= 1]
prob = BiconvexProblem(obj, [[X], [Y]], constraints)

Solving a biconvex problem. To solve the specified biconvex problem prob, one may simply
call prob.solve (). There are many optional arguments that can be passed to prob.solve()
to customize the solution procedure, where most of them are directly inherited from CVXPY
for the configuration of the convex solvers used to solve the subproblems. In addition
to these standard arguments, dbcp also provides several specific options for controlling
the ACS procedure. One of the most important ones is 1bd, which sets a value for the
proximal regularization parameter A in (3.7) and (3.8). When 1bd is zero, no proximal
regularization is added, i.e., the original ACS procedure (algorithm 3.1) is used; if 1bd is

15

positive, then the proximal regularized updates in (3.7) and (3.8) are used in replacement
of the original updates (3.3) and (3.4). It is recommended for the user to specify (feasible)
initial values for all optimization variables before calling prob.solve(). Otherwise, dbcp
will try to generate random initial values for the unspecified variables from a standard
normal distribution, which is not guaranteed to work well for all problems. Every time
the prob.solve() method is called, dbcp first checks the feasibility of the current initial
point. If the initial point is infeasible, then algorithm 3.2 will be used to try to find a
feasible starting point, based on the current values of the variables, before launching the
ACS procedure. We implement the stopping criteria (3.6) as the termination condition for
the ACS procedure, with a default threshold value of € = 107%, which can be modified by
passing the argument gap_tolerance to prob.solve().

Solving with infeasible starts. We provide another problem class for solving biconvex
problems by directly solving the relaxed biconvex problem (3.11) via the infeasible start
ACS (algorithm 3.3), which can be specified using:

prob = BiconvexRelaxProblem(obj, [x_var, y_var], constraints)

The usage of BiconvexRelaxProblem is mostly the same as that of BiconvexProblem, ex-
cept that there is one additional argument nu for the prob.solve () method, which sets the
penalty parameter v in (3.11). Calling prob.solve() for a BiconvexRelaxProblem instance
will directly launch the infeasible start ACS procedure (algorithm 3.3) from the current vari-
able values (if not specified, random initial values will be generated as in BiconvexProblem).
Note that although the problem (3.11) is always feasible, there is no guarantee that the fi-
nal point returned by prob.solve() (under the ACS stopping criteria (3.6) with default
e = 107°) is feasible for the original biconvex problem (2.1). To monitor the feasibility
progress of the algorithm, the value of the total slack 175 + |It]]; is reported after each ACS
iteration. In the case that the final point is still infeasible with nonzero total slack, the user
may try to increase the value of nu and resolve the problem.

Verification of biconvexity. When a biconvex problem is specified as an instance of either
BiconvexProblem or BiconvexRelaxProblem, dbcp will automatically verify the biconvex-
ity of the objective function and all constraints according to the DBCP ruleset introduced in
§4. The user can check whether a problem is DBCP-compliant by calling prob.is_dbcp(),
which returns True if the problem is a valid DBCP biconvex problem, and False otherwise.
If a user is trying to solve a non-DBCP-compliant biconvex problem, dbcp will raise an error
directly after the prob.solve() method is called.

Generalized inequality constraints. Lastly, we should mention that although all the pre-
vious discussion about solving and finding a feasible initial point for biconvex problems is
based on standard inequality constraints as shown in (2.1), the dbcp package is implemented
in a way that natively supports biconvex problems with generalized inequality constraints,
such as second-order cone constraints and positive semidefinite constraints. Interested read-
ers may refer to §A for more theoretical details about how these constraints are handled
in the backend, while practitioners can directly use the standard CVXPY syntax for speci-
fying generalized inequality constraints when defining biconvex problems using dbcp. The
appearance of such constraints will be automatically detected by dbcp, and the appropriate
adaptations will be made in the solving procedure without any extra effort from the user.

16

6 Examples

In this section, we present several numerical examples of specifying and solving biconvex
optimization problems that appear frequently in practice using the dbcp package. We only
show snippets of the code for defining and solving the biconvex problems, while omitting
the data generation and result visualization parts for brevity. Interested readers can find
the full code examples at

https://github.com/nrgrp/dbcp.

6.1 Nonnegative matrix factorization

We start with a basic nonnegative matrix factorization problem. Suppose that we are given
a matrix A € R™ ", and are interested in finding two nonnegative matrices X € R™**
and Y € R**" such that A ~ XY. This can be formulated as the following biconvex
optimization problem:

minimize HXY—AH?,
subject to X;; >0, i=1,....m, j=1,...,k
Y;; >0, i=1,...,k, j=1,...,n

with variables X and Y. To specify this problem using dbcp, one may use the following
code:

X = cp.Variable((m, k), nonneg=True)
Y = cp.Variable ((k, n), nonneg=True)

obj = cp.Minimize(cp.sum_squares(X @ Y - A))
prob = BiconvexProblem(obj, [[X], [YII)

In this example, we set m = 5, n = 10, and & = 5, and generate the data matrix
A as the product of two random matrices in R™* and R**" from the standard normal
distribution. After calling prob.solve(), we obtain a final point with an objective value
around 6 x 107%, which indicates that the original matrix A is well approximated by the
product of the recovered nonnegative matrices X and Y.

6.2 Bilinear logistic regression

We consider a bilinear logistic regression problem for binary classification |]. Suppose
that we are given a dataset (X;,y;), ¢ = 1,...,m, where each sample consists of a feature
matrix X; € R™* and a binary label y; € {0,1}. Our goal is to construct a bilinear
classifier § = 1 if tr(UTXV) > 0, and § = 0 otherwise, where U € R™ " and V € R**" are
the bilinear logistic regression coefficients with a predefined (maximum) rank r, and tr(M)
denotes the trace of some square matrix M. To fit a bilinear logistic regression model to
the dataset, we would like to solve the following bilinear maximum likelihood estimation
problem:
maximize Y .-, y; tr(UTX;V) —log(1 + exp(tr(UT X;V)))

with variables U and V. This problem can be specified using dbcp as follows:

17

https://github.com/nrgrp/dbcp

AW N =

5

N

U = cp.Variable((n, r))
V = cp.Variable ((k, r))

obj = 0
for X, y in zip(Xs, ys):
obj += cp.sum(
cp.multiply(y, cp.trace(U.T @ X @ V))
- cp.logistic(cp.trace(U.T @ X @ V))
)
prob = BiconvexProblem(cp.Maximize (obj), [[UI, [VI])

In this example, we set m = 300, n = 20, k = 10, and r = 5. The dataset (X;,v;),
1 =1,...,m, is generated synthetically using the make_classification function from the
scikit-learn library | |. After calling prob.solve() with the proximal regular-
ization weight 1bd=1 and the termination threshold gap_tolerance=1e-4, we obtain a final
point with an objective value —5 x 1073.

6.3 k-means clustering

Suppose that we are given a set of data points z; € R™, 7 = 1,...,m, and we would like
to cluster them into k groups, using the k-means clustering method This problem can be
formulated as the following biconvex optimization problem [I:

o _ 2 - 2
minimize 37, 2f (|21 — 2ill5, - [T — @ill5) 6.1)
subject to 0=z =<1, 1Tz =1, i=1,....m

with variables z; € R", i = 1,...,k, and z; € Rk7 i =1,...,m. We can interpret the

variables in the problem (6.1) as follows: The variables Zy,...,Z represent the cluster

centroids, and each variable z; is a soft assignment vector for the data point z;, where the
jth entry of z; indicates the probability that the sample x; belongs to cluster j. Then, the
objective function in (6.1) represents the total within-cluster variance, which we would like
to minimize. To specify the problem (6.1) using dbcp, one may use the following code:

xbars = cp.Variable ((k, n))
zs = cp.Variable((m, k), nonneg=True)

obj = cp.sum(cp.multiply(zs, cp.vstack([

5 cp.sum(cp.square(xs - c), axis=1) for c in xbars
»1).T))
constr = [zs <= 1, cp.sum(zs, axis=1) == 1]
prob = BiconvexProblem(cp.Minimize (obj), [[xbars], [zs]], constr)

We generate a synthetic dataset of m = 1000 points in R? using the make_blobs func-
tion of scikit-learn, and set the number of clusters & = 4 with the ground truth centroids
(0,2), (0,-2), (2,0), and (—2,0). The k-means clustering results based on the formulation
(6.1) after calling prob.solve() are shown in figure 3, where the colors indicate the clus-
ter assignments of the data points, and the black crosses represent the recovered cluster
centroids.

18

S

Figure 3 Results of the k-means clustering example.

6.4 Dictionary learning

We consider the sparse dictionary learning problem [AEB06], which aims to find a dictionary
matrix D € R™** and a sparse code matrix X € R*¥*", such that the data matrix Y €
R™*"™ can be well approximated by their product DX, while the matrix X is sparse and the
matrix D has bounded Frobenius norm. The dictionary learning problem can be formulated
as the following biconvex optimization problem:

minimize |DX — Y| + o] X||, 6.2)

subject to ||D| < B)
with variables D and X, where a > 0 is the sparsity regularization parameter, and g > 0 is
the bound on the Frobenius norm of the dictionary matrix. To specify this problem using
dbcp, one may use the following code:

D = cp.Variable((m, k))
X = cp.Variable ((k, n))

obj = cp.Minimize(cp.sum_squares(D @ X - Y) + alpha * cp.norml (X))
prob = BiconvexProblem(obj, [[D], [X]], [cp.norm(D,’fro’) <= betal)

In this example, we set m = 10, n = 20, k = 20, = 1, and generate the data matrix
Y € R™*" from the standard normal distribution. The problem (6.2) is then solved for
different values of the sparsity regularization parameter « ranging from 10~ to 1. For
each value of a, the values of the problem variables D and X are reinitialized randomly
before prob.solve() is called. Figure 4 shows the trade off curve between the relative
approximation error ||[DX — Y||g/||Y]||r and the cardinality (i.e., the number of nonzero
entries) of X.

6.5 Blind deconvolution

Blind deconvolution is a technique used to recover some sharp signal or image from a blurred
observation when the blur itself is unknown [C'VR14]. Tt jointly estimates both the original
signal and the blur kernel, with some prior knowledge about their structures. Suppose

19

= <
~ (@)
]]

IDX = YI[p/I[Y]F
o
DO

<
s}
1

0 200 400
card X

Figure 4 Trade off curve of the sparse dictionary learning example.

that we are given a data vector d € R™™™ !, which is the convolution of an unknown
sparse signal z € R" and an unknown smooth vector y € R™ with bounded ¢.-norm (i.e.,
bounded largest entry). Additionally, we have the prior knowledge that both the vectors x
and y are nonnegative. The corresponding blind deconvolution problem can be formulated
as the following biconvex optimization problem:

minimize ||z @ y — d||3 + asp||z]|, + asm|| Dyl
subject to x>0, y>=0
Iyl < B

with variables x and y, where agp, asm > 0 are the regularization parameters for the sparsity
of z and smoothness of y, respectively, and 5 > 0 is the bound on the ¢,,-norm of the vector
y. The matrix D € R(M™YX™ g the first-order difference operator, given by

D= e R(m—l)xm
1 -1

so that Dy computes the vector of successive differences of y. The convolution x ® y of the
vectors x and y is given by

(z®y), = Z iy, k=1,...,m+n—1
itj=k

To specify this problem using dbcp, one may use the following code:

x = cp.Variable(n, nonneg=True)
y = cp.Variable(m, nonneg=True)
obj = cp.Minimize(
cp.sum_squares (convolve(x, y) - d)

+ alpha_sp * cp.norml(x)

20

7

8

9

1.0 1

=== ground truth z
ground truth y

-

=== ground truth d

0.8 1

recovered x

0.6 1

——
—#— recovered y
—&— recovered d

0.4
0.2
0.0
T T T T T
0 10 20 30 40 50 60
indices

Figure 5 Results of the blind deconvolution example.

+ alpha_sm * cp.sum_squares (cp.diff (y)))
constr = [cp.norm(y, "inf") <= betal
prob = BiconvexProblem(obj, [[x], [yl]l, constr)

In this example, we consider the vectors z € R'?, y € R*°, and the /,.-norm bound 3 =
1. The ground truth vectors were generated according to a similar example used by Shen et
al. [SDUT17]. The ground truth and the recovered signals after calling prob.solve() with
regularization parameters asp = 0.1 and aey = 0.2 are shown in figure 5.

6.6 Fitting input-output hidden Markov models

We consider the fitting problem of a logistic input-output hidden Markov model (I0-HMM)
to some dataset [JAP24]. Suppose that we are given a dataset (z(¢),y(t)), t = 1,...,m,
where each sample consists of an input feature vector z(t) € R"™ and an output label
y(t) € {0,1}, generated from a K-state IO-HMM, according to the following procedure:
Let 2(t) € {1,...,K}, t = 1,...,m, be the state label of the IO-HMM with initial state
distribution pi,iy € R” with lTpinit =1 and transition matrix P, € RE*E with P,1=1.
At the time step ¢, the state label 2(¢) is sampled according to

) Cat(pinit) t=0
Cat(pz—1)) t>0,

where the vector pz;_1) € R* denotes the 2(t — 1)th row of the matrix P, and Cat(p)
denotes the categorical distribution with p being the vector of category probabilities. Then,
given the feature vector z(¢) € R", the output y(t) € {0,1} of this IO-HMM at time step ¢
is then generated from a logistic model, i.e.,

1
prob(y(t) = 1) = T ;
1+ exp(—x(t)” Os1))
where 0;¢) € {01,...,0k} € R" is the coefficient.
Given the dataset (z(t),y(t)), t = 1,...,m, we are interested in recovering the transition
matrix P;,, the model parameters 61, . . ., 0k, and the unobserved state labels 2(1),. .., 2(m).
Noticing that the transition matrix P;, can be easily estimated from the state labels 2(¢),

21

2

3

t =1,...,m, we consider the following biconvex optimization problem for fitting the IO-
HMM |]:

K
minimize — Y27, z(t)T(y(t)w(t)TQk ~log(1 + exp(x(t)TOk))>k71
g iy 10k l5 + o S Dua(2(0), 2(t + 1) (6.3)
subject to 0 =<z(t) <1, 1Tz()=1, t=1,...,m
0, eCx, k=1,....K,

where the optimization variables are §, € R, k=1,..., K, and 2(t) e R¥, t =1,...,m.
Note that the variable z(t) is a soft assignment vector for the hidden state label 2(¢), where
the kth entry of z(t) indicates the probability of the state being k at the time step ¢, and
2(t) can be estimated as the index of the largest entry of z(¢) after solving the problem
(6.3). Each component of the problem (6.3) can be interpreted as follows: The first term
in the objective function is the negative log-likelihood of the observed data under the IO-
HMM model, given the state assignment probabilities z(¢), t = 1,...,m, and the model
parameters 0, k = 1,..., K. The second term is a Tikhonov regularization on the model
parameters 6y, with the regularization parameter cy > 0. The third term is a temporal
smoothness regularization on the state assignment probabilities, where Dy (p, ¢) denotes the
Kullback-Leibler divergence between two probability distributions p and ¢, and «, > 0 is the
corresponding regularization parameter. The constraints on the variables z(t),t =1,...,m,
ensure that they are valid probability distributions. The sets C,, € R", k = 1,..., K,
are closed nonempty convex sets that encode potential prior knowledge about the model
parameters 6.

In this example, we generate m = 1800 data samples from an IO-HMM with K = 3
hidden states and input feature dimension n = 2. The feature vector for each sample is
generated according to

z(t) ~ (U(—5,5), 1),

where U(a,b) denotes a uniform distribution over the interval [a,b], and the second entry
of z(t) is always 1 to account for the bias term. The ground truth coefficients, initial state
distribution, and transition matrix are given by
01 = (_1’0)7 92 = (276)a 93 = (27 _6)5
0.95 0.025 0.025
Pinit = (1,0,0), P, = | 0.025 0.95 0.025
0.025 0.025 0.95

To fully specify the problem (6.3), it is assumed that we are given the following prior
knowledge about the coefficients:

011 <0, 0212>0, 031>0, 0222>032,

where 60, ; denotes the jth entry of the vector 6;. The corresponding code snippets is as
follows:

thetas = cp.Variable ((K, n))
zs = cp.Variable((m, K), nonneg=True)

22

20

state

T T T
0 500 1000 1500
t

Figure 6 Results of the IO-HMM example. The ground truth state labels (left) and the response
curve of the output probability (right) are shown in black dashed lines, whereas the corresponding
estimations are shown in solid lines.

-cp.multiply(ys, xs @ thetas([k]) + cp.logistic(xs @ thetas[k])
for k in range (K)

obj = cp.Minimize(

cp.sum(cp.multiply(zs, cp.vstack(rs).T))

+ alpha_theta * cp.sum_squares (thetas)

+ alpha_z * cp.sum(cp.kl_div(zs[:-1], zs[1:])))
constr = [

thetas [0] [0] <= 0,

thetas [1]1[0] >= 0,

thetas [2] [0] >= O,

thetas [1][1] >= thetas[2][1],

zs <= 1, cp.sum(zs, axis=1) == 1

]

prob = BiconvexRelaxProblem(obj, ([zs], [thetas]), constr)

Note that for this example, we use the BiconvexRelaxProblem class to solve the relaxed
biconvex problem (3.11) via the infeasible start ACS procedure (algorithm 3.3).

The problem (6.3) is then solved with regularization parameters oy = 0.1 and o, = 2.
The arguments when calling the prob.solve() method are set to nu=1e2, 1bd=0.1, and
gap_tolerance=1e-3. The final total slack is around 4.21 x 1078, indicating that the
returned point is feasible (within numerical roundoff error) for the original biconvex problem
(6.3). Figure 6 shows the estimated state label for each sample and the response curve
corresponding to each state. The estimated transition matrix of the Markov chain is

0.96 0.02 0.02
0.03 0.95 0.02
0.01 0.02 0.97

23

Acknowledgments

This work has been funded as part of BrainLinks-BrainTools, which is funded by the Federal
Ministry of Economics, Science and Arts of Baden-Wiirttemberg within the sustainability
program for projects of the Excellence Initiative II, and CRC/TRR 384 “IN-CODE”.

24

A Biconvex problem with generalized inequality constraints

Consider a biconvex optimization problem with generalized inequality constraints of the
form

minimize fo(x,y)

subject to fi(z,y) =k, 0, i=1,....,m (A1)

hi(xay)zoa izl,"'aP?

where fo: X x Y — R is a biconvex objective, h;: X x Y — R, i = 1,...,p, are biaffine
equality constraint functions, f;: X x Y — R%, i =1,...,m, are biconvex inequality con-
straint functions with respect to proper cones K; C R%, i =1,...,m. The ACS procedure
(algorithm 3.1) and the proximal regularizations given by (3.7) and (3.8) can be directly
applied to the generalized inequality constrained biconvex problem (A.1) without modifi-
cation. However, the initialization procedure (algorithm 3.2) and the infeasible start ACS
procedure (algorithm 3.3) need to be slightly modified to accommodate the generalized in-
equality constraints. Specifically, the relaxed biconvex feasibility problem (3.10) is changed
to
minimize 17 + ||¢]|,
subject to s> 0
fz(x7y) jK:i Siel(:iv i:]-v"'am
hi(xvy):th izl?"'aP?

(A.2)

where e, >, 0 is any positive element of the proper cone K;. For example, for a second-
order cone K = {(z,t) € R? | ||lz||, < t}, we can choose ex = (0,1) € RY; for a positive
semidefinite cone K = Si, we can choose ex = I € R9*?, where I is the identity matrix.
Similarly, the relaxed biconvex optimization problem (3.11) is changed to

minimize fo(z,y) +v(17s + ||t[];)

subject to s =0
filz,y) 2k, siex,, i=1,....m
hi(x,y)=t;, i=1,...,p.

(A.3)

We implement the dbcp package in a way that these generalized inequality constraints
are natively supported. When a user specifies a DBCP-compliant biconvex problem, dbcp
will automatically detect the presence of generalized inequality constraints, then determine
whether the problem formulations (A.2) and (A.3) should be used instead of (3.10) and
(3.11), and finally, modify the initialization procedure (algorithm 3.2) and infeasible start
the ACS procedure (algorithm 3.3) accordingly. From a user’s perspective, all these modi-
fications are done in the backend and no extra input is required.

25

References

[AB20]

[ADB19]

[AEBOG6]

[AHS6]

[AKDB15]

[AKFS3]

[AVDB1g]

[BMO7]

[Bor86]

[BPC*11]

[Bur8l]

[Bur86]

[BVO4]

[CP09]

A. Agrawal and S. Boyd. Disciplined quasiconvex programming. Optimization
Letters, 14(7):1643-1657, 2020.

A. Agrawal, S. Diamond, and S. Boyd. Disciplined geometric programming.
Optimization Letters, 13(5):961-976, 2019.

M. Aharon, M. Elad, and A. Bruckstein. K-SVD: An algorithm for designing
overcomplete dictionaries for sparse representation. IEEE Transactions on Signal
Processing, 54(11):4311-4322, 2006.

R. J. Aumann and S. Hart. Bi-convexity and bi-martingales. Israel Journal of
Mathematics, 54(2):159-180, 1986.

A. Ali, J. Z. Kolter, S. Diamond, and S. Boyd. Disciplined convex stochastic
programming: A new framework for stochastic optimization. In UAI pages
62-71, 2015.

F. A. Al-Khayyal and J. E. Falk. Jointly constrained biconvex programming.
Mathematics of Operations Research, 8(2):273-286, 1983.

A. Agrawal, R. Verschueren, S. Diamond, and S. Boyd. A rewriting system
for convex optimization problems. Journal of Control and Decision, 5(1):42—60,
2018.

S. Boyd and J. Mattingley. Branch and bound methods. Notes for EE364b,
Stanford University, 2006:07, 2007.

J. M. Borwein. Partially monotone operators and the generic differentiabil-
ity of convex-concave and biconvex mappings. Israel Journal of Mathematics,

54(1):42-50, 1986.

S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed optimiza-
tion and statistical learning via the alternating direction method of multipliers.
Foundations and Trends® in Machine learning, 3(1):1-122, 2011.

D. L. Burkholder. A geometrical characterization of Banach spaces in which
martingale difference sequences are unconditional. The Annals of Probability,
pages 997-1011, 1981.

D. L. Burkholder. Martingales and Fourier analysis in Banach spaces. In A. Dold
and B. Eckmann, editors, Probability and Analysis, Lecture Notes in Mathemat-
ics, pages 61-108. Springer, 1986. Lectures given at the 1st 1985 Session of
the Centro Internazionale Matematico Estivo (CIME) held at Varenna (Como),
Italy May 31-June 8, 1985.

S. Boyd and L. Vandenberghe. Convexr Optimization. Cambridge University
Press, 2004.

W. Chu and S.-T. Park. Personalized recommendation on dynamic content using
predictive bilinear models. In Proceedings of the 18th International Conference
on World Wide Web, pages 691-700, 2009.

26

[CVR14]

[DB16]

[DCB13]

[DCPO7]

[DL4]

[F1095]

[Flo00]

[FNB20]

[Fos18]

[FS69]

[FV90]

[FV93)

[GB14]

[GBYO06]

[GC24]

[GHO0a|

[GHOOD]

S. Chaudhuri, R. Velmurugan, and R. Rameshan. Blind Image Deconvolution:
Methods and Convergence. Springer, 2014.

S. Diamond and S. Boyd. CVXPY: A Python-embedded modeling language for
convex optimization. Journal of Machine Learning Research, 17(83):1-5, 2016.

A. Domahidi, E. Chu, and S. Boyd. ECOS: An SOCP solver for embedded
systems. In Furopean Control Conference (ECC), pages 3071-3076, 2013.

M. Dyrholm, C. Christoforou, and L. C. Parra. Bilinear discriminant component
analysis. Journal of Machine Learning Research, 8(5), 2007.

J. De Leeuw. Block-relaxation algorithms in statistics. In Information Sys-
tems and Data Analysis: Prospects—Foundations—Applications, pages 308-324.
Springer, 1994.

C. A. Floudas. Nonlinear and Mized-integer Optimization: Fundamentals and
Applications. Oxford University Press, 1995.

C. A. Floudas. Deterministic Global Optimization: Theory, Methods and Ap-
plications, volume 37 of Nonconvexr Optimization and its Applications. Springer
Science & Business Media, 2000.

A. Fu, B. Narasimhan, and S. Boyd. CVXR: An R package for disciplined convex
optimization. Journal of Statistical Software, 94:1-34, 2020.

S. M. Fosson. A biconvex analysis for Lasso ¢; reweighting. IEEFE Signal Pro-
cessing Letters, 25(12):1795-1799, 2018.

J. E. Falk and R. M. Soland. An algorithm for separable nonconvex programming
problems. Management Science, 15(9):550-569, 1969.

C. A. Floudas and V. Visweswaran. A global optimization algorithm (GOP)
for certain classes of nonconvex NLPs — I. Theory. Computers & Chemical
Engineering, 14(12):1397-1417, 1990.

C. A. Floudas and V. Visweswaran. Primal-relaxed dual global optimization ap-
proach. Journal of Optimization Theory and Applications, 78(2):187-225, 1993.

M. Grant and S. Boyd. CVX: MATLAB software for disciplined convex pro-
gramming, version 2.1. http://cvxr.com/cvx, 2014.

M. Grant, S. Boyd, and Y. Ye. Disciplined convex programming. In Global
Optimization: From Theory to Implementation, pages 155-210. Springer, 2006.

P. J. Goulart and Y. Chen. Clarabel: An interior-point solver for conic programs
with quadratic objectives. arXiv Preprint arXiv:2405.12762, 2024.

7. Geng and L. Huang. Robust stability of systems with both parametric and
dynamic uncertainties. Systems € Control Letters, 39(2):87-96, 2000.

Z. Geng and L. Huang. Robust stability of the systems with mixed uncertainties
under the IQC descriptions. International Journal of Control, 73(9):776-786,
2000.

27

http://cvxr.com/cvx

[GPKO7]

[GTS+94]

[HKVO08]

[JAP24]

[JIDMV20]

[Joh14]

[JT85)

[Lee93]

[Llo82]

[Lof04]

[LS99]
[LW66]

[LWDF09]

[MDC17]

[NWO6]

J. Gorski, F. Pfeuffer, and K. Klamroth. Biconvex sets and optimization with bi-
convex functions: A survey and extensions. Mathematical Methods of Operations
Research, 66(3):373-407, 2007.

K. C. Goh, L. Turan, M. G. Safonov, G. P. Papavassilopoulos, and J. H. Ly.
Biaffine matrix inequality properties and computational methods. In Proceedings
of 1994 American Control Conference, volume 1, pages 850-855. IEEE, 1994.

Y. Hu, Y. Koren, and C. Volinsky. Collaborative filtering for implicit feedback
datasets. In IEEE International Conference on Data Mining, pages 263—272.
IEEE, 2008.

A. Jha, Z. C. Ashwood, and J. W. Pillow. Active learning for discrete latent
variable models. Neural Computation, 36(3):437-474, 2024.

H. Javanmardi, M. Dehghani, M. Mohammadi, and N. Vafamand. Bilinear ma-
trix inequality-based nonquadratic controller design for polytopic-linear param-
eter varying systems. International Journal of Robust and Nonlinear Control,

30(17):7655-7669, 2020.

C. C. Johnson. Logistic matrix factorization for implicit feedback data. Advances
in Neural Information Processing Systems, 27(78):1-9, 2014.

M. Jouak and L. Thibault. Directional derivatives and almost everywhere differ-
entiability of biconvex and concave-convex operators. Mathematica Scandinav-
ica, pages 215224, 1985.

J. M. Lee. On Burkholder’s biconvex-function characterization of Hilbert spaces.
Proceedings of the American Mathematical Society, 118(2):555-559, 1993.

S. Lloyd. Least squares quantization in PCM. IEEE Transactions on Information
Theory, 28(2):129-137, 1982.

J. Loftberg. YALMIP: A toolbox for modeling and optimization in MATLAB. In
Proceedings of the IEEE International Symposium on Computed Aided Control
Systems Design, pages 294-289, 2004.

D. D. Lee and H. S. Seung. Learning the parts of objects by non-negative matrix
factorization. Nature, 401(6755):788-791, 1999.

Eugene L Lawler and David E Wood. Branch-and-bound methods: A survey.
Operations research, 14(4):699-719, 1966.

A. Levin, Y. Weiss, F. Durand, and W. T. Freeman. Understanding and evalu-
ating blind deconvolution algorithms. In IEEE Conference on Computer Vision
and Pattern Recognition, pages 1964-1971. IEEE, 2009.

A. Mishra, D. K. Dey, and K. Chen. Sequential co-sparse factor regression.
Journal of Computational and Graphical Statistics, 26(4):814-825, 2017.

J. Nocedal and S. J. Wright. Numerical Optimization. Springer, 2006.

28

[OCPB16]

[PB14]
[Pow73]

[PTY4]

[PVG*11]

[Roc70]
[SBG+20]

[SDGB16]

[SDU*17]

[SGLY4|

[SLB24]

[SMD22]

[SXB14]
[Thig4]

[TO95)

B. O’donoghue, E. Chu, N. Parikh, and S. Boyd. Conic optimization via operator
splitting and homogeneous self-dual embedding. Journal of Optimization Theory
and Applications, 169(3):1042-1068, 2016.

N. Parikh and S. Boyd. Proximal algorithms. Foundations and Trends® in
Optimization, 1(3):127-239, 2014.

M. J. D. Powell. On search directions for minimization algorithms. Mathematical
Programming, 4(1):193-201, 1973.

P. Paatero and U. Tapper. Positive matrix factorization: A non-negative factor
model with optimal utilization of error estimates of data values. Environmetrics,
5(2):111-126, 1994.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research, 12:2825-2830, 2011.

R. T. Rockafellar. Convex Analysis. Princeton University Press, 1970.

B. Stellato, G. Banjac, P. Goulart, A. Bemporad, and S. Boyd. OSQP: An
operator splitting solver for quadratic programs. Mathematical Programming
Computation, 12(4):637-672, 2020.

X. Shen, S. Diamond, Y. Gu, and S. Boyd. Disciplined convex-concave pro-
gramming. In IEEE 55th Conference on Decision and Control (CDC), pages
1009-1014. IEEE, 2016.

X. Shen, S. Diamond, M. Udell, Y. Gu, and S. Boyd. Disciplined multi-convex
programming. In 29th Chinese Control and Decision Conference, pages 895-900.
IEEE, 2017.

M. G. Safonov, K. C. Goh, and J. H. Ly. Control system synthesis via bilin-
ear matrix inequalities. In Proceedings of 1994 American Control Conference,
volume 1, pages 45—49. IEEE, 1994.

P. Schiele, E. Luxenberg, and S. Boyd. Disciplined saddle programming. Trans-
actions on Machine Learning Research, 2024.

G. So, G. Mahajan, and S. Dasgupta. Convergence of online k-means. In Inter-
national Conference on Artificial Intelligence and Statistics, pages 8534-8569.
PMLR, 2022.

J. V. Shi, Y. Xu, and R. G. Baraniuk. Sparse bilinear logistic regression. arXiv
Preprint arXiv:1404.4104, 2014.

L. Thibault. Continuity of measurable convex and biconvex operators. Proceed-
ings of the American Mathematical Society, 90(2):281-284, 1984.

O. Toker and H. Ozbay. On the NP-hardness of solving bilinear matrix inequal-
ities and simultaneous stabilization with static output feedback. In Proceedings
of 1995 American Control Conference, volume 4, pages 2525-2526. IEEE, 1995.

29

[UHZB16]

[UMZ*14]

[VBOO]

[War63]

[WHJ76]

[(WYZ12]

[ZYHB25)

M. Udell, C. Horn, R. Zadeh, and S. Boyd. Generalized low rank models. Foun-
dations and Trends® in Machine Learning, 9(1):1-118, 2016.

M. Udell, K. Mohan, D. Zeng, J. Hong, S. Diamond, and S. Boyd. Convex
optimization in Julia. In Proceedings of the Workshop for High Performance
Technical Computing in Dynamic Languages, pages 18-28, 2014.

J. G. VanAntwerp and R. D. Braatz. A tutorial on linear and bilinear matrix
inequalities. Journal of Process Control, 10(4):363-385, 2000.

J. Warga. Minimizing certain convex functions. Journal of the Society for In-
dustrial and Applied Mathematics, 11(3):588-593, 1963.

R. E. Wendell and A. P. Hurter Jr. Minimization of a non-separable objective
function subject to disjoint constraints. Operations Research, 24(4):643-657,
1976.

Z. Wen, W. Yin, and Y. Zhang. Solving a low-rank factorization model for matrix
completion by a nonlinear successive over-relaxation algorithm. Mathematical
Programming Computation, 4(4):333-361, 2012.

H. Zhu, S. Yan, J. Hoffmann, and J. Boedecker. Multi-convex programming
for discrete latent factor models prototyping. arXiv Preprint arXiv:2504.01431,
2025.

30

	Introduction
	Previous and related work
	Outline

	Biconvex programming
	Biconvex sets
	Biconvex functions
	Biconvex optimization problems

	Solving biconvex problems
	Alternate convex search
	Proximal regularizations
	Initialization
	Infeasible start

	Disciplined biconvex programming
	Implementation
	Examples
	Nonnegative matrix factorization
	Bilinear logistic regression
	k-means clustering
	Dictionary learning
	Blind deconvolution
	Fitting input-output hidden Markov models

	Biconvex problem with generalized inequality constraints

