
Reinforcement Learning Journal Club

Algorithms for inverse reinforcement learning
A. Y. Ng and S. Russell

Inverse reinforcement learning via convex optimization
H. Zhu, Y. Zhang, and J. Boedecker

February 20, 2025

1

About this talk

• a (very) brief introduction to convex optimization

• an (old) convex formulation of inverse reinforcement learning (CIRL) problems

– used for behavioral scientific research: reward fitting given subject behavior

– (sadly) not much applications in engineering

• sloppy math

• examples and opinions (some controversial)

2

Outline

Introduction to convex optimization

Inverse reinforcement learning via convex optimization

Summary

Introduction to convex optimization 3

Convex optimization problem

minimize f0(x)

subject to fi(x) ≤ 0, i = 1, . . . ,m

Ax = b

• variable x ∈ Rn

• equality constraints are affine

• f0, f1, . . . , fm are convex: for 0 ≤ θ ≤ 1,

fi(θx+ (1− θ)y) ≤ θfi(x) + (1− θ)fi(y)

i.e., fi have nonnegative (upward) curvature

(x, fi(x))

(y, fi(y))

why

• effective algorithms, methods (in theory and practice)

• get global solution and optimality certificate

Introduction to convex optimization 4

Modeling languages for convex optimization

• domain specific languages (DSLs) for convex optimization

– describe problem in high level human readable language, close to the math

– can automatically verify problem as convex

– can automatically transform problem to standard form, then solve

• enables rapid prototyping

• it’s now much easier to develop an optimization-based application

• ideal for teaching and research (can do a lot with short scripts)

• gets close to the basic idea: say what you want, not how to get it

Introduction to convex optimization 5

Implementation

• CVXPY (Python): Diamond and Boyd, 2016 [DB16]

• Convex.jl (Julia): Udell et al., 2014 [UMZ+14]

• CVXR (R): Fu, Narasimhan, and Boyd, 2017 [FNB20]

• CVX (Matlab): Grant and Boyd, 2006 [GB14]

• YALMIP (Matlab): Lofberg, 2004 [Lof04]

Introduction to convex optimization 6

CVXPY example: Non-negative least squares

math:

minimize ∥Ax− b∥22
subject to x ⪰ 0

• problem variable: x

• problem data (given): A, b

• ⪰: componentwise inequality

CVXPY code:

1 import cvxpy as cp

2

3 A, b = ...

4

5 x = cp.Variable(n)

6 obj = cp.norm2(A @ x - b) ** 2

7 constr = [x >= 0]

8 prob = cp.Problem(cp.Minimize(obj),

9 constr)

10 prob.solve()

Introduction to convex optimization 7

Outline

Introduction to convex optimization

Inverse reinforcement learning via convex optimization

Summary

Inverse reinforcement learning via convex optimization 8

Preliminaries

Markov decision processes (MDPs)

(S, A, {Pa}a∈A, r, γ)

• S, A: finite sets of states and actions, with |S| = m, |A| = k

• {Pa ∈ Rm×m
+ | Pa1 = 1, a ∈ A}: transition probability matrices for all a ∈ A

• r ∈ Rm: reward function (or really, vector), which is the problem variable and is
assumed to be bounded by some positive number rmax ∈ R++

• γ ∈ [0, 1): discount factor

expert policy π : S → A, assumed to be deterministic with π(s) = a⋆

value function v ∈ Rm:

v = r + γPa⋆v =⇒ v = (I − γPa⋆)
−1r

Inverse reinforcement learning via convex optimization 9

optimality condition

π(si) = a⋆ ∈ argmax
a∈A

pTi,av, i = 1, . . . ,m

⇐⇒ Pa⋆v ⪰ Pav, for all a ∈ A \ {a⋆}

⇐⇒ Pa⋆(I − γPa⋆)
−1r ⪰ Pa(I − γPa⋆)

−1r, for all a ∈ A \ {a⋆}

⇐⇒ (Pa⋆ − Pa)(I − γPa⋆)
−1r ⪰ 0, for all a ∈ A \ {a⋆},

where pTi,a denotes the ith row of Pa

Inverse reinforcement learning via convex optimization 10

The CIRL problem

a trivial formulation of CIRL could be the feasibility problem

find r

subject to (Pa⋆ − Pa)(I − γPa⋆)
−1r ⪰ 0, for all a ∈ A \ {a⋆}

rmax ⪰ r ⪰ −rmax

with variable r ∈ Rm; data {Pa}a∈A, γ; hyperparameter rmax

• contains trivial (‘meaningless’) solutions, e.g., r = c ∈ Rm with c1 = · · · = cm

to find a ‘meaningful’ reward, consider

minimize J(r) + λϕ(r)

subject to (Pa⋆ − Pa)(I − γPa⋆)
−1r ⪰ 0, for all a ∈ A \ {a⋆}

rmax ⪰ r ⪰ −rmax

where J(r), ϕ(r) are two criteria that a reward function is considered to be
meaningful, and λ ≥ 0 is a hyperparameter

Inverse reinforcement learning via convex optimization 11

primary objective

J(r) = −
m∑
i=1

(
pTi,a⋆v − sup

a∈A\{a⋆}
pTi,av

)
= −

m∑
i=1

inf
a∈A\{a⋆}

(pTi,a⋆ − pTi,a)v

= −
m∑
i=1

inf
a∈A\{a⋆}

(
(pTi,a⋆ − pTi,a)(I − γPa⋆)

−1r
)

where pTi,a denotes the ith row of Pa

• favor reward functions that maximize the margin between the observed expert
policy π and all other possible policies at all states

penalty function: ℓ1-norm, i.e., ϕ(r) = ∥r∥1
• reward function should be as sparse as possible

put together, we have the convex problem

minimize −
∑m

i=1 infa∈A\{a⋆}

(
(pTi,a⋆ − pTi,a)(I − γPa⋆)

−1r
)
+ λ∥r∥1

subject to (Pa⋆ − Pa)(I − γPa⋆)
−1r ⪰ 0, for all a ∈ A \ {a⋆}

rmax ⪰ r ⪰ −rmax,

(∗)

Inverse reinforcement learning via convex optimization 12

Hyperparameter selection

• trade off between J and ϕ by varying λ in [0,∞)

• there exists a value
λmax = inf

z∈∂J(0)
∥z∥∞

(where ∂J(0) is the subdifferential of J(r) at r = 0), such that if λ ≥ λmax, the
optimal of (∗) is achieved at r = 0

– λmax can be obtained via iterative methods, such as bisection

• find the ‘simplest’ r given the problem data by setting λ = λmax

Inverse reinforcement learning via convex optimization 13

Implementation

transforming (∗) into epigraph form

minimize 1T s+ λ∥r∥1

subject to


pTi,a⋆ − pTi,ã1

...

pTi,a⋆ − pTi,ãk−1

 (I − γPa⋆)
−1r + si ⪰ 0, i = 1, . . . ,m

(Pa⋆ − Pãi)(I − γPa⋆)
−1r ⪰ 0, i = 1, . . . , k − 1

rmax ⪰ r ⪰ −rmax

• ℓ1-regularized linear program over variables: r ∈ Rm and s ∈ Rm

Inverse reinforcement learning via convex optimization 14

1 import numpy as np

2 import cvxpy as cp

3 # problem information (input from user)

4 m = None # number of states

5 gamma = None # discount factor

6 Pastr = None # transition matrix of the optimal action

7 lPa = [] # list of transition matrices of the other actions

8 # hyperparameters (input from user)

9 rmax = None # reward function bound

10 lbd = None # scalarization weight

11 r = cp.Variable(m)

12 s = cp.Variable(m)

13 constraints = []

14 H = np.linalg.inv(np.identity(m) - gamma * Pastr)

15 D = np.array ([[Pastr[i] - Pa[i] for Pa in lPa] for i in range(m)])

16 for i in range(m):

17 constraints.append(D[i] @ H @ r + s[i] >= 0)

18 for Pa in lPa:

19 constraints.append ((Pastr - Pa) @ H @ r >= 0)

20 constraints.append(rmax >= r)

21 constraints.append(r >= -rmax)

22 obj = cp.Minimize(cp.sum(s) + lbd * cp.norm(r, 1))

23 prob = cp.Problem(obj , constraints)

24 prob.solve()

Inverse reinforcement learning via convex optimization 15

Example: Gridworld

ground truth CIRL recovered

0.0 0.2 0.4 0.6 0.8 1.0

• λ = 2, rmax = 100

• 0.85 cosine similarity between true and recovered reward

• solved in 1.65 seconds

Inverse reinforcement learning via convex optimization 16

Outline

Introduction to convex optimization

Inverse reinforcement learning via convex optimization

Summary

Summary 17

Summary

advantages of CIRL formulation:

• global optimality guarantee with certificate

• very easy to implement (though might need some effort to figure out the math)

• very fast for moderate dense problems (can be fast for large problems if sparsity
pattern exists in the data)

limitations:

• require deterministic expert policy

• infeasible (or feasible only for r = 0) if expert policy is strongly suboptimal

in the paper but not covered here:

• incorporating function approximations (e.g., for continuous S and A)

• learning from trajectories (i.e., no analytical expert policy available)

Summary 18

Reference

[BV04] S. Boyd and L. Vandenberghe. Convex optimization. Cambridge University Press, 2004.

[DB16] S. Diamond and S. Boyd. CVXPY: A Python-embedded modeling language for convex
optimization. Journal of Machine Learning Research, 17(83):1–5, 2016.

[FNB20] A. Fu, B. Narasimhan, and S. Boyd. CVXR: An R package for disciplined convex
optimization. Journal of Statistical Software, 94:1–34, 2020.

[GB14] M. Grant and S. Boyd. CVX: Matlab software for disciplined convex programming, version
2.1, 2014.

[Lof04] J. Lofberg. YALMIP: A toolbox for modeling and optimization in MATLAB. In 2004 IEEE
International Conference on Robotics and Automation (IEEE Cat. No. 04CH37508), pages
284–289. IEEE, 2004.

[UMZ+14] M. Udell, K. Mohan, D. Zeng, J. Hong, S. Diamond, and S. Boyd. Convex optimization in
Julia. In 2014 First Workshop for High Performance Technical Computing in Dynamic
Languages, pages 18–28. IEEE, 2014.

	Introduction to convex optimization
	Inverse reinforcement learning via convex optimization
	Summary

