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About this talk

• a (very) brief introduction to convex optimization

• an (old) convex formulation of inverse reinforcement learning (CIRL) problems

– used for behavioral scientific research: reward fitting given subject behavior

– (sadly) not much applications in engineering

• sloppy math

• examples and opinions (some controversial)
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Convex optimization problem

minimize f0(x)

subject to fi(x) ≤ 0, i = 1, . . . ,m

Ax = b

• variable x ∈ Rn

• equality constraints are affine

• f0, f1, . . . , fm are convex: for 0 ≤ θ ≤ 1,

fi(θx+ (1− θ)y) ≤ θfi(x) + (1− θ)fi(y)

i.e., fi have nonnegative (upward) curvature

(x, fi(x))

(y, fi(y))

why

• effective algorithms, methods (in theory and practice)

• get global solution and optimality certificate
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Modeling languages for convex optimization

• domain specific languages (DSLs) for convex optimization

– describe problem in high level human readable language, close to the math

– can automatically verify problem as convex

– can automatically transform problem to standard form, then solve

• enables rapid prototyping

• it’s now much easier to develop an optimization-based application

• ideal for teaching and research (can do a lot with short scripts)

• gets close to the basic idea: say what you want, not how to get it
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Implementation

• CVXPY (Python): Diamond and Boyd, 2016 [DB16]

• Convex.jl (Julia): Udell et al., 2014 [UMZ+14]

• CVXR (R): Fu, Narasimhan, and Boyd, 2017 [FNB20]

• CVX (Matlab): Grant and Boyd, 2006 [GB14]

• YALMIP (Matlab): Lofberg, 2004 [Lof04]
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CVXPY example: Non-negative least squares

math:

minimize ∥Ax− b∥22
subject to x ⪰ 0

• problem variable: x

• problem data (given): A, b

• ⪰: componentwise inequality

CVXPY code:

1 import cvxpy as cp

2

3 A, b = ...

4

5 x = cp.Variable(n)

6 obj = cp.norm2(A @ x - b) ** 2

7 constr = [x >= 0]

8 prob = cp.Problem(cp.Minimize(obj),

9 constr)

10 prob.solve()

Introduction to convex optimization 7



Outline

Introduction to convex optimization

Inverse reinforcement learning via convex optimization

Summary

Inverse reinforcement learning via convex optimization 8



Preliminaries

Markov decision processes (MDPs)

(S, A, {Pa}a∈A, r, γ)

• S, A: finite sets of states and actions, with |S| = m, |A| = k

• {Pa ∈ Rm×m
+ | Pa1 = 1, a ∈ A}: transition probability matrices for all a ∈ A

• r ∈ Rm: reward function (or really, vector), which is the problem variable and is
assumed to be bounded by some positive number rmax ∈ R++

• γ ∈ [0, 1): discount factor

expert policy π : S → A, assumed to be deterministic with π(s) = a⋆

value function v ∈ Rm:

v = r + γPa⋆v =⇒ v = (I − γPa⋆)
−1r
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optimality condition

π(si) = a⋆ ∈ argmax
a∈A

pTi,av, i = 1, . . . ,m

⇐⇒ Pa⋆v ⪰ Pav, for all a ∈ A \ {a⋆}

⇐⇒ Pa⋆(I − γPa⋆)
−1r ⪰ Pa(I − γPa⋆)

−1r, for all a ∈ A \ {a⋆}

⇐⇒ (Pa⋆ − Pa)(I − γPa⋆)
−1r ⪰ 0, for all a ∈ A \ {a⋆},

where pTi,a denotes the ith row of Pa
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The CIRL problem

a trivial formulation of CIRL could be the feasibility problem

find r

subject to (Pa⋆ − Pa)(I − γPa⋆)
−1r ⪰ 0, for all a ∈ A \ {a⋆}

rmax ⪰ r ⪰ −rmax

with variable r ∈ Rm; data {Pa}a∈A, γ; hyperparameter rmax

• contains trivial (‘meaningless’) solutions, e.g., r = c ∈ Rm with c1 = · · · = cm

to find a ‘meaningful’ reward, consider

minimize J(r) + λϕ(r)

subject to (Pa⋆ − Pa)(I − γPa⋆)
−1r ⪰ 0, for all a ∈ A \ {a⋆}

rmax ⪰ r ⪰ −rmax

where J(r), ϕ(r) are two criteria that a reward function is considered to be
meaningful, and λ ≥ 0 is a hyperparameter
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primary objective

J(r) = −
m∑
i=1

(
pTi,a⋆v − sup

a∈A\{a⋆}
pTi,av

)
= −

m∑
i=1

inf
a∈A\{a⋆}

(pTi,a⋆ − pTi,a)v

= −
m∑
i=1

inf
a∈A\{a⋆}

(
(pTi,a⋆ − pTi,a)(I − γPa⋆)

−1r
)

where pTi,a denotes the ith row of Pa

• favor reward functions that maximize the margin between the observed expert
policy π and all other possible policies at all states

penalty function: ℓ1-norm, i.e., ϕ(r) = ∥r∥1
• reward function should be as sparse as possible

put together, we have the convex problem

minimize −
∑m

i=1 infa∈A\{a⋆}

(
(pTi,a⋆ − pTi,a)(I − γPa⋆)

−1r
)
+ λ∥r∥1

subject to (Pa⋆ − Pa)(I − γPa⋆)
−1r ⪰ 0, for all a ∈ A \ {a⋆}

rmax ⪰ r ⪰ −rmax,

(∗)

Inverse reinforcement learning via convex optimization 12



Hyperparameter selection

• trade off between J and ϕ by varying λ in [0,∞)

• there exists a value
λmax = inf

z∈∂J(0)
∥z∥∞

(where ∂J(0) is the subdifferential of J(r) at r = 0), such that if λ ≥ λmax, the
optimal of (∗) is achieved at r = 0

– λmax can be obtained via iterative methods, such as bisection

• find the ‘simplest’ r given the problem data by setting λ = λmax
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Implementation

transforming (∗) into epigraph form

minimize 1T s+ λ∥r∥1

subject to


pTi,a⋆ − pTi,ã1

...

pTi,a⋆ − pTi,ãk−1

 (I − γPa⋆)
−1r + si ⪰ 0, i = 1, . . . ,m

(Pa⋆ − Pãi)(I − γPa⋆)
−1r ⪰ 0, i = 1, . . . , k − 1

rmax ⪰ r ⪰ −rmax

• ℓ1-regularized linear program over variables: r ∈ Rm and s ∈ Rm
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1 import numpy as np

2 import cvxpy as cp

3 # problem information (input from user)

4 m = None # number of states

5 gamma = None # discount factor

6 Pastr = None # transition matrix of the optimal action

7 lPa = [] # list of transition matrices of the other actions

8 # hyperparameters (input from user)

9 rmax = None # reward function bound

10 lbd = None # scalarization weight

11 r = cp.Variable(m)

12 s = cp.Variable(m)

13 constraints = []

14 H = np.linalg.inv(np.identity(m) - gamma * Pastr)

15 D = np.array ([[ Pastr[i] - Pa[i] for Pa in lPa] for i in range(m)])

16 for i in range(m):

17 constraints.append(D[i] @ H @ r + s[i] >= 0)

18 for Pa in lPa:

19 constraints.append ((Pastr - Pa) @ H @ r >= 0)

20 constraints.append(rmax >= r)

21 constraints.append(r >= -rmax)

22 obj = cp.Minimize(cp.sum(s) + lbd * cp.norm(r, 1))

23 prob = cp.Problem(obj , constraints)

24 prob.solve()
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Example: Gridworld

ground truth CIRL recovered

0.0 0.2 0.4 0.6 0.8 1.0

• λ = 2, rmax = 100

• 0.85 cosine similarity between true and recovered reward

• solved in 1.65 seconds
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Summary

advantages of CIRL formulation:

• global optimality guarantee with certificate

• very easy to implement (though might need some effort to figure out the math)

• very fast for moderate dense problems (can be fast for large problems if sparsity
pattern exists in the data)

limitations:

• require deterministic expert policy

• infeasible (or feasible only for r = 0) if expert policy is strongly suboptimal

in the paper but not covered here:

• incorporating function approximations (e.g., for continuous S and A)

• learning from trajectories (i.e., no analytical expert policy available)
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