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About this talk

mathematical optimization and inverse reinforcement learning, sloppy math

IRL algorithms for behavior characterization, done by others and us

examples and opinions (some controversial)

no theoretical /technical details (convergence analysis, solver implementation, etc.)

sadly, no fun videos
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Optimization problem

minimize  fo(x)

subject to  fi(xz) <0, i=1,...,
hi(x)=0, i=1,...,p

e x € R" is (vector) variable to be chosen
e fo is the objective function, to be minimized
e f1,..., fm are the inequality constraint functions
® hi,...,h, are the equality constraint functions
e variations: maximize objective, multiple objectives, ...
e applications: trades in a portfolio, engineering design, airplane control surface

deflections, resource allocation, ...
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Finding good models

e 1 represents the parameters in a model
e constraints impose requirements on model parameters

e objective fo(x) is the prediction error on some observed data (and possibly a term
that penalized model complexity)

example: standard support vector classifier

minimize  |lall, +v(1Tu + 17)

subject to a’x;+b>1—u;, i=1,...,N
aTyi+b< —(1—v), i=1,....M
u>0, v>0

e ¢ is the normal of the support hyperplane
e u, v are measure of how much the linear discrimination constraints are violated

e produces point on trade-off curve between inverse of margin 2/||a||, and
classification error, measured by total slack 1Ty + 170
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Matrix norm minimization

minimize || A(x)||, = ()\max(A(l’)TA(m)))l/z

where A(z) = Ao+ 21A1 + - - - + A, (with given A; € RPXY)
equivalent semi-definite program
minimize ¢

subject to [
A

e variablesz e R", t € R

e can be solved very fast using interior-point methods
(almost always in 10 to 100 iterations with each in polynomial time)
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Inversion

e x is something we want to estimate/reconstruct, given some measurement y
e constraints come from prior knowledge about x

e objective fo(x) measures deviation between predicted and actual measurements

Mathematical optimization
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Markov decision processes (MDPs)

a finite MDP is a 5-tuple
(87 A? P7 T? ’Y)

where

e S is the state space

A is the action space
e P:SxAxS —[0,1] is the state transition function

r: S x A— R is the reward function

v € [0,1] is the discount factor

o m: S x A—[0,1] is agent's policy

Inverse reinforcement learning



Inverse reinforcement learning (IRL)

e is also called (modern) inverse optimal control

e consists in estimating a reward function r that best explains some expert's
behavior, given the set of expert demonstrations D

e the naive formulation is ill-posed
i.e., many reward functions would explain the behavior
e.g., (informal) any r(s,a) =c for all s € S, a € A with ¢ € R is optimal

Inverse reinforcement learning 10



Maximum (causal) entropy IRL
(Ziebart et al. [ZMB108])

maximize (over ) E¢or,p [— im0 log m(sy, at)]
subject to Ecr.P [D o077 (st,a1)] = Bean [Xio v (e, ar)]

o { ={(s0,a0),...,(sn,an)} — trajectory

e maximizing causal entropy of policy under reward matching constraint

the most widely used type of IRL formulation

variants: guided cost learning, adversarial IRL, ...

hard (long time, etc.) to solve

Inverse reinforcement learning
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Inverse Q-learning
(Kalweit et al. [KHWB20])

maximize (over 1) E¢up [logP (£ | 7))
subject to mr(s,a) = exp (Q(s,a) —log > exp Q(s,+)),
Q(s,a) =7(s,a) + 7Y yecs P(s,a,s") maxgea Q(s',d'),
forallseS,ac A

o maximum-likelihood estimation with Boltzmann policy constraint

e the transition function P need not be known, closed-form solution if known

e faster than maximum entropy IRL

Inverse reinforcement learning 12
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Dealing with inconsistent demonstrations

stationary reward function does not work well on demonstrations from

e multiple experts with individual preferences
e suboptimal experts

e environments consists of multiple (sequential) contradicting subtasks
(e.g., the infamous Atari game Montezuma's Revenge)

e animals (including human in some environments), whose goals can evolve over
time due to, e.g., fatigue, satiation, and curiosity

IRL with non-stationary reward functions
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Dynamical inverse reinforcement learning (DIRL)
(Ashwood et al. [AJP22])

extend maximum entropy IRL on a continuous, smoothly varying reward function:
K
ri(s) = Zak,tuk(s)
k=1

e u; € RISI — the kth reward function

e o, € R — mixing weight, where oy = a1 + € with €, ~ N((),o,%)

e achieved SOTA in animal behavior prediction

IRL with non-stationary reward functions
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Hierarchical inverse Q-learning

Hierarchical inverse Q-learning
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Hierarchical inverse Q-learning (HIQL)
(Zhu et al. [ZDK24])

e each expert demonstration is generated under one of the reward functions in the
set R ={ri,...,7x}

e the probability that one demonstration is generated under r € R is controlled by a
Markov chain with initial state distribution II and transition matrix A

() ()
il i Lmin

Hierarchical inverse Q-learning 17



Optimization problems

iteratively solving the sequence of problems:

maximize (over II") Eeop [Zfil P(z0=1|¢&,0)log H:r]
subject to I+ >0, 1711t =1

maximize (over AT) Ee¢op [Zfil Zszl Yo Pz =i,z =7 & 0)log Aﬂ
subject to AG>0, dj=1,...,K, Al=1

maximize (over 7)) Eg¢up [Z?:o P(z =i 0)logm +(s¢, at)]

subject to 7.+ (s,a) = exp (Q(s,a) —log > expQ(s,-)),

Q(S7 CL) = 7’;'_(8, G) + Y ZSIES P(S7 a, S/) maXg/e A Q(S/, CL/).
forallseS,ac A
until © = {ry,...,rx,II, A} converges
e analytical solution exists for II™ and A™
+

e adapt inverse Q-learning for estimating 7", ..., T

Hierarchical inverse Q-learning 18
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Gridworld

environment

0 <o
v

F=(F| I

11 L]

o A = {left, right, up, down, stay}

e 10% probability to random state

Examples

expert behavior

o 78%2l: move towards (4, 4)

° 7_‘_abandon: move towards (0, 0)

initialize s == (0,0), 7 == 78l ¢ := 0.

repeat
a~ .
s~ P(s,a,-).
if s has barrier ‘#' then
Switch to another policy (30%).
else if ¢ =8 then
1 — pabandon (50%)
end if
t=t+1.
until (0,0) or (4,4) is reached.
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=== ground truth

—— HIVAI (1 intention)
—— HIAVI (2 intentions)
—— DIRL (1 map)

DIRL (2 maps, o = 0.01)

—— DIRL (2 maps, o = 1)

ground truth

Examples
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Mice labyrinth navigation

environment

A
48

s

.7
Ak :j:;'.'—:'

e action space: A = {left, right, reverse, stay}

T

e subjects: water-restricted & -unrestricted mice

Examples
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water-restricted animals
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water-unrestricted animals
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Conclusion (non-controversial)

HIQL

e outperforms the SOTA in animal behavior prediction

e provides interpretable behavior representations

Summary
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Conclusion (controversial)

e the intention transition dynamics under natural decision-making processes aligns
better with a discrete Markov process (step-like function), compared to a
continuous random walk process (smoothly varying function)

e tuned mathematical optimization inverse models can help with animal behavior
characterization under complex environments

Summary
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Challenges

o IRL problems with nonconvex formulation is very hard to solve!
— local optimal

— non-polynomial time complexity

— sensitive to initial guess, etc.

e scale up to high-dimensional (e.g., continuous space) environments

'normally; depends on the definition of “solve”
Summary
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Non-Markovian reward transition
e each expert demonstration is generated under one of the reward functions in the
set R = {7”1,...,7‘[(}

e for each trajectory & = {(s1,a1),...,(Sn,an)}, there is a corresponding sequence
of observations ¥ = {p1,...,¢n}, with p € R™

e the probability that one demonstration is generated under r € R is controlled by
some vector-valued function fy: R™ — AlRI

Reses
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